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ABSTRACT 

Based on their solubility and permeability, drugs are typically divided into four classes (Classes I–IV) according to the biopharmaceutics 
classification system (BCS). Of these classes, BCS class II drugs have high permeability and low solubility; not only do these characteristics constitute 
the rate-limiting step in the formulation of these drugs but the low solubility in water results in low bioavailability. Thus, methods for improving 
their solubility have been developed using lipid carriers such as liposomes, niosomes, and aquasomes; other approaches include self-micro-
emulsifying drug delivery systems (SMEDDS) and self-nano-emulsifying drug delivery systems (SNEDDS). Currently, niosome-based drug delivery 
systems that utilize nonionic surfactants, drugs, and cholesterol in varying ratios are being widely used to deliver both hydrophilic and lipophilic 
drugs in addition to several other applications of niosomes. 
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INTRODUCTION 

The biopharmaceutics classification system (BCS) is a useful mechanism 
used by researchers for obtaining biowaivers during in vivo 
bioequivalence studies and for decision making when determining the 
required solubility and permeability during drug discovery. This is 
because BCS is established upon a scientific blueprint highlighting the 
three rate-limiting steps critical in oral absorption: the liberation of the 
drug from its dosage form [1], prolongation of the dissolved state along 
with the whole gastrointestinal (GI) tract [2], and penetration of the drug 
molecules via the GI membrane into the blood [3]. Additionally, 
enterohepatic metabolism constitutes a fourth step that affects the 
systemic accessibility along with the release of metabolites into systemic 
blood circulation. The biopharmaceutical drug disposition classification 
system (BDDCS) proposed by Wu and Benet comprehensively describes 
the absorption operation by including the fourth rate-limiting step of 
first-pass metabolism. Niosomes are uncharged surfactant vesicles 
comprising microscopic lamellar structures built upon an amalgamation 
of uncharged surfactants such as the alkyl or dialkyl polyglycerol ether 
class and cholesterol formed via subsequent hydration in an aqueous 
buffer [2]. In niosomes, the vesicle-building amphiphiles are uncharged 
surfactants (e. g., Span 60) that are typically balanced by incorporating 
cholesterol and minuscule amounts [1.5 mg] of a negatively charged 
surfactant such as dicetyl phosphate [4]. Several methods exist for 
niosome fabrication such as ether injection [5, 6], the hand-shaking 
method [6], sonication [6], microfluidization [7], reverse phase 
evaporation [8], the bubble method [9], multiple membrane extrusion 
[7], and the proniosomal approach [10]. Characterization parameters 
include particle size, in vitro drug release, entrapment efficiency, and 
drug content together with some specific characteristics that depend on 
the formulation mechanism such as skin permeation etc. Herein, a 
literature survey was performed using accessible databases such as 
Google Scholar, PubMed, and Scopus to review research articles and thus 
compile a comprehensive yet concise introduction to the BCS and 
niosomes along with their applications. 

Biopharmaceutics classification system 

BCS is a scientific framework for classifying a drug based on its aqueous 
solubility and intestinal penetrability [11]. When used in conjunction 
with the in vitro dissolution properties of the concerned drug, BCS 
considers three important parameters: solubility, intestinal permeability, 
and dissolution rate. Together these parameters determine the essential 
factors of the speed and limit of oral drug absorption from immediate-
release (IR) solid oral dosage forms [12, 13]. Based on the BCS 
framework, the drugs can be classified into four basic groups using the 

criteria of their solubility and permeability toward gastrointestinal tract 
(GIT) mucosa, as shown in fig. 1. The solubility categorization of a drug in 
the BCS is determined on the basis of the maximum dosage strength of 
the IR product. A drug is deemed highly soluble when its maximum 
dosage strength is soluble in a minimum of 250 ml of water-based media 
spanning a pH range of 1.0–7.5; otherwise, the drug is deemed a poorly 
soluble candidate. The volume approximation of 250 ml was established 
in the literature using traditional bioequivalence study methods [12, 13]. 
The permeability classification is directly based on a drug’s intestinal 
absorption limit in humans or indirectly based on the calculations of 
mass transfer speed via the human intestinal membrane. A drug is 
deemed highly permeable when the intestinal absorption limit is ≥90%. 
Otherwise, the drug is deemed poorly permeable [12, 13]. An IR drug is 
categorized as a fast dissolution product when at least 85% of the stated 
amount of the drug dissolves in less than 30 min when utilizing the 
United States Pharmacopoeia (USP) Apparatus I set at 100 rotations per 
minute (rpm) or USP Apparatus II at 50 rpm comprising a minimum 
volume of 900 ml of each of the following media: 1) acidic media, such as 
0.1 N hydrochloric acid or USP simulated gastric fluid with an absence of 
enzymes; 2) a pH 4.5 buffer, and 3) a pH 6.8 buffer or USP simulated 
intestinal fluid in the absence of enzymes. Otherwise, the drug is deemed 
a slow dissolution product. 
 

