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ABSTRACT 

Solubility is an important parameter to achieve for the bioavailability of a drug to reach the therapeutic windows. Garcinia mangostana Linn is a 
plant with great potency for the development of natural medicine. Alpha-mangostin is one of the secondary metabolites of G. mangostana and has 
been reported to have several pharmacological activities. The Biopharmaceutics Classification System (BCS) is a system that classifies drugs based 
on their solubility and permeability. Due to its low solubility but high permeation, alpha-mangostin is categorized into class II of the 
Biopharmaceutics Classification System. Therefore, the determination of dosage forms and modification of solubility enhancers is limited due to its 
physical properties, as mentioned above. This disadvantage requires new methods to improve its solubility to administer alpha-mangostin, 
especially for oral administration. Here, we discuss the development of the methods to increase alpha-mangostin solubility to be applied to 
formulate a dosage form to reach a useful plasma level for medication. 
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INTRODUCTION 

Solubility is the maximum amount of a compound to be dissolved in 
a specific solvent at equilibrium. The solubility of a compound 
increases with the increasing temperature of the solution [1]. In the 
pharmaceutical setting, the solubility of a drug is an important 
parameter to achieve the expected concentration, since to be able to 
reach the useful plasma level, a drug needs to be dissolved in a 
specific solvent (which must be a non-toxic solvent) at a certain 
concentration. By knowing the solubility of a drug, it is easier to 
formulate its dosage form. A proper-formulated dosage form 
guarantees that molecules of a drug reach its target site resulting in 
bioavailability. As a result, a specific therapeutic effect is the 
manifestation of the bioavailability of the drug [2].  

Garcinia mangostana Linn is widely known in Indonesia as having the 
potency to be developed as natural medicine. Among the secondary 
metabolites of G. mangostana Linn, alpha-mangostin has been identified 
as its major xanthone [3]. Alpha-mangostin is extracted from G. 
mangostana with methanol, followed by purification using 
chromatographic techniques [4]. In general, xanthone is a group of 
oxygenated heterocyclic compounds which have extraordinary 
pharmacological activities and have been reported to have multiple 
pharmacological effects [5]. Specifically, alpha-mangostin has been 
reported to have several pharmacological effects such as anticancer [6, 
7], cardioprotective [8], anti-inflammatory [9], anti-acne [10], anti-TBC 
[11], antioxidant [12], antibacterial [13], Recurrent Aphthous Stomatitis 
(RAS) [14], and antifungal [15]. Based on the aforementioned reports, 
many pharmaceutical industries are now trying to develop and sell 
various alpha-mangostin containing products (nutraceuticals, functional 
foods, food supplements, and medicinal products) as promotive, 
preventive or curative agents for a particular disease [16].  

Alpha-mangostin belongs to the xanthone group, which has 
hydrophobic properties, and is therefore classified into class II of the 
Biopharmaceutics Classification System (BCS) due to its low 
solubility but high permeability. It is not soluble in water resulting in 
difficulties in determining a dosage form, especially for oral 
administration [17]. Therefore, the solubility of alpha-mangostin 
needs to be improved to be able to formulate it into an oral dosage 
form, in order that its bioavailability in the gastrointestinal and 
intestinal fluids can be achieved [18]. 

In this review, we discuss the techniques that have been carried out to 
increase the solubility of alpha-mangostin. This review is based on a 

literature study of the reports obtained from Scopus, Google Scholar, 
ScienceDirect, Springer, and PubChem databases that have been 
published in the last 15 y, by using specific keywords "solubility”, 
“alpha-mangostin”, and “drug delivery system". To obtained reliable 
reports, we applied the following inclusion criteria (articles and 
reviews) and exclusion criteria (opinions and material by the topic). 

Solubility and influencing factors 

The solubility of a compound is dependent on the structure and 
condition of the solution. The structure of a compound determines 
its polarity and hydrogen bonds determine the solubility of a 
compound in a solution. The condition of the solution is influenced 
by pH, co-solvent, and temperature [19]. Solubility is also influenced 
by the nature of the compound and the solvent, particle size, 
molecular size, molecular structure and pressure [20]. 

