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ABSTRACT 

Combination therapy for cancer treatment is accepted worldwide due to the generation of synergistic anticancer effects; restrain in multidrug 
resistance (MDR) or tumor resistance by different mechanisms of action and minimization of dose-dependent toxicity. Recently developed Solid 
lipid nanoparticles (SLNs) are matrix composed of lipid which is solid at both room and body temperature and hence it is as an alternative to other 
nanocarrier systems. SLNs after oral administration get absorbed by lymphatic pathway due to stimulation of chylomicron formation. Thus, it 
avoids all consequences related to an oral drug delivery system and improves oral bioavailability. SLNs based combination drug delivery to tumor 
tissues reduces the problems associated with chemotherapy. The targeted and sustained delivery of chemotherapeutic agents reduces the dose by 
achieving high concentrations at the target site, without altering the normal tissues. In this article, we have reviewed and focused on SLNs as a drug 
delivery system; ingredients used in formulating SLNs and developed two or more drugs in a single formulation of SLNs as drug delivery. This 
article also focuses on the fact that SLNs as a combination drug delivery provides an attractive approach in future prevention and beneficial for the 
treatment of cancer by increasing its therapeutic efficacy. 
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INTRODUCTION 

Cancer has been listed as one of the most challenging to treat diseases. 
Genetic alterations and cellular abnormalities are noticed in cancer. 
The aggressive growth of cancer cells promoted by the intricacy and 
heterogeneity of abnormal and altered cells leads to significant 
morbidity and mortality in patients [1, 2]. Cancer studies show that the 
survival rates improved but mortality rates still remained high for 
some specific tumors. To enhance the effectiveness of cancer 
treatment, effective therapeutic methods with the least side effects 
along with and precise diagnostics are essential [3]. In anticancer 
therapy, various chemotherapeutic agents are used which are targeted 
on specific multiple pathways. Nevertheless, a single agent prescribed 
repetitively in the treatment consequences in resistance to 
chemotherapy (specific drug) or development of MDR [4]. 

Problems associated with conventional single-drug chemotherapy 
include limited accessibility of the drug to tumor tissues requiring 
an additional dose and leading to intolerable cytotoxicity with 
specific targeting not being achieved. To avoid these hindrances in 
cancer therapy, combinatorial chemotherapy is preferred clinically. 
Combinatorial therapy consists of two or more therapeutic agents 
administered concurrently or use of different therapies in combined 
form. Currently, four therapies are preferred in cancer-
chemotherapy, hormone therapy, immunotherapy, radiotherapy. 
Simultaneously chemotherapy or hormones or immuno-
suppressants are given together in combinatorial therapy [5]. 
Combinatorial therapy decreases the side effects of individual drug 
therapy by taking into consideration synergistic effect of two drugs 
administered in a single dosage form, countering different biological 
signaling pathways in a synergistic manner, possibly minimizing 
dosage of each drug or accessing specific multi-target mechanisms, 
insufficient transportation through membrane, inadequate bio-
availability and least biodistribution can thus be overcome [5]. This 
approach may be helpful in enhancing the therapeutic efficacy of drugs 
since it attacks different stages of cancer cell growth cycles [6].  

Currently, nanotechnology is developing into a rapidly growing field 
with applications in health and drug therapy. Nanoparticles have a 
small size and high surface area. The nano-size distribution effect is 
due to some physical and chemical properties [7]. Various types of 
nano drug delivery systems are nanoparticles, dendrimers, 
nanotubes, micelles and liposomes. Nanotechnology-based 

combinational drug delivery systems increase the bioavailability by 
enhancing permeability, retention and reaching the cancers tissues 
target site [8]. It helps to conquer the systemic toxicity towards 
normal tissue and adverse effects which result from conventional 
cancer therapeutic agents [5]. SLNs are a drug delivery system 
consisting of a drug carrier which helps in increasing bioavailability 
and reducing erratic absorption [7, 9]. In this review, we discuss 
nanotechnology based SLNs for combinational drug delivery in cancer 
therapy as a novel promising drug delivery system. This article is an 
updated and comprehensive review discussing the progress and 
applications of SLNs from various published reviews and research 
(national and international) in the field in the last two decades. 