 

Fig. 1: Biopharmaceutics classification system†‡†Adapted from 
commons. wikimedia.org, by MKD 2020 

https://commons.wikimedia.org/wiki/File:Biopharmaceutics_
Classification_System_(BCS).jpg. Copyright by, MKD 2020, 

‡Copyright permission obtained under license CC BY 4.0 
(Creative Commons Attribution-Share Alike 4.0 International) 
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Solubility and permeability measurement in the discovery/ 
development settings  

Drug discovery begins with the recognition of a pharmacophore by 
scanning a library of recombinant chemical series through a biological 
method such as attachment to a receptor or enzyme blocking. The 
prototypical hit compounds are then directed toward high throughput 
screening (HTS) pharmaceutical profiling. Compounds with the 
required biological and pharmaceutical resources are subsequently 
examined in vivo for confirming the mechanism of action followed by 
lead optimization via chemical synthesis [14]. 

Solubility determination 

HTS solubility examination typically begins with a dimethyl 
sulfoxide (DMSO) solution. This stock solution is incorporated into a 
pH 7 phosphate buffer with a volume of one microliter at all times 
until the compound precipitates out of the solution [15]. The light 
scattering phenomenon observed from the precipitated material is 
detected using an ultraviolet (UV) detector or directly via laser 
nephelometry [16]. Another method implements equilibration, 
followed by filtration of the DMSO-buffer suspension. Then, the 
filtrate is analyzed through a direct UV method. These automatic 
solubility procedures are currently being commercially used for HTS 
[17]. Precipitation of the compound from the DMSO stock solution is 
based on the rate and extent of nucleation occurring within the 
solution and hence demonstrates kinetic solubility. However, 
equilibrium solubility is mandatory by the Food and Drug Authority 
FDA for BCS classification. The shake flask method is a non-
automatic method used to compute equilibrium solubility at various 
pH levels. The pH solubility profiling is usually performed only after 
the lead candidate has been selected. The kinetic solubilities are 
normally parallel but slightly higher than the equilibrium solubility. 

Permeability determination 

HTS permeability analysis has been used worldwide with 24 
automated wells of the tissue-cultured human colon 
adenocarcinoma (Caco-2) cell system [18]. This system comprises a 
monolayer of cells that are allowed to develop onto a filter acting as 
support, which separates the drug donor and acceptor 
compartments. Permeability is examined by analyzing drug arrival 
in the acceptor compartment using the direct UV or liquid 
chromatography–mass spectrometry method. Although the Caco-2 
cell system is an automated and well-established HTS method, it 

suffers from certain limitations. For compounds delivered through 
the passive transcellular course, the Caco-2 permeability is an 
appropriate procedure for forecasting human permeability. For 
compounds delivered via paracellular or transporter-governed 
processes or for highly insoluble compounds, the Caco-2 
permeability tends toward miscalculation of human permeability 
because of three reasons: (1) excessive expression of p-glycoprotein 
(Pgp) efflux pumps, (2) lessening of the paracellular transport route 
owing to the absence of liquid pores, and (3) random attachment of 
insoluble compounds onto the filter support and plastic components 
thereby decreasing visible penetrability [19]. As a compound 
advances from discovery to the development stage, more tedious 
pressing procedures, e. g., the in situ rat gut perfusion method, are 
employed to rectify the false-negative conclusions produced by the 
Caco-2 method [20]. The compounds utilized in these tedious 
procedures are again characterized by low (BCS classes III and IV) to 
high permeability (BCS classes I and II) when entering the 
development stage. Moreover, the Caco-2 cells require 21 d to fully 
develop into a monolayer of integrity, whereas other cells such as 
the Madin–Darby canine kidney (MDCK) cell line require only 3–7 d; 
hence, the latter have been used more frequently to accelerate the 
analysis [21]. However, MDCK cells exhibit the same problems as the 
Caco-2 cells in terms of generating false-negative results and thus 
could represent low permeability. In addition, the MDCK cells 
present more issues than Caco-2 cells including less expression of 
various efflux pumps and failure to meet the criteria for screening of 
chemical series with identified efflux problems. Both the in vitro 
Caco-2/MDCK cell lines method and the in situ rat perfusion 
methods are trusted by the FDA in terms of BCS classification. 