Several factors influence the solubility of a compound. The first 
factor affecting solubility is polarity, the ability of compounds to 
form poles. By nature, non-polar compounds dissolve in non-polar 
solvents, and polar compounds are dissolved in polar solvents. The 
second factor is hydrogen bonding, an interaction that occurs 
between the hydrogen bonding donor group and the atoms, which 
have strong electronegativities such as the halogen, oxygen, and 
nitrogen groups. Hydrogen atoms form bonds with electronegative 
atoms based on electrostatic properties and build hydrogen bridges. 
Hydrogen bonds can occur intramolecular or intermolecular [21]. 
The third factor is pH, the solubility depends on the pH that will be 
used [22]. Where an increase in the pH of the alpha-mangostin 
microgel mixture can cause a decrease in particle size from 548 nm 
to 200 nm. Alpha-mangostin at low pH shows the shape of the 
crystals, but with an increase in pH around pH 6, its physical shape 
changes [4]. Solubility depends on the pH used [22]. The fourth 
factor is the co-solvent, whose usage in a solution can change the 
solubility of organic compounds. Co-solvent can increase the 
solubility of non-polar drugs because it has a small hydrocarbon 
area. The addition of co-solvent can reduce the interaction between 
solvents, which leads to a decrease in surface tension and dielectric 
constant [21]. The fifth factor is temperature, which affects 
solubility. The solubility will increase due to the increase of 
temperature in an absorbing energy process. Conversely, in the 
process of releasing energy, the solubility will decrease due to the 
decreasing temperature [23]. Generally, an increase in temperature 
will increase the size of micelles, thereby increasing solubility [20]. 

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  AApppplliieedd  PPhhaarrmmaacceeuuttiiccss  

ISSN- 0975-7058                               Vol 13, Issue 4, 2021 

https://creativecommons.org/licenses/by/4.0/�
https://innovareacademics.in/journals/index.php/ijap�


Muchtaridi et al. 
Int J App Pharm, Vol 13, Issue 4, 2021, 47-54 

48 

The sixth factor is the nature of solutes and solvents, which depend 
on the concentration of the solute in the solvent to be used, for 
example, 100 grams of water can only dissolve 1 gram of Pb2+

Where so = the solubility of large particles, S = the solubility of fine 
particles, V = molar volume, γ = the surface tension of solid objects, 
and r = the radius of fine particles. 

[20]. 
The seventh factor is particle size; if the particle size decreases, the 
surface area to volume ratio increases. When the surface area of the 
particles increases, it will cause a greater interaction with the 
solvent, and in consequence, the solubility will increase. This basic 
principle is explained in the equation below [24].  

log
S

So
=

2 γV
2.303 R. T. r

 

The eighth factor is the molecular size and molecular structure. The 
solubility of a substance will decrease if it has a higher molecular 
weight because larger molecules are difficult to be surrounded with 
solvent molecules to dissolve substances [24]. If there is a change in 
molecular structure it will result in a change in solubility [25]. The 
ninth factor is pressure; for solid and liquid solutes, solubility is not 
affected by pressure changes, but for the gas solutes, the solubility 
will increase with increasing pressure and decrease if pressure is 
lowered [20]. 

The techniques to increase the solubility of a compound can be 
grouped into physical modification, chemical modification, and other 
techniques. Physical modifications are techniques to change the 
physical aspects of the compound such as a reduction in particle size 
(micronization and nanosuspension), crystal modification 
(polymorph, amorphous, and cocrystal form), solid dispersion, and 
cryogenic techniques. Chemical modifications deal with the chemical 
property of the compound, such as changes in pH, using buffer 
solutions, replacing with derivatives, forming complex compounds, 
and using the nature of the salt. Other methods such as supercritical 
fluid processes, the use of auxiliaries such as surfactants, solvents, 

co-solvent, hydrography, and new excipients can also be used to 
increase the solubility [18].  

Biopharmaceutics classification system (BCS) 

The solubility and permeability characteristics of a substance are 
classified into four categories according to the Biopharmaceutics 
Classification System (BCS), which can be seen in fig. 1. BCS is one of 
the prognostics to facilitate the development of oral preparations in 
recent years and to establish bioavailability standards [26].  
 

 

Fig. 1: Biopharmaceutics classification system (BCS) 

 

Class II drugs have high permeation values but are low in dissolution 
rates. With the low dissolution, the value will be a limitation of the 
bioavailability of a drug [27]. More than 70% of newly discovered 
compounds fall into the BCS class II category [28]. One of the natural 
compounds that is categorized into the class II BCS is alpha-
mangostin isolated from mangosteen peel extract [29]. The 
solubility of alpha-mangostin is 2.03 x 10-4

  

 mg/ml in the water at  
25 ⁰C  [30]. The solubility of an acceptable compound for a drug 
is>60 µg/ml [17]. Study of pharmacokinetic profiles in vivo shows 
the limited levels of alpha-mangostin in plasma [31]. 

