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ABSTRACT 

Objective: The clinical and genetic evidence is accumulating that vitamin D may play a role in modulating human immunodeficiency virus (HIV) 

infection. The aim of this study was to evaluate serum 25-hydroxyvitamin D [25(OH)D] levels in HIV-infected children and its association with 

vitamin D receptor (VDR) gene Bsml and Fokl polymorphisms.  

Methods: Serum 25(OH)D levels were measured using 250HD Liaison XL®. The VDR genes were detected by CLART®MetaBone.  

Results: This study included 34 HIV-infected children on highly active antiretroviral therapy (HAART) for more than a year, aged 6-14 y. The results 

revealed that the mean of serum 25(OH)D levels were 19.6±7.0 nmol/l. The mean of CD4+T-cell counts was 724 (18–1805) cell/mm3 and CD4 % 

was 23.72±10.77. The genotypic frequency Bsml and Fokl polymorphisms in HIV-infected children were BB 29%, Bb 41%, bb 29% and FF 47%, Ff 

44%, ff 9%, respectively. Serum 25(OH)D levels were associated with Bsml polymorphisms (p<0.05), but not with Fokl polymorphisms (p>0.05).  

Conclusion: The present study showed that vitamin D deficiency is common in HIV-infected children, and genetic variant could lead to altered 

activity of vitamin D. Therefore, it is important to consider vitamin D status routinely in preventing the development of opportunistic infections and 

supplementation of vitamin D is warranted among HIV-infected children on HAART. 
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INTRODUCTION 

There is growing evidence reported that vitamin D deficiency is a 

global and important health issue in all age groups, including 

in children. The prevalence of vitamin D deficiency varies worldwide 

and is estimated to range from 30% to 80% of the population [1-4]. 

The serum or plasma concentration of 25-hydroxyvitamin D 

(25(OH)D) is the best indicator of clinical vitamin D status [5, 6]. The 

consequences of low 25(OH)D status include increased risk of 

various diseases [7], including periodontitis, oral cancer, oral 

candidiasis [8-12]. 

Vitamin D is well known as a steroid hormone that plays a major role 

in regulating mineral metabolism and bone health [13]. More recently, 

there is increasing evidence that vitamin D not only has a function in 

bones, but is also related to cell proliferation, cell differentiation, 

apoptosis, and intercellular adhesion [14]. In addition, vitamin D plays 

a key modulator of immune function and inflammation [15-17]. The 

active form of the vitamin D is 1, 25-dihydroxyvitamin D (1, 25-

dihydroxy cholecalciferol (DHCC)) that circulates throughout the body, 

exerting its effects on the tissues by binding to the vitamin D receptor 

(VDR) [18]. The VDR is a transcription factor regulating the expression 

of genes, which mediate its biologic activity. The VDR gene encodes a 

nuclear receptor for the active form of vitamin D, 1, 25-dihydroxy 

vitamin D3 (1, 25(OH)2D3). After it binds to its response element on 

DNA, it regulates hundreds of genes with different functions [19]. 

Recent studies have reported DNA sequence variations, which occur 

frequently in the population, commonly referred to as polymorphisms, 

to exist in the VDR gene. Several polymorphisms, such as BsmI 

(rs1544410) and FokI (rs2228570), have been described in the VDR 

genes that are able to alter the activity of VDR protein that may 

contribute to the development of the diseases [20-26].  