Niosomes 

Niosomes are microscopic layered structures of 10–1000-nm size, 
and their core is environmentally friendly and non-reactive toward 
the human immune system and biocompatible surfactants [22]. The 
niosomes are amphipathic, i.e., a water-soluble drug can be locked in 
their core cavity region and water-insoluble drugs in the non-polar 
region are present inside their bilayer; hence, both water-soluble 
and water-insoluble drugs can be added into niosomes as shown in 
fig. 2. Structurally, niosomes are similar to liposomes: they possess 
the same drug delivery potential and offer more chemical stability 
than liposomes at lower production costs. Both vesicles comprise a 
bilayer, which is composed of uncharged surfactants in the case of 
niosomes and of phospholipids in the case of liposomes. 

 

 

Fig. 2: Structure of niosome†‡,†Adapted from Reference [23], ‡Copyright License obtained under CC BY license 
(https://creativecommons.org/licenses/by/4.0/) 

 

Preparation methods 

Ether injection method 

The primitive step in niosome formulation via the ether injection 
method involves surfactant dissolution in any volatile solvent such 
as diethyl ether, chloroform, or methanol. The solution is then 
incorporated into an aqueous drug solution via injection using a 14 
Gauze needle maintained at 60 °C on a water bath or on a magnetic 

stirrer. Consequently, monolayered vesicles with sizes ranging from 
50 to 1000 nm are produced through the volatile solvent’s 
atomization [24]. 

Hand-shaking method 

The hand-shaking method, also known as the thin-film hydration 
technique, involves the dissolution of the surfactant and cholesterol 
in a volatile organic solvent and subsequent transfer into a rotary 
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evaporator. Following evaporation, a thin layer of solid remains on 
the wall of the flask. This dried layer is then rehydrated using an 
aqueous phase of the drug of interest. Alternatively, this procedure 
can be performed at room temperature via light agitation [6, 25]. 

Sonication 

Niosomes can be fabricated by sonicating an amalgamation of 
surfactant, cholesterol, and an aqueous phase containing the drug 
maintained at 60 °C for 3 min in a beaker placed in a probe or bath 
sonicator. The vesicles thus formed have less particle size exhibit 
size uniformity [6, 25]. 

Microfluidization 

Microfluidization is another duplicable method that yields size 
uniformity via operating, i.e., two fluidized streams flowing forward 

and intersect with each other at ultrahigh speeds through an 
accurately defined microchannel [24, 25, 7]. 

Reverse-phase evaporation method 

The reverse-phase evaporation method utilizes an amalgamation of 
surfactant and cholesterol in a 1:1 ratio in addition to ether and 
chloroform. An aqueous phase containing the target drug is 
incorporated into the concoction followed by sonication at a 
temperature of 4 °C–5 °C. Sonication is continued for about 5 min 
after incorporating about 10 ml of phosphate-buffered saline into 
the concoction. The organic solvent is atomized at 40 °C under low 
pressure, and the persisting suspension is thinned using phosphate-
buffered saline. The amalgamation is heated at 60 °C for 10 min, and 
the ultimate product of niosomes is attained [24, 25, 8]. Fig. 3 shows 
a schematic of this method. 

 

 

Fig. 3: Reverse-phase evaporation method for the preparation of niosomes†‡, †Adapted from Reference [26], ‡Copyright permission 
obtained under CC BY License (https://creativecommons.org/licenses/by-nc-nd/4.0/) 

 

The bubble method 

Niosomes can also be fabricated in the absence of organic solvents 
through the bubble method, wherein a bubbling unit containing a round-
bottomed flask with three necks is placed in a water bath; a water-cooled 

reflux condenser and thermometer are placed in the first and second 
necks, respectively, whereas nitrogen gas is introduced through the third 
neck. Surfactant and cholesterol amalgamated at 70 °C in a buffer are 
blended and bubbled at 70 °C by introducing nitrogen gas into the 
apparatus [24, 9]. Fig. 4 shows a schematic of this method. 

