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ABSTRACT 

In situ gels have become one of the most prominent and accessible systems. These systems have several advantages like simple manufacturing, easy 
to use, improved adherence, and patient comfort by minimizing drug administration frequency by its unique characteristic features of sol to gel 
transition. In the 'sol-gel' method, the precursor goes through hydrolysis and polymerization or condensation to produce a colloidal suspension or 
solution. As they can administer in solution form, these in situ gelling systems undergo gelation at the achievement site. Some researchers recently 
developed in situ gelling systems of liposomes, microspheres, nanoemulsions, nanospheres, etc. This review mainly focused on the introduction, 
advantages, disadvantages, types of polymers, and suitable characteristics for preparing in situ gels. 
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INTRODUCTION 

In situ gels are the solutions or suspensions that undergo gelation 
after reaching the particular site due to contact with body fluids or 
physicochemical changes (i.e., pH, temperature, ionic concentration, 
UV radiation, presence of specific molecules or ions, external 
triggers, etc.) [1, 2]. In situ, gels have been potentially used for 
buccal, intraperitoneal, nasal, ocular, oral, parenteral, rectal, 
subcutaneous, transdermal, and vaginal routes [3, 4]. The gel 
formulations enhance the local and systemic exposure of potential 
lead compounds in the discovery phase, ideal for establishing animal 
models for various conditions quickly and cost-effectively [5]. 
Despite the massive diversity of gels, a particular class of gels, 
namely smart polymer gels, are in pharmaceutical research focus 
during the last decades [6, 7]. These intelligent polymers change 
their physicochemical properties in response to an altered 
environment [8, 9]. In recent advancements, in situ gels have made it 
possible to exploit physiological uniqueness [10, 11]. 
Comprehensive research has been carried in designing in situ gels, 
emerged as one of the best novel drug delivery systems (NDDS) [12, 
13]. In this review, we try to explain about introduction, advantages, 
disadvantages, types of polymers, and suitable characteristics for the 
preparation of in situ gels. It also focused on marketed preparation 
as well as recent developments and advancements of in situ gels. 

Advantages 

� It offers ease of administration [14] 

� It provides more bio-availability [15] 

� It decreases the wastage of drug [16] 

� It reduces the frequency of administration [14, 17] 

� It allows patient compliance and comfort [14, 18] 

� It minimizes local and systemic toxicity [19] 

� It administered to unconscious and old patients [20] 

� It helps in the extended or prolonged release of drugs [21] 

� It doesn't permit drug accumulation (due to low dose) [22] 

� It exhibits bio-adhesiveness to facilitate drug targeting [23] 

� To enable drug targeting mainly through mucus membranes [24] 

� By using natural polymers, provides biocompatibility and 
biodegradation [25] 

� By using synthetic polymers, yield tolerable degradability and 
functionality [26] 

� To reduce the systemic absorption of drugs drained through the 
nasolacrimal duct [27] 

Disadvantages 

� It requires an elevated level of fluids [28] 

� Only small doses can be administered [29] 

� The solution form of the drug is more susceptible to degradation 
[30] 

� Due to chemical degradation, there is a chance of instability [31] 

� After drug administration, eating and drinking limited for a few 
hours [32]  

� It may result in premature dissolution due to low mechanical 
strength [33] 

� For hydrophobic drugs, the quantity and homogeneity of drug 
loading limited [34] 

Suitable characteristics of polymers 

An essential ingredient in the manufacture of any gel is a polymer. 

Some of the relevant polymer characteristics for in situ gels given 
below: [14, 17, 35-41] 

� It should be compatible 

� It should influence tear behavior 

� It should not provide any toxic effects 

� It should have pseudo-plastic behavior 

� It should have good tolerance and optical clarity 

� It should be capable of adhering to the mucous membrane 

� It should be capable of declining the viscosity with a boost in 
shear rate [41]. 
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Classification of in situ gel polymers 

Based on their origin, polymers are classified or the mechanism of 
gelation. According to a source in situ, gelling systems classified into 
two types: [42-45]. 

i. Natural polymers (E. g., Alginic acid, Carrageenan, chitosan, 
Guar gum, gellan gum, pectin, sodium hyaluronate, xanthan gum, 
xyloglucan, etc.) 

ii. Synthetic or semi-synthetic polymers (E. g., Cellulose acetate 
phthalate, hydroxypropyl methylcellulose, methylcellulose, 
polyacrylic acid, poly (lactic-co-glycolic acid, poloxamers). 

i. Natural polymers 

Alginic acid or sodium alginate 

A biodegradable, hydrophilic, non-toxic, linear block copolymer 
polysaccharide consists of β-D-mannuronic acid and α-L-glucuronic 
acid residues joined by 1,4-glycosidic linkages. It is used as a vehicle 
for ophthalmic formulations. Alginate transforms into a stable gel 
upon exposure to divalent cations (Ca+2, Mg+2) by cross-linking the 
carboxylate groups, which is not easily eroded by tear fluid [46-47]. 