Advantages of combinational drug delivery in cancer therapy 
mentioned in (fig. 1) 
 

 

Fig. 1: Advantages of combinational drug delivery [5] 
 

SLNs 

SLNs are colloidal nanoparticlate delivery systems with a nano-size 
distribution (50 to 1000 nm) made from lipids which remain in solid 
state at room temperature and body temperature, stabilized by 
surfactants. SLNs can be easily prepared by using several types of 
lipids including lipid acids which are mono, di or triglycerides, 
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glycerides mixtures or waxes, and stabilized by using compatible 
surfactants i.e. Non-ionic or ionic [10]. SLNs can be used for several 
purposes and overcome the problems associated with other colloidal 
carriers. They lead to enhancement of drug solubility, controlled drug 
release, reaching the target site enabling site targeting, reduction in 
the therapeutic dose regimen, prevention of degradation of 
incorporated labile drugs, tremendous permissibility, increase the 
bioavailability of drug [7, 11-13]. SLNs have been developed and 
recommended for administering to several different routes of 
administration like oral, topical, parenteral; and pulmonary [7]. 
Absorption of nanoparticles takes place through mucosa of the 
intestine by several mechanisms namely through the Payer’s patches, 
by intracellular uptake or by the paracellular pathway [14]. 

Rationale of SLNs for Cancer: Tumor cells are having defective, leaky 
vascular structure due to poorly regulated nature of tumor 
angiogenesis. Due to lymphatic system drained interstitial fluid 
within a tumor, the submicron-sized particulate matter may 
preferentially extra vasate into the tumor and be retained there. 
This is called as “enhanced permeability and retention” (EPR) effect. 

EPR effect can be considered while designing Nano particulate drug 
delivery. Thus, SLN system is designed in such a way to achieve 
passive tumor targeting by taking advantage of EPR effect [10]. 

Lipids and emulsifiers used in SLN formulations 

General ingredients for SLN include solid lipids, emulsifiers and 
solvent/water. The two phases i.e. lipid and aqueous should be 
mixed thoroughly to form one homogenous phase with droplet size 
in the nanometer (nm) range. Subsequently, these particles are 
allowed to solidify by cooling or solvent evaporation depending on 
the employed method of preparation. The emulsifiers are preferred 
on the basis of drug solubility, HLB values as per Griffith scale and 
type of emulsion being formulated for particular drug or drugs used 
in combination. Several types of lipids used presently include 
triglycerides, partial glycerides, fatty acids, steroids and waxes. 
Emulsifiers and their combinations have been used to stabilize the 
lipid dispersion. It has been found that a combination of emulsifiers 
efficiently prevents the agglomeration of particles [15, 16]. 
Ingredients used in SLNs are given in (table 1). 

 

Table 1: Lipids and emulsifiers used in SLN formulations 

Lipids  References 
Triglycerides  
Tricaprin (Glycerol Tricaprate) 
Tristearin (Glycerol Tristearate) [17] 
Trilaurin (Glycerol Trilaurate) [18] 
Tri-myristin (Glycerol Trimyristate) [19] 
Tri-palmitin (Glycerol Tripalmitate) [20] 
Hydrogenated coco-glycerides (Softisan 142)  [21] 
Hard fat types [22] 
Witepsol W 35 [23] 
Witepsol H 35 [24] 
Witepsol H 42 [25] 
Witepsol O 85 [24] 
Glyceryl monostearate (Capmul GMS-40) [26] 
Glycerylbehenate (Compritol 888 ATO) [27, 28] 
Glycerylpalmitostearate (Precirol ATO 5) [22] 
Cetylpalmitate [29] 
Stearic acid [30] 
Palmitic acid  [27] 
Decanoic acid [31] 
Behenic acid [32] 
Emulsifiers/Coemulsifiers  
Soybean lecithin [32, 33] 
(Lipoid S 75, Lipoid S 100)  
Egg lecithin (Lipoid E 80) [20] 
Phosphatidylcholine  
(Epikuron 170, Epikuron 200)  [15, 34] 
Poloxamer 188  [35] 
Poloxamer 182  [36] 
Poloxamer 407  [37] 
Poloxamine 908  [37] 
Tween 20  
Tween 80   [38] 
Span 80   [39] 
Sodium cholate   [36] [39] 
Sodium glycocholate [40, 41] 
Taurocholic acid sodium salt  [42] 
Taurodeoxycholic acid sodium salt  [43] 
Butanol  [44] 
Butyric acid  [45] 
Dioctyl sodium sulfosuccinate   [46] 
Monooctylphosphoric acid sodium  [47] 
 

Techniques of SLNs preparation 

The different techniques used to formulate the SLNs, their merits 
and demerits are mentioned in table 2. 