 

 

Fig. 4: The Bubble Method for Preparation of Niosomes†‡, †Adapted from Reference [26], ‡Copyright permission obtained under CC BY 
License (https://creativecommons.org/licenses/by-nc-nd/4.0/) 
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Multiple membrane extrusion method 

In the multiple membrane extrusion method an amalgamation of 
surfactant, cholesterol, and dicetyl phosphate is dissolved in chloroform, 
and the resulting concoction is vaporized to form a thin film. This film is 
dampened with an aqueous drug solution, and the resulting suspension 
is extruded using polycarbonate membranes, which are inserted in 
series to create a maximum of 8 passages [24, 25, 27]. 

Proniosomal method 

In this niosome fabrication method, a water-soluble transporter 
such as sorbitol is sprayed with a surfactant to form a dry 
formulation in which each water-soluble particle is laminated with a 
thin layer of dry surfactant. This formulation is labeled as a 
proniosome. The proniosome powder thus formed is subsequently 
loaded into a screw-capped vial, and blended with water or saline at 
80 °C by vortexing. This is followed by stirring for about 2 min, thus 
producing the final niosomal suspension [28]. 

Niosome evaluation 

Entrapment efficiency 

For assessing a drug’s entrapment efficiency within the niosomes, 
any of the following three methods can be used: centrifugation, gel 
filtration, or complete vesicle disruption using 50% n-propanol or 
0.1% Triton X-100. This method estimates the quantity of the drug 
remaining locked inside the niosomes and examines the final 
solution through an assay method suitable for the target drug. In this 
method, entrapment efficiency (EF) can be defined as follows [29]. 

Percentage drug entrapment (%) = [Total Drug Content (mg)−[Free Drug Content (mg)]
Total Drug Content (mg)

 ×
100 

Drug content 

The fabricated niosomal formulations are transferred into a test 
tube in which 10 ml of methanol is introduced to break down the 
niosomes followed by the destruction of the outer membrane, 
thereby liberating the entrapped drug. The quantity of the released 
drug can be estimated using a UV spectrophotometer at a specified 
wavelength, thus enabling the calculation of the total mass of drug 
present in the formulation [30, 31]. 

In vitro drug release 

The in vitro release rate can be determined using a dialysis tube. In 
this method, a dialysis sac is cleansed and immersed in distilled 
water. The niosome suspension is transferred using a pipette inside 
a bag composed of the dialysis tubing and fastened; then the bag is 
left in a 200 ml buffer solution placed in a 250 ml beaker and 
subjected to continuous vibration at 25 °C or 37 °C. The drug content 
in the resulting buffer solution is assessed at various time points via 
a suitable assay method [32]. 

Particle size and morphology 

The most commonly used methods for determining particle size and 
the morphology of niosomes are dynamic light scattering (DLS) [33], 
scanning electron microscopy (SEM) [34], transmission electron 
microscopy (TEM) [35], freeze-fracture replication-electron 
microscopy (FF-TEM) [36], and cryotransmission electron 
microscopy (cryo-TEM) [37]. DLS simultaneously provides detailed 
information on particle size and critical information on the 
solution’s homogeneity. A single sharp peak in the DLS result 
indicates the presence of a single population of scatters. The 
polydispersity index (PI) is a useful parameter in this regard. If 
PI<0.3, then homogeneous population exists in the colloidal system 
and if PI>0.3 then the system is not homogeneous [33]. The 
abovementioned microscopic methods are commonly used to 
evaluate niosome morphology. 

Niosome applications 

Sustained release 

A constant concentration of drugs possessing a narrow therapeutic 
index and low water solubility can be maintained in the blood 
plasma via niosomal encapsulation, thus achieving sustained release 

action. Azmin et al. [38] Proposed using part of the liver as a storage 
site for the absorption of methotrexate after niosome administration 
by the liver cells, thereby realizing sustained drug release. 

Localized drug action 

Niosomal dosage is an attractive method to realize localized drug 
action at the administration site because of the size of niosomes and 
their lesser penetrability compared with liposomes epithelium and 
connective tissue. This improves the drug’s effectiveness and 
reduces its systemic toxic effects. For example, antimonials 
entrapped within niosomes are absorbed by mononuclear cells 
resulting in localized drug action, potency enhancement, and dual 
reduction in dosage as well as toxicity [9, 39]. 