Carrageenan 

It is used as a home remedy to cure a cold and cough as gelatine. 
Depending on the sulfate group number and position classified into 
three types: [48-50] 

a. Iota carrageenan: It forms an elastic gel in the presence of 
calcium or potassium ions and completely soluble in hot water. 

b. Kappa carrageenan: It forms a 'gel' in the presence of 
potassium ions and shows similar properties of locust bean gum, like 
soluble in hot water. 

c. Lambda carrageenan: It does not induce gel formation, but it 
forms highly viscous solutions and is completely soluble in cold water. 

Chitosan 

It is a biodegradable, biocompatible, thermosensitive, pH-
dependent, cationic, amino polysaccharide obtained by alkaline 
deacetylation of chitin. Gelling of chitosan occurs by pH and 
temperature changes. It has excellent mucoadhesive properties due 
to the electrostatic interaction between positively charged chitosan 
and negatively charged mucosal surfaces. At low critical solution 
temperatures due to extreme hydrophobic interactions, gels formed 
with electrostatic forces. At upper critical solution temperature, 
exhibiting polymers are used for the gelation process of chitosan. 
Due to availability, non-toxic, inexpensive, etc., this is the second 
most abundant polysaccharide using after cellulose [51-55]. 

Guar gum or guaran 

It is soluble in water but insoluble in hydrocarbons, fats, ester, 
alcohols, and ketones. It shows better dispersibility and forms high 
viscous colloidal solutions with hot and cold water with small 
amounts. Temperature changes cause a reversible shift in gel 
formation [47, 56]. 

Gellan gum 

It is commercially known as Gelrite or Kelcogel, and it is a linear, 
water-soluble, temperature-dependent, extracellular, hetero, anionic 
polysaccharide; like alginate, this gellan gum form gel in the 
presence of metal cations (mono or divalent). Monovalent cations 
such as Na+or K+and divalent cations such as Ca+2 or Mg+2 induce 
cross-linking gelation. The gelation includes the formation of double-
helical junction zones followed by aggregation of the double-helical 
segment to form 3-D networks by complexation with cations and 
hydrogen bonding with water. In the preparation of in situ gels, it is 
one of the most commonly used polymers [57]. 

Pectin 

A family of cationic, linear polysaccharides comprises α-(1, 4)-D 
galacturonic acid residues. In the presence of H+ions, the gelation of 
pectin will occur, a source of mono, divalent, and trivalent ions. It is 

only applicable to water-soluble formulations and not for the 
organic solvents. Monovalent cations (alkali metal) salts of pectin 
and pectic acids are soluble in water. But di and trivalent cationic 
salts are weakly soluble or insoluble in water. When the addition of 
water to dry powdered pectin, clumps (i.e., semi-dry packets) 
formed due to its tendency to hydrate and solubilization of cluster's 
done by mixing with a water-soluble carrier. The degree of 
methylation (DM), defined as the percentage of carbonyl groups 
esterified with methanol. Based on the degree of esterification, 
pectins classified into two categories: [58-62]. 

a. Low methoxy pectins; less than 50% of the carboxyl groups 
methylate the pectins. 

b. High methoxy pectins; more than 50% of the carboxyl groups 
methylate the pectins. 

Sodium hyaluronate 

It is a water-soluble form of the sodium salt of hyaluronic acid. It is a 
natural, endogenous polysaccharide that supports producing collagen 
and maintains elasticity in the body. It also increases formulation 
stability and reduces the probability of oxidation [63-65]. 

Xyloglucan or tamarind gum 

Xyloglucan is an abundant, hemicellulosic polysaccharide due to the 
non-toxic, biocompatible, and biodegradable nature, potentially 

using in several delivery systems. It is partially degraded by β-
galactosidase and undergoes gelation by the thermoresponsive 
process. When used in oral delivery shows gelation time up to 
minutes and allows gelation in the stomach in chilled condition. Like, 
poloxamer it exhibits gelation on heating/refrigerator temperature 
or cooling from higher heat. Xyloglucan has the gelling ability in the 
presence of sugars (40-65%) or alcohols over a wide pH range. Still, 
in the combination (20% alcohols), the sugars are substantially 
reduced to form a gel [66-68]. 

Thiolated chitosan or thiomers 

Nowadays, thiol groups exhibit much higher adhesive 
(mucoadhesive) properties than other polymers. Thiomers interact 
with cysteine-rich sub-domains or mucus glycoproteins via cross-
linking intra-and inter-disulfide bonds by the simple oxidation 
process that leads to gel formation reaching the physiological 
environment. These are the most promising multi-functional, 
cationic, hydrophilic macromolecules, and they also act as 
permeation enhancers than chitosans. It has positive charges which 
interact with the cell membranes causing a structural reorganization 
of tight junction-associated proteins. Apart from this, it also exhibits 
a robust, cohesive nature [69-72]. 