Influence of ingredient composition on product quality 

Influence of the lipid 

The composition and quality of lipids may be varied from different 
suppliers and different batches from the same suppliers. Thus, these 

slight changes in composition might extensively influence the quality 
of SLN dispersion [15]. The increments in lipid concentration also 
reduce the leaking of the drug into the external phase, which 
positively influences entrapment efficiency [48] and however the 
subsequent increase in particle size with increase in lipid amount 
significantly causing an increase in viscosity of the dispersion thus 
resulting in particle agglomeration [43]. Several research studies 
have reported that increasing lipid concentration results in larger 
particles, high entrapment efficiency and broader particle size 
distribution and a higher poly-dispersity index as well [50]. 



Lala et al. 
Int J App Pharm, Vol 10, Issue 5, 2018, 17-22 

 

19 

Table 2: Merits and demerits of SLNs preparation methods 

Methods Merits Demerits References 
High-Speed 
Homogenisation/Ultra 
sonication 

1. Applicable for Lab Scale 
2. Low capital cost 

1. The broader range of particle size distribution 
due to the presence of micro particles. 
2. The possibility of agglomeration of the particle 
after storage hence not suitable intravenous 
administration. 
3. Possibility of metal contamination.  
4. Low stability. 
5. Time-consuming. 

 [15, 48] 
 

High-Pressure Homogenisation 
(Hot homogenization) 

1. Lab scale and large scale 
applicability 
2. Narrow particle size distribution  
3. Low polydispersity index 
4. Greater stability compared to 
High-Speed Homogenisation/Ultra 
sonication 
 

1. Temperature-induced degradation of 
thermolabile drug and lipids. 
2. Sample remains in super cooled melt state for 
months instead of solid state. 
3. Increasing the rate of homogenization leads to 
an increase in particle size due to particulate 
coalescence which occurs due to the generation 
of high kinetic energy of particles. 

 [15, 48] 

High-Pressure Homogenisation 
(Cold homogenization) 

1. Prevents temperature induced 
degradation of thermolabile drug and 
lipids. 
2. Prevents complexity of the 
crystallization step of nanoemulsion 
leading to modifications in supercooled 
melts. 
3. Low temperature increases fragility of 
lipid and therefore favor comminution. 
4. High cooling rate favors better 
distribution of the drug in a lipid matrix. 

1. Larger particle size and greater particle size 
distribution compared to hot homogenization 
2. Effective temperature control and regulation is 
required to ensure the unmolten state of lipid. 
3. Higher cost 

 [15] 

Solvent 
emulsification/evapration 

1. Smallest particle size is obtained 
2. Lab scale applicability 
3. High stability 
4. Thermo labile drugs can be 
successfully incorporated into SLNs 
without degradation 
 

1. Use of toxic solvents may make the SLNs 
systemically toxic 
2. Inconvenient for large production scale up  
3. With increasing lipid content, 
the difficulty arises in uniform homogenization of 
SLNs leading to an increase in polydispersity 
index and particle size distribution. 

 [15] 

Microemulsion-based SLNs by 
the dilution method 

1. Particle size is intermediate 
between high-pressure 
homogenization and solvent 
evaporation technique. 
2. Size distribution depends on the 
quality of microemulsion formed. 
3. Intermediate stability 
 

1. SLNs are subjected to thermal stress hence are 
liable to agglomerate quicker than solvent 
evaporation and high-pressure hot 
homogenization technique. 
2. High thermal stress 
3. Larger particle size is obtained with lipophilic 
solvents and cosolvents and vice versa in case of 
hydrophilic solvents. 

 [15] 

 

Table 3: Developed and formulated combinatorial nanoparticles for cancer therapy 

Author 
name 

Drugs Cell line/type of cancer 
cells 

Results References 

Nazzal 
Sami et al. 

Simvastatin, 
Tocotrienol 
 

Malignant+SA mammary 
epithelial cells 

-In vitro studies showed their antiproliferative effects on 
malignant+SA mammary epithelial cells 
-The potency of combination therapy was confirmed 

[54] 

Jayakumar 
R et al. 

Curcumin (CUR), 5 
Fluorouracil (5 FU) 

Colon cancer cells (HT29) -The collective exposure of the nanoformulations in colon 
cancer cells (HT 29) proved beneficial. 
-Enhanced anticancer effects in vitro and in vivo 
synergistically. 