Cancer 

Common limitations of cancer chemotherapy manifest as side effects 
and less therapeutic efficacy. Doxorubicin, a broad-spectrum 
anthracycline used for anticancer activity, has demonstrated a dose-
dependent irreversible cardiotoxic effect [4]. However, when this 
drug was administered in the form of niosomes to mice possessing 
an S-180 tumor, the lives of the mice were prolonged and the 
multiplication of sarcoma was reduced. This can be attributed to the 
high effectiveness of niosomes in drug entrapment, resulting in 
sustained blood circulation and changes in drug metabolism [4, 40]. 
Another popular anticancer drug, daunorubicin hydrochloride, 
demonstrated increased anticancer activity in its niosomal 
entrapped form when compared against the effectiveness of the 
drug alone. The niosomal formulation constructively shattered 
Dalton’s ascitic lymphoma cells in a short duration. In the case of 
bleomycin, a potent anticancer drug, compared with its free drug 
form, the form of the drug entrapped within niosomes comprising 
47.5% cholesterol accumulated in high levels at the tumor position 
[41]. Methotrexate is a well-proven toxic synthetic antineoplastic 
drug used in chemotherapy, either alone or in conjunction with 
other medications, to cure different types of cancers. Extensive 
research has demonstrated that intravenous administration of 
methotrexate entrapped in niosomes to S-180 tumor-possessing 
mice causes total retrogradation of the tumor, relaxed drug 
clearance, and an elevated plasma level of methotrexate [42]. 
Improved drug penetration was observed when 5-fluorouracil was 
developed in bola-surfactant niosomes to cure skin cancer [43]. In 
addition to the fact that boosted antitumor activity is observed, in 
some situations, drug entrapment in niosomal vesicles reduces the 
cytotoxicity toward normal cells, as reported in a study on the 
design of niosomes containing vincristine. Frequent side effects of 
the drug, such as neurological toxicity, diarrhea, and alopecia, were 
reduced, whereas antitumor activity was increased in a mouse 
model of S-180 sarcoma after niosome-entrapped vincristine was 
administered [44]. Tocotrienol was the foremost drug to be reported 
for its anticancer activity in the initial years of the 1990s, and was 
subsequently entrapped in niosomes by Fu et al. [45]. Applying the 
film hydration method doubled (at minimum) the cytotoxic effect of 
niosomal tocotrienol in shattering breast cancer cells with the cells’ 
drug absorption improving 2.5-fold. The antitumor activity of the 
preparation was also observed in female BALB/c nude mice carrying 
breast cancer cells [46]. Curcumin is well known to demonstrate 
many therapeutic uses, including anticancer properties [47]. A new 
niosome system comprising Span 80, Tween 80, and poloxamer 188 
was demonstrated to have excellent encapsulating efficiency 
(92.3%) with respect to curcumin. When niosomal curcumin was 
incorporated into ovarian cancer A2780 cells, it increased cytotoxic 
and apoptotic activities as compared with freely used curcumin. This 
can be attributed to the properly controlled liberation of curcumin 
from niosomes [48]. Sharma et al. [49] Fabricated niosomes using 
Tween 80 and cholesterol through a film hydration method. Two 
anticancer drugs, curcumin and doxorubicin hydrochloride, were 
entrapped within the formulated niosomes; while curcumin was 
found to be accumulated in the shell, doxorubicin hydrochloride was 
found to be accumulated in the inner aqueous core of the niosomes. 
Higher cytotoxicity toward cervical cancer cells (HeLa cells) was 
observed for the double-drug-encapsulated niosomes. Artemisinin, 
which is extracted from the Chinese herb Artemisia annua, is 
frequently used in the treatment of fevers and chills [50]. The herb 
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also has antitumor properties [51]. However, the use of artemisinin 
is limited because of its low solubility in water and oil coupled with 
poor bioavailability. Moreover, it possesses a short half-life in 
humans [52]. To enhance the effectiveness of artemisinin, Dwivedi et 
al. [53] entrapped the compound within nanovesicular niosomes. 
They demonstrated that the entrapped artemisinin showed 
cytotoxicity toward melanoma cells with little to no toxicity toward 
normal skin cells, hinting at artemisinin’s potential therapeutic use 
in melanoma treatment. Tamoxifen citrate is recognized as a 
hormone antagonist administered to breast cancer patients having 
estrogen receptor-positive tumors [54].  