Xanthan gum 

Xanthan gum shows good stability at both acidic and alkali 
conditions and soluble in cold and hot water. It exhibits anionic 
nature due to the presence of both glucuronic and pyruvic acid 
groups [73, 74]. 

ii. Synthetic or semi-synthetic polymers  

Cellulose acetate phthalate (CAP) 

CAP also known as pseudo latex. It is artificial latex, prepared in an 
aqueous medium by dispersion of a pre-existing polymer. It is pH 
sensitive, cross-linked polyacrylic polymers with potentially useful 
properties for sustained drug delivery to the eye because latex is a 
free-running solution at a pH of 4.4, which undergoes coagulation 
tear fluid, raises the pH to pH 7.4. CAP is used to monitor the ocular 
residence time of an ophthalmic preparation in γ-scintigraphy, and 
the production doesn't require the use of organic solvents [75]. 

Hydroxypropyl methylcellulose (HPMC) 

This is a biocompatible, thermoreversible, mucoadhesive polymer. It 
is a type of cellulose ether due to high swellability, thermal gelation 
properties, and used as hydrophilic matrices and used for oral drug 
delivery systems. HPMC used in combination with carbopol, 
enhancing the solution's viscosity while reducing the solution's 
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acidity. HPMC goes for gelation at higher temperatures due to the 
interaction between hydrophobic components of the polymer. It was 
playing an active role in aqueous solution formation for topical 
treatment of the eye. It proved to be essential to formulate vaginal 
mucoadhesive film with CR of S-nitroso glutathione and effects on 
the gelling behavior. [14, 17, 76-78]. 

Methylcellulose (MC) 

It is also a cellulose derivative, used as in situ gelling polymer. 
Several cellulose derivatives stay on liquid at low temperatures and 
become gel upon heating. For example, MC and HPMC's aqueous 
solution undergoes a phase transition into gels between 40-50 °C 
and 75-90 °C, respectively. However, MC and HPMC's phase 
transition temperature is higher than the physiological temperature 
but lowered by making chemical and physical changes in the 
polymers. Hydrophobic interaction among molecules with methoxy 
groups causes gelation of HPMC and MC solutions. Polymer-polymer 
contact occurs between macromolecules due to hydration at a lesser 
temperature. The hydration is lost gradually on increasing the heat 
consequential in lower viscosity. At the transition where enough 
dehydration of the polymers takes place, they start associating, and 
the thickness starts rising, showing a network structure formation. 
At low temperature (30 °C) solution is in liquid form, and when the 
temperature increased (40-50 °C) and gelation occurred [76, 79-81]. 

Polyacrylic acid (PAA) 

PAA is commercially known to be carbopol. It is widely used in 
ophthalmology for enhancing pre-corneal retention. It can exhibit 
excellent mucoadhesive properties to compare with other cellulose 
derivatives. Comparing different grads such as carbopol 910, 934, 
940, 941, etc. concluded that 940 showed superior one [77, 82-84]. 

Poly (lactic-co-glycolic acid) or PLGA 

It is a biocompatible and biodegradable polymer. It is a synthetic 
copolymer of polylactic acid (PLA) and polyglycolic acid (PGA). 
These systems are applied to controlled drug delivery and are 
available as implants, microparticles, and in situ implants in the 
market. PLGA is one of the most capable polymers used to fabricate 
drug delivery and tissue engineering applications because of its long 
clinical experience [85-87]. 

Poloxamers 

Poloxamers are commercially known as pluronic and used in 
thermosensitive in situ gels. It has excellent thermal setting 
properties and increases drug residence time. It is a water-soluble 
tri-block copolymer and consists of two polyethylene oxide (PEO) 
and polypropylene oxide (PPO). Pluronic F127 is the most 
commonly used poloxamer polymer in pharmaceuticals due to its 
colorless and transparent gels forming character. It consists of PEO 
(70%) and PPO (30%). A copolymer pluronic F127-g-poly (acrylic 
acid) was used as in situ gelling vehicles to prolong the residence 
time and better bioavailability of the ocular drugs [88-90]. 

Poloxamines 

Poloxamines are commonly known as tetronics. These are 
biocompatible, tetra functional block copolymers of ethylene and 
propylene oxide. Four arms of PEO-PPO form X-shaped poloxamines, 
linked by an ethylenediamine group, and seem crucial for the 
osteoinductive capability of tetronics. It exploited until now for 
rendering temperature and pH-responsive micelles and gels dually. 
There is no other polymer reported to be osteoinductive itself. 
Hydrophilic one is more cytocompatible than hydrophobic and shows 
better compatibility as their molecular weight increases [91-94]. 

Poly (N-isopropyl acrylamide) or PNIPAAm 

It is a thermosensitive polymer with a reversible phase transition at 
32-35 °C; it is closer to the human body temperature reach 
therapeutic targets [95-98]. 

CONCLUSION 

The use of biocompatible, biodegradable, and water-soluble 
polymers for the in situ gel formulation can make excellent and 

excellent drug delivery systems. In recent years, researchers have 
drawn interest, providing a lot of scope to advanced drug delivery 
techniques. A novel carrier can incorporate these systems to obtain 
sustained drug delivery in a much improved and extreme manner. 
Finally, in situ, gels are easy to apply and offer patient comfort and 
compliance. 
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