The vitamin D receptor is widely distributed in the nucleus of a large 

number of cell types in almost all human tissues that are important 

to immune and phagocytic functions (T and B cells, macrophages, 

and monocytes) [18, 27, 28]. It is therefore increasingly recognized 

that vitamin D may also have a role in the infectious diseases, 

including human immunodeficiency virus type-1 (HIV-1) infection 

[29, 30]. Previous studies indicated that vitamin D deficiency is 

frequent in HIV-positive individuals. The high rates of vitamin D 

deficiency among HIV-infected individuals have been reported, 

ranging from 70.3 to 83.7%, including in children [31-33]. Clinical 

and genetic evidence is accumulating that vitamin D may play a role 

in modulating human immunodeficiency virus (HIV) infection. It has 

been suggested the effect of antiretroviral therapy (ART) on vitamin 

D deficiency [34]. The relationship between vitamin D deficiency and 

the degree of systemic immune, as ascertained by CD4+cell counts 

and viral load, in HIV-infected individuals have been investigated 

with different results [35, 36]. Therefore an association of serum 

25(OH)D levels and polymorphisms in the VDR gene and also 

CD4+cell counts in HIV-infected individuals remains unclear.  

Increasing data indicated that vitamin D deficiency and 

polymorphisms in the VDR gene may be associated with various 

diseases in children [37-39], but few studies exist in HIV-infected 

children. It is well known that adequate serum concentrations of 

vitamin D are crucial for the developing child and play a role in 

immunity in pediatric patients [40]. In the present study, we 

investigated the serum 25-hydroxyvitamin D (25OHD) levels and its 

association with the frequencies of the VDR gene polymorphisms 

Bsml and Fokl among HIV-infected children under HAART and 

CD4+T-cell counts. 

MATERIALS AND METHODS 

Material  

A cross-sectional study was conducted on 34 (thirty-four) HIV-infected 

children under HAART, aged between 6 and 14 y. All study 

participants were diagnosed HIV positive at Dr. Hasan Sadikin General 

Hospital, Bandung, West Java, Indonesia. Blood samples were collected 

from the study participants and the CD4+T-cell counts were 

determined using the Becton Dickinson (BD) FACS Count system. The 

genomic DNA was extracted from whole blood using the established 

protocol for DNA extraction from blood cells. The VDR gene Bsml and 

Fokl gene polymorphisms were detected by CLART®MetaBone. Serum 

total 25-hydroxyvitamin D (25[OH]D) levels were measured using 

250HD Liaison XL®. Statistical analysis was performed by Spearman’s 
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correlation test (P<0.01 significant). Data entry and analysis were 

done using software SPSS version 13. Quantitative data were 

presented by the mean and standard deviation. Qualitative data were 

presented by frequency distribution. One-way ANOVA and Kruskal-

Wallis test were used to detect the mean difference across the two 

genotypes and the CD4+T-cell counts. A confidence interval (CI) level 

was set to 95% where any output p<0.05 would be interpreted as an 

indicator of statistical significance. 

The study protocol was reviewed and approved by Ethical 

Committee of Faculty of Medicine, Universitas Padjadjaran number 

275/UN6. C1.3.2/KEPK/PN/2015. All the parents of children 

provided written informed consent.  

RESULTS AND DISCUSSION 

Demographical characteristics for the participants are presented in 

table 1. The study involves thirty-four (34) HIV-infected children on 

HAART, 18 male and 16 female, aged 6 to 14 y of age (mean 9 y) who 

attended to Clinic Teratai, Dr. Hasan Sadikin Hospital Bandung, West 

Java, Indonesia. The mean duration of HAART use was 5 y. The mean 

of CD4+T-cell counts was 724 (18–1805) cell/mm3 and CD4 % was 

23.72±10.77. The mean of serum 25(OH)D levels in HIV-infected 

children (19.8±6.38 nmol/l). 

 

Table 1: Characteristics of the study participants 

Characteristics  N (34) 

Gender, n (%) 

• Male 

• Female 

 

16 (47.1) 

18 (52.9) 

Age (y), mean±SD 9±3 

Duration of ARV exposure (years), mean±SD 5±2 

Vitamin D (nmol/l), mean±SD 19.6±7 

CD4 Absolut (cells/L) 724 (18–1805) 

CD4 % 23.72±10.77 

 

Table 2 describes the distribution of CD4+T-cell counts in relation to 

the severity of immunosuppression of the study participants. The 

mean of the majority (70.6%) of the study participants had CD4+T-

cell counts 946.08±386.94 cell/mm3, and 8 (23.5%) participants 

reported to have CD4+T-cell counts<200/mm3 (104.63±45.78/mm3). 