However, conditions such as localization, effectiveness, providing 
sustained drug release, and reducing side effects of drugs are 
significant issues encountered in this type of cancer treatment. 
Nevertheless, Shaker et al. [55] encapsulated the drug into niosomes 
and assessed its cellular uptake in addition to its cytotoxicity and in 
vivo effectiveness. Niosomal tamoxifen demonstrated increased 
cellular uptake coupled with higher cytotoxicity against the MCF-7 
breast cancer cell line and showed increased regression in in vivo 
tumor volume. Mitoxantrone has been utilized in chemotherapy for 
various cancers such as leukemia, lymphoma, breast and prostate 
cancers, and multiple sclerosis. However, the administration of this 

drug is commonly followed by serious systemic toxicity, mainly 
cardiotoxicity. Tila et al. [56] prepared pH-sensitive, polymer-
modified, and plasma-stable niosomes to deliver this drug. The 
cytotoxicity of mitoxantrone niosomes was examined against human 
ovarian cancer (OVCAR-3), human breast cancer (MCF-7), as well as 
human umbilical vein endothelial cell lines. Mitoxantrone entrapped 
in the pH-sensitive niosomes demonstrated increased cytotoxicity 
when compared against traditional niosomes on the cancer cells, but 
showed lesser cytotoxic activity when used on the endothelial cell 
line. These results demonstrate niosomal formulations to be 
promising carriers in minimizing the side effects of mitoxantrone. 
Cisplatin, a commonly used anticancer drug, acts by starting 
apoptosis and necrosis of the cells.  

However, the use of cisplatin is accompanied by various harmful 
side effects, mainly nephrotoxicity and neurotoxicity [57]. 
Furthermore, the emergence of drug resistance toward cisplatin in 
patients is a significant issue in the cancer therapy of patients. 
Niosomal cisplatin manufactured via reverse-phase evaporation 
exhibited a 1.5-fold boost in cytotoxic activity against BT-20 breast 
cancer cells when compared against the unencapsulated drug [58]. 
Antineoplastic effects of the niosomal formulations mentioned 
above are summarized in table 1. 

 

Table 1: Antineoplastic effects exhibited by various niosomal formulations 

Drug Action shown References 
Doxorubicin Reduced proliferation of sarcoma cells  [4, 40] 
Daunorubicin Hydrochloride Shattered Dalton’s ascetic lymphoma cells [41] 
Bleomycin Collected in high levels at the tumor site [41] 
Methotrexate Improved antitumor activity against sarcoma [42] 
5-Flourouracil Improved drug penetration in skin cancer treatment [43] 
Vincristine Improved antitumor activity against sarcoma [44] 
Tocotrienol Improved cytotoxicity toward breast cancer cells [46] 
Curcumin Improved cytotoxic and apoptotic effects toward ovarian cancer cells [48] 
Curcumin and Doxorubicin Hydrochloride Improved cytotoxicity toward cervical cancer cells [49] 
Arteminisin Cytotoxicity toward melanoma cells [53] 
Tamoxifen citrate High cytotoxicity against breast cancer cell line [55] 
Mitoxantrone High cytotoxicity against human ovarian cancer and breast cancer cell lines [56] 
Cisplatin Improved cytotoxicity toward breast cancer cells [58] 

 

Ophthalmic drug delivery 

Bioadhesive-coated niosomal formulation of acetazolamide 
fabricated from Span 60, cholesterol stearylamine, or dicetyl 
phosphate shows more affinity toward decreasing the intraocular 
pressure when compared against marketed formulation 
(Dorzolamide); in contrast, the chitosan smeared niosomal 
formulation timolol maleate (0.25%) demonstrates more activity in 
decreasing the intraocular pressure than marketed formulation with 
the reduced possibility of cardiovascular side effects [59]. 

Delivery of peptide drugs 

Yoshida et al. [60] probed into the oral delivery of 9-desglycinamide, 
8-arginine vasopressin as a model drug using niosome and by 
employing an in vitro intestinal loop model and enhanced the 
stability of peptide. 

Hemoglobin carriers 

Niosomes can be employed as hemoglobin carriers. The formulated 
niosomal suspension demonstrated a visible spectrum that can be 
superimposed over free hemoglobin. Vesicles are open for oxygen to 
travel inside the molecule and the hemoglobin dissociation curve 
can be altered similar to that of non-entrapped hemoglobin [61, 62]. 

