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ABSTRACT

Objective: The aim of this study is to characterize the metabolite profiles of colorectal cancer (CRC) cells of different stages of the disease to understand 
the pathophysiological changes that may help to identify prevention strategies as well as the sites for potential therapeutic drug actions.

Methods: Six CRC cell lines of different stages (classified using the Dukes classification) were used, and they are SW 1116 (stage A), HT 29 and SW 
480 (stage B), HCT 15 and DLD-1 (stage C), and HCT 116 (stage D). Metabolites were extracted using methanol and water, and metabolic profiling was 
performed using liquid chromatography-mass spectrometry. Mass profiler professional software was used for statistical analysis.

Results: There were 111,096 compounds detected across the samples, and 24 metabolites were identified to be significantly different between 
the CRC stages. Most notably, there were eight metabolites that were significantly upregulated in the more advanced stages (B, C, and D) compared 
with Stage A. These metabolites include flavin mononucleotide, l-methionine, muricatacin, amillaripin, 2-methylbutyroylcarnitine, lumichrome, 
hexadeconoic acid, and lysoPE (0:0/16:0).

Conclusion: This study showed that the expressions of metabolites at different stages of CRC were different, which represent the metabolic changes 
occurring as CRC advances. The knowledge may help identify biomarkers for the staging of CRC, which could improve its prognosis as well as provide 
a basis for the development of therapeutic interventions.

Keywords: Colorectal cancer, Metabolomics, Cancer stages.

INTRODUCTION

Colorectal cancer (CRC) is the third most commonly diagnosed cancer 
and the second most deadly [1]. Its incidence is higher in more developed 
countries although the trend is increasing in developing countries [2].

CRC is classified using various types of classifications. Dukes’ 
classification is widely used and is the predecessor of the current 
tumor node metastasis staging system [3]. The current gold standard 
for CRC diagnosis and staging is based on colonoscopy combined with 
histopathological examination [4]. However, these tools are invasive 
and sometimes do not accurately identify the stages of CRC [5]. Early 
diagnosis is important as the 5-year survival rate, in advanced CRC is 
lower than 10%, whereas treatment instituted at an earlier stage has 
a survival rate of up to 90% [6]. In addition, accurate staging is also 
necessary as treatment strategies for CRC are based on the stage of the 
disease [7]. Therefore, there is a need for non-invasive methods for early 
diagnosis and staging for improvement in the prognosis of the disease.

Until today, different new treatment strategies for CRC are still being 
investigated with the aims to preserve patients’ quality of life. However, 
developments of new treatment strategies are hampered by a lack of 
understanding of pathogenesis and pathophysiology of the disease 
progression.

Metabolomics interprets the metabolic profile in a complex system using 
the combination of data from analytical techniques (nuclear magnetic 
resonance and mass spectrometry) and multivariate data analysis [8]. 
This approach has been used in several fields including oncology. CRC 

metabolomics studies have been widely conducted on human biological 
samples [9-11]. There were also several metabolomics studies conducted 
comparing the metabolite profiles at different stages of CRC using human 
tissue samples [12-15] with successful results on biomarkers discovery 
for early CRC detection and prognosis. However, the metabolic changes 
identified among the populations were diverse and difficult to conclude [16]. 
Despite this information, the metabolic changes leading to increase the 
severity of this disease, especially at the molecular level, are still unclear.

Studies of metabolic profiles in cell culture are highly valuable [17] as 
they are able to provide important information regarding the molecular 
mechanism of disease progression. In vitro studies have been used 
to develop models of biological pathways and networks affected in 
disease [18,19].

In this study, we aim to identify the metabolic changes that occur in CRC 
cells at different stages of the disease. Non-targeted metabolomics was 
used to characterize the intracellular metabolic profiles of CRC cells 
of different stages. Identification of the cellular metabolite profiles of 
the different cells lines may lead to the possibility of using cell culture 
in place of animal models in CRC study, especially in testing treatment 
modality. Our analysis revealed that there were differences in the 
metabolic profiles in CRC cells at different stages.

METHODS

Cell culture
Established CRC cell lines classified using the Dukes classification were 
used. These include SW 1116 (Stage A), HT 29 and SW 480 (Stages B), 
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HCT 15 and DLD-1 (Stage C), and HCT 116 (Stage D) (AddexBio, USA). 
CRC cells were grown in DMEM high glucose medium (Gibco, Invitrogen, 
USA) supplemented with 10% fetal bovine serum (Gibco, Invitrogen, USA) 
and 1% penicillin-streptomycin (Gibco, Invitrogen, USA) and incubated at 
37°C with 98% humidity of 5% (v/v) CO2 incubator (Binder, Germany).