Table 1: The properties of alpha-mangostin 

Property Description References 
Structure  
Chemical names 
Molecular formula 
Molecular weight 
Physical state 
Color/form 
Melting point 
Solubility 
Dissociation constants 

 
1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methylbut-2-enyl)xanthen-9-one 
C24H26O
410.5 g/mol 

6 

Solid 
Faint yellow to yellow powder 
180-181 ⁰C 
In water 2.03 x 10-4

Soluble in methanol 
 mg/ml at 25 ⁰C 

pKa 1 = 3,68 (primary carbonyl) 
pKa 2 = 7,69 (secondary carbonyl) 
pKa 3 = 9,06 (tertiary carbonyl) 

[30] 

 

The techniques used to improve the solubility of drugs of class II BCS 
are grouped into three major groups, namely traditional techniques, 
newer and novel techniques, and solid dispersion techniques. 
Traditional techniques consist of the use of solvent, hydrotropy, 
using dielectric constant solvents, amorphous formation, chemical 
modification of drugs, use of surfactants, the formation of inclusion 
complexes, solvent pH regulation, use of hydrates or solvents, use of 
ultrasonic waves, functional polymer technology, pre-precipitation, 
and evaporation. Newer and novel techniques consist of technology 
size reduction, nanoparticles, porous nanoparticles, nanocrystals, 
nanosuspensions, microemulsions, micellar, cryogenic technology, 
supercritical, lipid-based delivery systems, self-dispersing lipid 
formulations, micelle blends, and micelle polymers. Solid dispersion 
techniques consist of amorphous deposition of the crystalline 

carrier, continuous solid solution, discontinuous solid solution, 
substitutional solid solution, interstitial solid solution, glass 
suspension, and glass solution [23]. 

Several techniques have been carried out to increase the solubility of 
alpha-mangostin, as presented in table 2. 

Nanoparticle technology 

The technology of nanoparticles in nanomedicine has an important 
role in clinical therapy. Because of the size of the particles from 10-9 
m causes the surface area of the nanoparticles to increase the 
contact surface with the solvent. The increase of surface area 
correlates with the increase of the rate of dissolution and absorption 
of drugs into the body [44]. To overcome the low solubility of an 
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active ingredient in water, both the active ingredient and the 
excipient can be reduced into nanosize [45]. The use of nanoparticle 
techniques can also increase permeation which leads to an increase 
in oral bioavailability [46]. The formation of nano-or microparticles 
is strongly influenced by the type and the concentration of the 
polymer to be used [47]. The use of cellulose derivative polymers 

forms a nano reservoir in the nanoparticle technique [48]. The use of 
chitosan polymeric nanoparticles can improve the physicochemical 
properties and performance of alpha mangostin [49], and in 
combination with eudragit S 100 [50]. The addition of co-solvents or 
surfactants to the formula affects the solubility and dissolution of 
cellulose [51]. 

 

Table 2: Techniques to increase the solubility of alpha-mangostin 

Technique Excipient Result References 
Nanoparticles (nanocarrier, 
encapsulation) 

Ethylcellulose: Methylcellulose (1:1) Increased activity [32, 33] 

Nanoparticles (nanocarrier) Proniosome Increased permeation [34] 
Nanoparticles (nano micelles) MPEG-PCL (Monomethoxy Poly Ethylene Glycol-

PolyCaproLactones) 
Increased solubility and activity [35] 

Nanoparticles (nanofiber) Chitosan thiolated and polyvinylalcohol Increased solubility [36] 
Self Microemulsion (SME) Isopropyl myristate, Tween 80, PEG-400 Increased Area Under Curve [37] 
Size reduction Sodium lauryl sulfate and poloxamer 188 Particle size reduction [38] 
Solid dispersion, Amorphous 
formation 

Polyvinilpirolidon Increased solubility [17] 

Amorphous formation PLGA (Poly Lactic-co-Glycolic Acid) Increased solubility [39] 
Drug carrier Rice husk silica Increased solubility [40] 
Solid dispersion Vegetable oil Increased bioavailability [16] 
Complex formation Beta cyclodextrin Increased solubility [41, 42] 
SNEDDS Virgin Coconut Oil (VCO), tween 80, PEG 400 Increased permeation [43] 

 

 

Fig. 2: Mechanisms of adding surfactants and polymers to solid dispersions to increase the bioavailability of a drug [52] 

 

Alpha-mangostin, which is used for the treatment of H. pylori 
infections, is prepared with an encapsulation technique with a stable 
mucoadhesive nanocarrier in an acid solution. Ethylcellulose and 
methylcellulose (1:1) are used as a nanocarrier through self-assembly 
techniques [32]. The selection of polymers is very important, as the 
branched polymers are more soluble than non-branched (linear) 
polymers despite having the same molecular weight because the 
carbon chain is a hydrophobic group [53]. Here, cellulose derivatives 
are used as polymers in the process of forming encapsulation [54].  