[55] 

Han J et al. All-trans-retinoic acid 
(ATRA), Paclitaxel 
(PTX) 

HepG2 cells -ATRA chitooligosaccharide (RCOS) nanoparticles could be 
rapidly and continuously taken up by HepG2 cells via 
endocytosis and transported into the nucleus, and the 
uptake rates increased with particle concentration. 
-The RCOS nanoparticles have promising potential as drug 
carriers for co-delivery of both drugs together 

[56] 

Sahoo SK et 
al. 

CUR, Temozolomide T-98G cells -The dual drug loaded MNPs formulations showed the 
higher cytotoxic effect and higher therapeutic efficacy.  
-The formulation showed a synergistic effect against HepG2 
cells. 

[57] 

Cho CW et 
al. 

PTX, Verapamil (VP) MCF7 cells -PVSV (PTX and VP co-loaded SLN, later added VP) were 
prepared to overcome MDR by a combination of PTX and 
VP.  
-PVSV showed significantly higher cytotoxicity and cellular 
uptake, down-regulated the expression of p-gp than PTX 
solution in MCF-7/ADR resistant cells.  
-PVSV exhibited great potential for breast cancer therapy 

[58] 
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Wang S et 
al. 

CUR, 5 FU SMMC-7721 cells -SLN-CUR and LDH (Layered double hydroxides) 5-FU 
showed a significant synergetic effect on SMMC-7721 cells 
which was stronger than plain drugs together. 
-FACS analysis proved that the combination of SLN-
curcumin and LDH-5-FU induced 80.1% apoptosis in 
SMMC-7721 cells, which were 1.7-folds of the sum of the 
two plain drugs loaded. 

[59] 

Dianzani C 
et al. 

Doxorubicin (DOX), 
PTX 

Colorectal cancer cell line 
HT-28 

-SLNs of cholesteryl-butyrate (aprodrug of butyrate), DOX 
or PTX and evaluated the antiproliferative effect on human 
colorectal cancer cell line HT-28. 
-The combination formulations have higher cytotoxicity 
than the individual drug treatment. 

[45] 

Wu Yu Xiao 
et al. 

DOX, 
chemosensitizer, 
GG918,  

MDR breast cancer cell line 
(MDA435/lCC6/MDR1)  

-P
-The results confirmed that DOX and GG918 co-
encapsulated PLN formulation showed a greater efficiency 
when compared with the single drug formulation on a MDR 
breast cancer cell line. 

olymer–lipid hybrid NPs (PLN) was formulated.  
[60] 

Thakkar A 
et al. 

Ferulic acid (FA) and 
Aspirin (ASP)  

MIA PaCa-2 and Panc-1 
human pancreatic cancer 
cells 

-The FA and ASPc-SLN (chitosan coated) combination 
showed a synergistic inhibition of cell viability and induced 
apoptosis in MIA PaCa-2 and Panc-1 human pancreatic 
cancer cells. 

[61] 

Prabhu S et 
al. 

ASP, CUR, 
Sulforaphane (SFN) 

MIA Paca-2 and Panc-1 cell 
lines 

-Cell viability studies and aptosis assay revealed that the 
formulation showed synergistic effect.  
-It also proved that a nanoparticulate drug delivery 
regimen is beneficial for the chemoprevention of pancreatic 
cancer 

[62] 

Gulay B et 
al. 

PTX, siRNA HeLa cell line -Vaginal suppository was prepared by using PTX and 
genetic material which can be applied locally for cervical 
cancer. 
-SiRNA was selected as genetic material which inhibits 
BCL2 oncogene. This combination were incorporated into 
SLNs and dispersed separately in vaginal suppositories. 
-This formulation indicated that vaginal suppository 
containing SLNs can brought the advantages of the 
simultaneous delivery of PTX and siRNA via vaginal route. 

[63] 

Li S et al. Docetaxel (DTX), 
Baicalein (BA)  

Lung cancer cells -Transferrin tinted DTX and BA loaded SLNS (Tf-D/B-SLNs) 
were prepared.  
-(Tf-D/B-SLNs) is having ability to suppress lung cancer 
cells in vitro and in vivo was investigated. The best tumor 
inhibition ability and the lowest systemic toxicity were 
observed. 

[64] 

Torchilin 
VP et al. 