Preparation of intracellular metabolite extract
Preparation of intracellular metabolite extract was performed 
according to a previous study [20]. CRC cells were seeded in 6 well 
plates, 1×106 cells per well and incubated overnight in an incubator. 
Once the cells have attached to the surface of the well plate, the plate 
was placed on wet ice to slow down metabolism. Media was removed 
and cells were washed 3 times with ice-cold phosphate buffer saline 
(Gibco, Invitrogen, USA). Subsequently, 1 ml of extraction solvent 
methanol-water (8:2, v/v), pre-cooled in −80°C for at least 1 h, was 
added to each well plate containing cells and then placed at −80°C 
for 15 min. Cells were scraped and the suspension was transferred 
into a microcentrifuge tube. The suspension was then centrifuged at 
16,000 rpm for 10 min at 4°C (Eppendorf 5424 R, USA). The supernatant 
was transferred into a new microcentrifuge tube, and the extract was 
dried in a concentrator (Eppendorf, USA). The dry samples were stored 
at −80°C until analysis. Every extraction sample was prepared in three 
biological replicates.

Liquid chromatography-mass spectrometry (LC-MS) Q-TOF analysis 
for metabolomics
Dried samples were dissolved with 30 µl mobile phase acetonitrile-
water (1:1, v/v) and vortex for 1 min. Samples were centrifuged at 
10,000 rpm, 4°C for 10 min. Samples analysis was performed on LC-MS 
Q-TOF (Agilent Technologies 6520, USA) system. The analysis was 
performed in three technical replicates and three biological replicates 
with positive and negative modes. The acquired LC-MS Agilent 6520 
Q-TOF mass spectrometer data were processed as described in a 
previous study [21]. LC-MS Q-TOF equipment with an ESI source was 
used to analyze the samples together with a 1200 rapid resolution 
system (Agilent Technologies, USA). For chromatographic separation, 
column ZORBAX Eclipse Plus C18 600 Bar, 2.1×100 mm, 1.8 µm particle 
size (Agilent Technologies, USA) was used, and during analysis, the 
temperature was maintained at 40°C. The injection volume was 2 µl 
with a flow rate of 0.25 ml/min. Development of a linear gradient was 
performed over 36 min from 5% to 95% of the mobile phase (0.1% 
formic acid in ACN). Each analysis used 48 min run times. Setting for 
ESI source was V Cap 4000 V, skimmer 65 V, and fragmentor 125 V. The 
nebulizer was set at 45 psig and the nitrogen drying gas was set at a 
flow rate of 12 l/min. Drying gas temperature was maintained at 350°C. 
Data were acquired at a rate of 2.5 spectra/s with a stored mass range 
of m/z 50–1000. Auto calibration was performed before each batch of 
analysis and reference mass correction was enabled throughout the run. 
The mass spectrometer was tuned to allow detection of compounds at 
accuracy of ±2 ppm before the analysis. To track the uniformity of each 
extraction, an extracted pool samples were run during along with the 
samples and were served as a quality control.

Data processing
Agilent MassHunter Workstation Data Acquisition software and Agilent 
MassHunter Qualitative Analysis software (Agilent Technologies, USA) 
were used for data collection and data processing, respectively. Step 
for data processing included molecular feature extraction, background 
subtraction, data filtering, statistical analysis by ANOVA, and principal 
component analysis (PCA), followed by database search and alignment. 
For each sample, the compound exchange format file was created 
and further analyzed using mass profile professional (MPP) (Agilent 
Technologies, USA). Endogenous and exogenous metabolites were 
identified using metabolite identification software, METLIN Personal 
Metabolite Database, and MPP (Agilent Technologies, USA).

Data analysis
Molecular Feature Extractor (MFE) algorithm in the MassHunter 
workstation software was used for data mining. Absolute height 

parameter was set at 200, and all entities presented with less than this 
abundance level were considered as noise and removed. Setting for 
data processing method was used to process all generated data files 
in a batch mode. The first filter (frequency analysis) determined the 
compounds (entities) that were present 100% of the time in at least 
one studied group. The second filter of frequency selected entities 
that were present in at least 100% of samples. Analysis of variance 
(ANOVA) was the next step for filtering in selecting entities that were 
significantly different between the four experimental groups. Next, fold 
change of two and above was set for identification of metabolites with 
differential differences in abundance between the experimental groups 
and was also used to eliminate possible discriminating compounds. 
Data recursion was then performed, which re-examined data to ensure 
that each entity is real. Automatically, the software re-extracted the 
final group of metabolites from the data to generate extracted ion 
chromatograms (EICs). The peak inspection of resulted EICs was 
conducted to eliminate the false positives and false negatives. Finally, 
the confirmed metabolites were statistically analyzed.