The study demonstrated a positive correlation between serum 

25(OH)D levels and CD4+T-cell count (p<0.05), and also 

correlated positively with CD4 % (p<0.05) as shown in table 3. 

 

Table 2: The CD4+ T-cell counts in relation to the severity of immunosuppression of the study participants 

Classification of HIV-associated immunodeficiency N CD4+T-cell counts (cells/L) Mean/SD 

No significant immunosuppression (>500/µl) 24 946.08±386.94 

Mild immunosuppression (350-499/µl) 1 452 

Advanced immunosuppression (200-349/µl) 1 313 

Severe immunosuppression (<200/µl) 8 104.63±45.78 

 

Table 3: Correlation analysis between vitamin D and CD4+T-cell counts in HIV-infected children on ART 

CD4+T-cell counts and percentage Vitamin D 

Coefficient correlation (r) p-value 

CD4 absolute (cells/µL) 0.293 0.046* 

CD4 % 0.304 0.040* 

Data analysis using Spearman’s rank correlation test, *correlation significant p<0.05 

 

The VDR genotype of BsmI and FokI polymorphism in HIV-

infected children on HAART presented in table 4. Genotype 

frequency of VDR polymorphisms Bmsl was high (70%, consist 

of Bb 41% and bb 29%) among HIV-infected children. The VDR 

Fokl Ff genotypes were also frequent in HIV-infected children 

(53%, consist of Ff 44%, ff 9%). We also found that CD4+T-cell 

counts were associated with Bsml polymorphisms in HIV-

infected children (p<0.05), but not with Fokl the polymorphisms 

(p>0.05). However, our data showed that serum vitamin D levels 

were not associated with both of the VDR Bsml and Fokl 

polymorphisms in HIV-infected children table 5. Fig. 1 and 2 

show the distribution of VDR Bsml polymorphism and Fokl in 

HIV-infected children on HAART, and its association with CD4+T-

cell counts and Vitamin D serum levels. 

 

Table 4: Genotypes distribution of the VDR gene polymorphisms in HIV-infected children on HAART 

Genotype Frequency N (%) 

VDR Bsml   

- BB 10 (29.4) 

- Bb 14 (41.2) 

- bb 10 (29.4) 

VDR Fokl   

- FF 16 (47.1) 

- Ff 15 (44.1) 

- ff 3 (8.8) 
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Table 5: Correlation analysis between VDR Bsml/Folk polymorphism and CD4/Vitamin D in HIV-infected children on HAART 

Variable VDR Bsml polymorphism VDR Folk polymorphism 

Coefficient correlation (r) p-value Coefficient correlation (r) p-value 

CD4 Absolute 0.344 0.023* 0.140 0.215 

Vitamin D -0.055 0.379 -0.212 0.114 

Data analysis using the point-biserial correlation, *correlation significant p<0.05 

 

 

Fig. 1: Distribution of VDR Bsml polymorphism in HIV-infected children on HAART. A. VDR Bsml polymorphism and CD4+T-cell counts. B. 

Vitamin D serum levels and CD4+T-cell counts 

 

 

Fig. 2: Distribution of VDR Folk polymorphism in HIV-infected children on HAART. A. VDR Bsml polymorphism and CD4+T-cell counts. B. 