This encapsulation technique has been shown to have better cellular 
absorption and anticancer activity than non-encapsulated alpha-
mangostin [33]. The use of cellulose derivates is to absorb large 
amounts of water, due to its large surface area, high porosity, and 
low fragility [55]. Cellulose also has an affinity in the formation of 
complexes with drugs and can reduce the crystallization of drugs in 
forming an amorphous matrix [56], and in doing so, demonstrates 
the efficacy of the treatment in mice after oral administration. 

Proniosome (spans, soy lecithin, and cholesterol) can be used as an 
alternative nanocarrier. These compounds can increase the 
permeation of alpha-mangostin up to 1.8 to 8 times by using the 
coacervation method [34]. In another example, the formation of 
alpha-mangostin nano micelles produced a stronger effect on anti-
melanoma when compared to free alpha-mangostin, making it 
suitable for use as a chemotherapy agent [35].  

Self-microemulsion (SME) 

Alpha-mangostin is loaded into self-microemulsion (SME). The 
results showed that this technique could increase the area under the 
curve (AUC) of  alpha-mangostin by 4.75 times and the increase in 
distribution to the lymphatic organs. SME in nanosize is an efficient 
delivery system to increase the absorption, which will ultimately 
increase the bioavailability of alpha-mangostin [37]. This drug 
delivery system can help solve problems related to drug delivery 
that is difficult to dissolve [57]. 

Snedds 

SNEDDS (self-nano-emulsifying drug delivery system) is defined as 
an isotropic mixture of oil, surfactant, and co-solvent, cosurfactant, 
or hydrophilic co-solvent. It has a particle size of less than 100 nm 
[58]. After the addition of isotropic mixture, it will interact with the 
fluids of the digestive tract and form an oil nanoemulsion in water. 
The formation of nanoemulsion will dissolve the drugs in small 
drops of oil, thereby expanding the surface area, which facilitates the 
release and absorption of the drug [59]. Illustration of SNEDDS 
formation can be seen in fig. 6. 

The SNEDDS mechanism increases the solubility and bioavailability of 
drugs. If lipids enter the channel area in the Gastro Intestinal it will 
cause contraction of the gallbladder, which eventually stimulates the 
secretion of the bile duct and pancreas. Due to the contractions, 
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SNEDDS will create a coarse emulsion that increases the dissolution of 
hydrophobic drugs. Lipids also cause delays in the emptying of the 
stomach, so the hydrophobic drug transit time slightly increases. In the 
end, the drug dissolution improves and the absorption increases [60].  

The SNEDDS method produces small round particles with oxidative 
stability and that are free-flowing, so they can be developed as solid 
dosage forms [61]. SNEDDS is also a promising carrier because it 

improves the bioavailability and therapeutic effects of the class II 
BCS drugs [62]. And solubility of drugs that are lipophilic [63]. 
SNEDDS improve the dissolution and increase intestinal permeation. 
As a result, the efficacy of orally administered drugs increases [64]. 
A report showed SNEDDS could increase the diffusion rate of 
mangosteen peel, taking into account the solubility of the active 
component in oil, surfactants, and co-solvent to obtain optimal 
formulation [43]. 

 

 

Fig. 3: Illustration of self-nano-emulsifying drug delivery system (SNEDDS) formation [65] 

 

Size reduction 

The size reduction of alpha-mangostin using high-pressure 
homogenization (HPH) with the addition of stabilizers turns out to be 
effective. The efficiency of reducing the size of alpha-mangostin 
suspension particles significantly decreases to them micron size by using 
sodium lauryl sulfate stabilizer and poloxamer 188 [38]. HPH has a 
principle of cavitation in the aqueous phase. The cavitation force in a 
particle is high enough to turn microparticles into nanoparticles [18].  