Statistical analysis and visualization
MPP software (Agilent Technologies, USA) was used for statistical 
analysis and visualization of metabolite profiles. Analysis of one-way 
ANOVA with Benjamini-Hochberg multiple testing correction was used 
to determine significant differences in the abundance of the compound 
between four different groups. Metabolomics pathway analysis 
(Metaboanalyst 3.5) software was used to determine partial least 
squares-discriminant analysis (PLS-DA) score plot, PCA score plot, and 
variable importance in projection (VIP). VIP score close to or greater 
than one can be considered important in a given model.

RESULTS AND DISCUSSION

In this study, the CRC cell lines were classified into the various stages 
according to Dukes classification as described by ATCC and a previous 
study [22,23]. A total of six CRC cell lines were analyzed. LC/MS 
analysis detected 68,197 (positive mode), and 42,899 (negative mode) 
compounds across the entire range of samples. Fig. 1 shows the 
workflow analysis process using MPP software. Using these criteria, 24 
known metabolites were identified to be significantly altered between 
the stages.

Table 1 shows the significant differences and the fold change of 
metabolites expressed by CRC cells at Stages B, C, and D compared to 
Stage A. Fold change with a positive value indicates a relatively higher 
level of metabolites while a negative value indicates a relatively lower 
level compared to Stage A. The data showed that eight metabolites 
were significantly upregulated in all three stages (B-D). These were 
flavin mononucleotide (FMN), l-methionine, muricatacin, amillaripin, 
2-methylbutyroylcarnitine, lumichrome, hexadeconoic acid, and 
lysoPE (0:0/16:0). The level of pipericine, acetylcarnitine, and glucose 
6-phosphate was found to be lower in Stage B but was significantly 
increased in Stages C and D. The level of flavin adenine dinucleotide (FAD) 

Fig. 1: Workflow analysis process using mass profile professional 
software
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and l-lactic acid was significantly lower in Stages B, C, and D. The levels 
of (Z)-13-Oxo-9-octadecenoic acid, lysoPE(0:0/20:4(5Z,8Z,11Z,14Z)), 
lysoPE(20:5(5Z,8Z,11Z,14Z,17Z)/0:0), riboflavin, and 
l-leucine were lower in all three stages compared with A. 
Moreover, the levels of pantothenic acid, l-phenylalanine, 
lysoPE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), and lysoPE(0:0/16:1(9Z)) 
were significantly increased in Stages B and C but were lower in D.

PLS-DA analysis (Fig. 2) showed differences in the metabolite 
expression signatures clusters between the different stages. Results 
showed separation between all CRC stages. When the PCA was used 
to compare the metabolic patterns between two different groups, the 
results showed that there were significant changes between the cells of 
different stages (Fig. 3).

Fig. 4 showed that l-methionine, FMN, and glucose 6-phosphate 
(G6P) were the top three most important metabolites affected in 
CRC based on the VIP score. L-methionine is an essential amino acid 
and plays important role in metabolism [24]. The result showed that 
l-methionine was significantly increased in the more advanced stages. 
In every cell, methionine is partitioned between protein synthesis and 
the de novo pathway. Cancer cells are dependent on methionine [25,26]. 
This phenomenon is probably due to one or a combination of deletions, 
polymorphisms, or alterations in the expression of genes in the 
methionine de novo and salvage pathway [26]. There are in vitro and 
in vivo studies which showed that methionine-restricted diet inhibits 
cancer growth and prolonged a healthy life-span [27] suggesting that 
cancer cells require high levels of methionine compared to normal cells.

Riboflavin, FMN, and FAD are involved in riboflavin metabolism. The 
present finding showed that riboflavin was downregulated while FMN 
and FAD were upregulated as the stages of CRC advances. Riboflavin 
metabolism is associated with ATP production, ROS production, 
antioxidant defense, DNA repair, protein folding, apoptosis, and 
chromatin remodeling [28]. Low intake of riboflavin affects the levels 
of FMN and FAD in cells. Low riboflavin status is associated with 
increased homocysteine concentration, which probably results in lower 
availability of methyl groups [29]. In fact, low intake of dietary riboflavin 
was reported to be associated with colorectal adenomas [30]. Depletion 

of riboflavin in cells also led to enhanced production of reactive oxygen 
species and affected cell cycle progression and cell growth [31].