Vitamin D serum levels and CD4+T-cell counts distribution 

 

Over the last 20 y several definitions of vitamin D deficiency for 
children have been published. The Institute of Medicine (IOM) and the 
American Academy of Pediatrics (AAP) have defined vitamin D 
deficiency among infants and young children as a serum 25 (OH)D 
level of<27.5 nmol/l (11 ng/ml) [41,42]. The Canadian Paediatric 
Society (2007) defined vitamin D deficiency as a serum 25(OH)D level 
of<25 nmol/l [43]. The most recent version, a review written on behalf 
of the Lawson Wilkins Pediatric Endocrine Society (2008) reported that 
vitamin D deficiency was defined as a serum 25(OH)D level of<37.5 
nmol/l [44]. This study also revealed that HIV-infected children on 
HAART had vitamin D deficiency, and had a positive correlation with 
CD4+T-cell count and CD4%. Our research also supports past findings 
that vitamin D insufficiency is associated with impaired late CD4 
recovery in HIV-infected patients on highly active antiretroviral 
therapy (HAART) [35]. Whereas, another study showed that 
serum 25(OH)D deficiency was not associated with CD4+T-cell counts, 
HIV viral load, or clinical stage [36].  

A number of risk factors for low 25(OH)D levels in HIV-infected 

individuals have been suggested. First, factors related to the HIV 

infection itself may have contributed for the low vitamin D levels 

seen in the HIV-1-infected patients. The HIV-infected individuals are 

more exposed to chronic complications caused by the disease itself, 

and the increase of pro-inflammatory cytokines. TNF-alpha release 

may be responsible for renal 1a-hydroxylase impairment, reducing 

the PTH (parathyroid hormone) stimulatory effect on the production 

of the hormonally active 1, 25(OH)2D (1,25-dihydroxy vitamin D). It 

is then suggested that chronic HIV-associated inflammation and 

immune activation may also contribute to low vitamin D [31]. 

Second, to the interference of antiretroviral drugs may also have 

contributed to vitamin D deficiency in HIV-1-infected patients. The 

mean duration of HAART use of the study participant was 5 y. It is 

well known that vitamin D is metabolized in the body through 

cytochrome P450 enzymes [18]. It has been suggested that certain 

drugs can induce CYP3A4 expression in the liver and small intestine, 

accelerate vitamin D catabolism, and may contribute to vitamin D 

deficiency [45]. Prior studies have investigated the potential impact 

of HAART regimens on vitamin D levels in HIV patients, such as 

protease inhibitions and non-nucleoside reverse transcriptase 

inhibitors [46, 47]. Third, another possible reasons is due to 

traditional risk factors such as female sex, increasing age, lack of 

sunlight exposure, low vitamin D intake, poor absorption, greater 

body mass index (BMI), kidney or liver impairment, and multiple 

cardiovascular disease risk factors, and darker skin pigmentation 

[31, 48, 49]. 
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Recently, many studies indicated that VDR gene BsmI and FokI 

polymorphisms have been associated with various diseases [20-24], 

including those in the oral cavity [25, 26]. Those studies indicated that 

VDR gene polymorphisms will help elucidate the pathogenesis of the 

various diseases and in the design of new approaches for prevention and 

treatment. It has also been reported the prevalence of vitamin D receptor 

gene polymorphisms in HIV-infected and its association with 

susceptibility and progression of HIV infection [50-53]. We herein also 

investigated the VDR genotype of BsmI and FokI polymorphism in HIV-

infected children on HAART, and the results showed that genotype 

frequency of VDR polymorphisms Bmsl was high and associated with 

CD4+T-cell counts, different with VDR Fokl polymorphisms. Our data also 

showed that serum vitamin D levels were not associated with both of the 

VDR Bsml and Fokl polymorphisms in HIV-infected children. Further 

studies with a larger patient population are needed to prove a relation 

between VDR gene polymorphism and vitamin D. In addition, further 

investigations may also be needed to evaluate an impact of vitamin D 

supplementation and other genetic variations in vitamin D receptors on 

the progression of HIV infection. 

CONCLUSION 

The results of this study showed that vitamin D deficiency is 

common among HIV-infected children on HAART and the VDR gene 

Bmsl polymorphisms were significantly associated with low CD4+T-

cell count. It is important to consider vitamin D status routinely in 

preventing the development of opportunistic infections and 

supplementation of vitamin D is warranted.  
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