DOX, α-tocopherol 
succinate (TOS)  

MCF-7/Adr and NCI/Adr 
cancer cell lines 

-Drug-resistant cancer cells in monolayer and spheroid 
model were selected for study. 
-The SLN co-loaded with Dox and TS showed a stronger 
cytotoxicity against MCF-7/Adr and NCI/Adr cells as 
compared to Single drug.  
-The co-delivery of both drugs in SLN showed a promising 
approach for combination cancer therapy. 

[65] 

Gulay B et 
al. 

PTX, Herceptin MDA-MB-453 cell line -PTX-loaded cationic SLN/Herceptin complexes were more 
toxic to MDA-MB-453 cell line.  
-In vitro results proved this combinational therapy is 
beneficial for the treatment of cervical cancer therapy. 

[66] 

Bo Liu et al. PTX, α-tocopherol 
succinate 
cisplatinprodrug 
(TOS-CDDP) 

HeLa Cells -Trans-activating transcriptional activator (TAT)-modified 
SLNs for co-delivery of PTX and TOS-CDDP were 
formulated. TAT PTX/TOS-CDDP SLNs showed a synergistic 
effect in the suppression of cervical tumor cell growth.  
-They showed high tumor tissue accumulation, superior 
antitumor efficiency, and much lower toxicity in vivo. 

[67] 

Prabhu S et 
al. 

Ibuprofen (IBU), 
sulforaphane (SFN) 

Panc-1 and MIA PaCa-2 cells -IBU-SLN combination with SFN showed a synergistic 
inhibition of cell viability in human pancreatic cancer cells.  
-Cell-based assay and formulation studies revealed that low 
dose of IBU which was encapsulated in SLN formulation to 
prevent pancreatic cancer. 

[68] 

Wang X et 
al. 

PTX, DOX NCL-H460 cells -PTX-DOX NLC achieved the highest cytotoxic effect.  
-In vivo investigation on NSCLC animal models showed that 
co-delivery of PTX and DOX possessed high tumor-targeting 
capacity and strong antitumor activity. 

[69] 

 

Influence of the emulsifier 

The selection of the emulsifiers and their concentration has great 
importance on the dispersion quality of SLNs [51]. The surface tension 
reduces and supports the particle partitioning during homogenization 

when the concentration of the emulsifier is higher. During high 
pressure homogenization, the surface area increases very rapidly due 
to high pressure being applied on the dispersion leading to particle 
size reduction. Hence, the kinetic aspects have to be considered [15]. 
To some extent, the concentration of surfactant does affect, but once 
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the optimal concentration is reached, it may not significantly influence 
the particle size [52]. The primary process covers the new surfaces 
which compete with the agglomeration of uncovered lipid surfaces. 
The primary dispersion should contain an excessive quantity of 
emulsifier, which should cover the new surfaces rapidly. It has been 
reported that SLNs stabilized using combination of surfactants having 
lower particle size range and higher stability as compared to 
formulations having only one surfactant [15]. As per the reported 
studies, Tween 80 and Poloxamer 188 in combination showed lowest 
particle size and polydispersity index when it compared with Tween 
80 alone. The presence of two surfactants i.e. Tween 80 and Pol-188 
rapidly covered the new lipid surfaces generated during the shearing 
process thereby, avoiding aggregation and increasing surface area. 
Also the combination of emulsifiers and their HLB values could lead to 
different surface absorption [53]. 

Developed and formulated combinatorial nanoparticles for 
cancer therapy 

Some research has been carried out on the combinatorial SLNs these 
literatures mentioned in table 3. 

CONCLUSION 

The goal of cancer treatment in the modern era is to target the 
cancerous cell without affecting normal cells selectively. Cancer 
therapy is extremely complicated, thus to overcome the problems with 
conventional therapy. Nano drug delivery is focused on SLNs 
combinatorial formulations having an optimal effect on tumor cells 
and can be delivered in a more effective way. SLNs have the potential 
to reduce the dose by reaching the target site, emphasizing on the 
synergistic effect of drugs used together thus the normal cells are not 
affected or only to a lesser extent resulting in a reduction of the dose 
associated toxicity of both drugs. The combinatorial approach in 
oncology with chemotherapeutic drugs using SLNs as a suitable Nano 
carrier could improve therapeutic efficacy, increase bioavailability and 
prevent tumor resistance. This approach could be considered as an 
innovative, promising, beneficiary approach for cancer therapy and 
supportive of achieving the desired therapeutic effect in a minimal 
dose of chemotherapeutic agents. 
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