In the present study, G6P was significantly altered; its level was lower 
in Stage B but increased at the later Stages (C and D). G6P is a product 
from the conversion of glucose that involved in glycolysis and pentose 
phosphate pathway [32]. Changes of G6P level could indicate one of 
the mechanisms of cancer cells in regulating the Crabtree effect [33]. 
The tumor cell lines with high glycolytic rates also exhibit the Crabtree 
effect [34].

The present findings also revealed that several lipids 
were downregulated in the later stages. (Z)-13-Oxo-9-
octadecenoic acid and lysoPE(0:0/20:4(5Z,8Z,11Z,14Z)), 
lysoPE(20:5(5Z,8Z,11Z,14Z,17Z)/0:0) were the metabolites affected. 
This finding is in agreement with a previous CRC metabolomics study 

Table 1: Metabolites found to be differentially abundant between colorectal cancer cell lines of Stage A and Stages B, C, and D

Metabolites Log fold change relative to Dukes’ A p

B versus A C versus A D versus A
FAD −14.84 −14.59 2.65 5.95×10−31

G6P −0.04 0.62 15.16 4.17×10−30

L-Phenylalanine 21.61 20.99 −0.91 2.19×10−29

LysoPE (22:6 (4Z, 7Z, 10Z, 13Z, 16Z, 19Z)/0:0) 14.50 15.47 −0.91 7.81×10−28

Armillaripin 5.11 5.05 4.86 1.29×10−25

Phytosphingosine 1.06 −13.05 1.08 5.08×10−24

LysoPE (0.0/16:0) 0.62 1.47 2.57 2.77×10−18

Pantothenic acid 21.57 16.22 −0.91 1.61×10−17

Riboflavin −0.94 −2.24 −2.13 5.26×10−16

LysoPE (0:0/16:1 (9Z) 9.28 15.94 −0.91 1.03×10−15

LysoPE (0:0/20:4 (5Z, 8Z, 11Z, 14Z) −0.72 −1.92 −1.06 1.16×10−14

L-Methionine 1.14 12.07 16.46 6.32×10−12

Acetylcarnitine −0.76 2.00 2.71 1.77×10−12

FMN 12.37 13.78 15.63 3.46×10−11

1,2,4-Nonadecanetriol 3.57 −12.36 0.34 2.74×10−11

Muricatacin 11.51 11.48 9.39 1.83×10−10

L-Lactic acid −14.08 −14.26 2.42 2.04×10−9

(Z)-13-Oxo-9-octadecenoic acid −6.56 −12.61 −0.33 1.48×10−8

2-Methylbutyroylcarnitine 1.55 0.42 0.19 6.90×10−6

Lumichrome 7.76 6.40 8.17 8.87×10−5

Hexadecanoic acid 5.99 5.92 5.64 2.04×10−5

Pipericine −6.90 0.38 5.30 4.77×10−4

LysoPE (20:5 (5Z, 8Z, 11Z, 14Z, 17Z)/0:0) −1.26 −4.20 −1.85 3.24×10−4

L-Leucine −4.24 −11.23 −2.81 6.69×10−3

FAD: Flavin adenine dinucleotide, FMN: Flavin mononucleotide, G6P: Glucose 6-phosphate

Fig. 2: Partial least squares-discriminant analysis scores 
plot discriminating colorectal cancer (CRC) cell lines from 

different stages. The numbers represent the stage of CRC as 
follows: 1= Stage A, 2= Stage B, 3= Stage C, 4= Stage D
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that used tissues from CRC patients [13]. Lipids are a diverse group 
of metabolites and they have several key biological functions, such as 
structural components of cell membranes, energy storage sources, 
and intermediates in signaling [35]. Alteration of lipid metabolism 
is an established hallmark of cancer. In cancer, all of these processes 
are critical for generating the membrane constituents, energetic, 
biophysical, and signaling pathways that drive diverse aspects of 
tumorigenesis [36].

CONCLUSIONS

To the best of our knowledge, this is the first study to characterize the 
metabolic profiles of CRC cell lines at varying stages of the disease. This 
study highlights the metabolites changes in CRC cells at different stages. 
The characterization is important in the development of in vitro models 
for drug testing and to understand the pathogenesis during the CRC 
progression.
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