Amorphous formation 

The amorphous form is an irregular shape of a molecule with a 
higher energy level than a crystal. In the digestive tract, the 
amorphous form will cause a higher concentration gradient and 
cause an increase of permeation through the intestinal membrane 
[28]. Amorphous formation by using a solid matrix can increase the 
dissolution, solubility, and bioavailability of a drug, as the 
amorphous phase has a weak lattice that causes the contact and 
wetting process of the solvent [66]. The free energy, enthalpy, and 
entropy produced by amorphous solids are also relatively high when 
compared to crystalline shapes due to the irregular structure of 
amorphous solids [67]. Although sometimes amorphous formation is 
still constrained in terms of stability, the addition of a stabilizer can 
increase the stability of the amorphous form [68]. 

The physical changes in crystal alpha-mangostin to amorphous form 
increase solubility from the original 0.2±0.02 g/ml can be increased to 
2743±11 g/ml [17]. The microencapsulation of alpha-mangostin can also 
change the crystalline form of alpha-mangostin to an amorphous form, 
which improves its water solubility. As a result, the bioavailability of the 
drug increases [39]. The use of rice husk silica as the carrier of alpha-
mangostin, via the sol-gel method, has been investigated and showed the 
changing of the crystal form of alpha-mangostin into amorphous form, 
increasing the solubility of alpha-mangostin [40].  

 

 

Fig. 4: Crystal and amorphous shapes 

Solid dispersion 

Solid dispersion is a dispersion technique of one or more active 
substances into a matrix, or an inert carrier in a solid state. 
Principles to reduce particle size, better wetting processes, and 
reducing agglomeration can produce a high concentration of a drug 
in the gastrointestinal fluids, which will increase the solubility and 
bioavailability of the drug [69]. Solid dispersions usually have two 
different components, usually, the matrix is hydrophilic, while the 
drug or API is hydrophobic. The matrix used can be either a crystal 
matrix or an amorphous shape matrix [70]. The addition of 
surfactants in solid dispersions is needed to reduce recrystallization 
to increase dissolution and stability [52]. 

Solid dispersion systems have an advantage over other systems for 
increasing oral bioavailability without changing active targets. It is 
achieved by forming salts or incorporating polar or ionized group 
compounds into the structure of the drugs [71]. Solid dispersions 
are made by various methods, as shown in fig. 4. 

 

 

Fig. 5: Solid dispersion method [72] 

 

Solid dispersion technique is applied to alpha-mangostin using a 
solvent evaporation method, with the formation of a complex 
between alpha-mangostin and PVP (polyvinylpyrrolidone), to 
produce alpha-mangostin with increased solubility [17]. PVP is used 
as a matrix because PVP is a non-toxic substance, has very soluble 
properties in the water, is inert, and thermostable [73]. PVP also has 
a small size to increase the wet ability and solubility of a drug [72]. 
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Soft capsules containing alpha-mangostin with vegetable oil as a 
matrix also can improve the bioavailability of alpha-mangostin. The 
distribution of alpha-mangostin can be detected in the brain which 
means alpha-mangostin can cross the blood-brain barrier after oral 
administration [16].  

Complex formation 

Chemical modification by forming a complex between alpha-
mangostin and quaternate beta-cyclodextrin combined can increase 
the solubility of alpha-mangostin [41]. Cyclodextrin is a cyclic 
oligosaccharide that can form non-covalent bonds with several 
drugs so that it does not change the physicochemical properties of 
the drug. The primary and secondary hydroxyl cycle of cyclodextrin 
is a potential site for the modification of a drug [74]. An illustration 
of cyclodextrin complex formation with drugs can be seen in fig. 5. 
Cyclodextrin is a carrier of drugs that are non-toxic and 
biodegradable [75]. Complex formation with cyclodextrin is also 
preferable because of the increase of free energy (ΔG) and complex 
energy (ΔE) [76]. The beta-cyclodextrin bond with alpha-mangostin 
produces about 14 hydrogen bonds [77]. Beta cyclodextrin will 
attach to the nanoparticle conjugate, which will be positively 
charged by the ionic bond [78]. Beta cyclodextrin has 2 derivatives 
of 2.6 dimethyl--cyclodextrin and 2-hydroxypropyl--cyclodextrin, 
which are commonly used to form inclusion complexes with alpha-
mangostin. 2-hydroxypropyl--cyclodextrin is able to bind with 
alpha mangostin to form complex bonds in hydrogel formulation 
[79]. The results showed 2.6 dimethyl--cyclodextrin results in a 
more soluble complex than 2-hydroxypropyl--cyclodextrin [42]. 
The formation of a complex with cyclodextrin usually uses two 
methods, namely the solvent evaporation and kneading methods, 
but the solvent evaporation technique showed significant 
improvement on the drug’s release and solubility [80].  

The use of surfactants 

The use of surfactants increases the dissolution of compounds in 
water. Surfactants increase the dissolution of lipophilic drugs in 
aqueous media and reduce surface tension. When the surfactant 

exceeds the critical micelle concentration, micelle formation occurs 
trapping the compounds in the micelle (micellization process), 
which increases the solubility of the compounds. Surfactants also 
increase the wetting of solids, thereby increasing the rate of 
disintegration into finer particles [18].  

Various methods have been used to increase the solubility of alpha-
mangostin as previously described. The results of these various 
methods were certainly characterized to ensure that there was indeed 
an increase in the solubility of alpha-mangostin. Characterization was 
carried out such as FT-IR spectra examination (fig. 7) which showed 
that there was vibrational streaching of alpha mangostin on the 
hydroxyl groups that appeared at 3416.1 and 3251.7 cm-1. In the solid 
dispersion of alpha mangostin mangostin (SDs), the bands at 3416.1 
and 3251.7 cm-1 and at 1608.8, 1049.9, 1009.8, 849, 812.4, and 782.7 
cm–1 disappeared. The stretching of the PVP carbonyl groups 
appeared at 1646.5 cm-1 indicating there was a redshift to a mean of 
1649±0.8 cm-1 in SDs. These results indicate the participation of the 
OH group in alpha mangostin in the interaction of the hydrogen bond 
with the PVP carbonyl group. On the other hand, the peak position of 
the OH alpha mangostin group in and the physical mixture alpha 
mangostin (PMs) slightly changed [17]. 
 

 

Fig. 6: Illustration of cyclodextrin complex formation with drugs 
[81] 

 

 

Fig. 7: FT-IR spectrum [17] 
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Characterization using Differential scanning calorimetry (DSC) of 
alpha mangostin, PVP, solid dispersion alpha mangostin (SDs) and 
physical mixture alpha mangostin (PMs) is illustrated in fig. 8. Alpha 
Mangostin produces sharp endothermic peaks at 180 °C according to 

its melting point, while PVP shows wide peaks in the temperature 
range of 100 ᵒC-160 ᵒC. The endothermic peaks of alpha mangostin 
disappeared in all SDs and PMs, indicating an interaction between 
alpha mangostin and PVP [17]. 

 

 

Fig. 8: Differential scanning calorimetry thermograms of (a) "-mangostin solid dispersions and (b) physical mixtures [17] 

 

Characterization of powder XRD pattern showed alpha mangostin 
peaks appeared at the diffraction angle of 2θ at 15.9ᵒ, 18.2ᵒ, 20ᵒ, 
23.3ᵒ, 26ᵒ, 30.6ᵒ, and 32.2ᵒ (fig. 9) indicating that alpha mangostin 
was present in crystalline form. PVP (K29/32) is an amorphous 
powder and does not show any peaks. The SD diffraction pattern 

showed loss of alpha-mangostin crystal peaks, indicating that 
alpha-mangostin was converted from crystals to amorphous 
forms. This results in an interaction between alpha-mangostin and 
PVP and may help explain the increase in solubility of the 
compound [17]. 

 

 

Fig. 9: X-ray diffraction patterns of alpha-mangostin solid dispersions [17] 

 

CONCLUSION 

Alpha-mangostin has been known to have low solubility, correlated 
with its low bioavailability in the blood. However, alpha-mangostin has 
many pharmacological activities, therefore, various techniques are 
needed to increase the solubility of alpha-mangostin. Currently, many 

techniques have been developed to increase the solubility of alpha-
mangostin through physical modifications such as a reduction in 
particle size (nanoparticle technology), amorphous formation, solid 
dispersion, and chemical modification, such as the formation of 
complex compounds by adding surfactants and co-solvent. Among the 
various techniques, nanoparticle technology is most widely used to 
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increase the solubility of the alpha-mangostin because it has many 
ways and mechanisms to increase solubility. Among them, as 
previously discussed, the reduction in particle size in nanotechnology 
increases the solubility of drugs by means of expanding the surface 
area of the particles. The use of water-soluble (hydrophilic) excipients 
as a component of nanoparticles increases the solubility of the drug 
due to the hydrogen bonding interaction between the excipient used 
and water molecules. The use of surfactants also increases the 
solubility of drugs with high lipophilicity properties through reduced 
interfacial tension in nanotechnology. 
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