Antiviral drug delivery 

Furthermore, niosomes can deliver various antiviral drugs. 
Ruckmani and Sankar [63] prepared zidovudine encapsulated 
niosomes and assessed their entrapment efficiency and 
sustainability of drug release. The niosomes comprised Tween 80, 
Span 60, and cholesterol in various proportions. Niosomes 
comprising Tween 80 exhibited greater entrapment of zidovudine 

while the addition of dicetyl phosphate improved drug release for a 
longer duration. The drug outflow from Tween 80 containing 
formulations maintained at room temperature was substantial when 
compared to niosomes stored at 4 °C for 90 d. Regardless, a 
pharmacokinetic study conducted on rabbits also verified that 
Tween 80 formulations prepared with dicetyl phosphate can be 
removed from systemic blood circulation in less than five h [64]. 

Transdermal drug delivery 

Transdermal drug delivery is the delivery of drugs via the skin. The 
advantage of this delivery route is that transdermally administered 
drugs fail to undergo the first-pass metabolism; however, the 
penetration of drugs occurs slowly through the skin and this limitation 
can be resolved using niosome preparations. The mechanism obeyed by 
the niosomes for transdermal drug delivery is as follows. 

• Diffusion via the stratum corneum layer. 

• Water concentration in the skin is critical to this mechanism. 

• The lipophilic drugs transverse the stratum corneum through 
various mechanisms such as aggregation, fusion, and adhesion. 

• Nonionic surfactants improve the permeation thereby 
improving drug permeation via the skin [65, 66]. 

Niosomes as drug carriers 

Niosomes have also been employed as carriers for iobitridol, a 
diagnostic agent used in X-ray imaging. Topical niosomes can 
perform several duties such as solubilization of the lipid matrix and 
act as local storage to provide sustained release of dermally active 
compounds, penetration boosters, or modifiers of the rate-limiting 
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membrane barrier for the alteration of systemic drug absorption 
[67]. 

Niosomes in vaccine delivery  

A] Protein subunit vaccines 

The development of novel, safe, and efficacious vaccines, is a crucial 
aim for scientists worldwide. Subunit proteins or the deoxyribonucleic 
acid (DNA) of multiple organisms are less harmful than live organism-
based vaccines, which may be relatively less clinically efficient. 
Adjuvants are being used in vaccines to improve the immunogenicity 
of the subunit vaccines via protection (i.e., preventing the destruction 
of the antigen in vivo) and upgraded targeting of these antigens to the 
desired antigen-presenting cells [68]. Brewer and Alexander [69] 
announced the first implementation of niosome antigen distribution 
for the immunization of Balb/c mice to develop resistance toward 
bovine serum albumin (BSA). They concluded that niosomes were 
possibly superior stimulators of the Th1 lymphocyte subset when 
compared against Freund’s complete adjuvant, thus demonstrating 
very powerful stimulators of cellular immunity. Hassan et al. [70] 
announced enhanced immunogenicity with the herpes simplex virus 1 
antigen encapsulated within l-mono palmitoyl glycerol (MP)/-
CHOL/DCP niosomes in mice. In contrast, only partial protection was 
observed against homologous (type 2 herpes simplex virus HSV-2) 
infection induced in the mice by the HSV2 antigen encapsulated 
niosomes [71], demonstrating the significance of composition in 
addition to the preparation methods for niosomal adjuvant 
formulations. Yoshioka et al. [72] prepared Span/CHOL/DCP niosomes 
comprising tetanus toxoid (TT) emulsified in an external oil phase to 
prepare a vesicle-in-water-in-oil (v/w/o) formulation. Initial studies 
on the system adopting cottonseed oil as the external oil phase in vivo, 
demonstrated improved immunological activity when compared to 
free antigen or vesicles. Murdan [73] entrapped BSA or hemagglutinin 
(HA) in the v/w/o emulsion and demonstrated via immunogenicity 
studies that in addition to the water-in-oil (w/o) gel that served as a 
control, the v/w/o gel exhibited immunoadjuvant abilities that 
intensified the primary and secondary antibody titers (of total IgG, 
IgG1, IgG2a, and IgG2b) to the HA antigen. Chambers et al. [74] 
announced an exclusive subcutaneous dose of killed Mycobacterium 
Bovis BCG in Brij® 52-containing nanoniosomes (NovasomeTM), 
which shielded guinea pigs from deadly tuberculosis. Vangala et al. 
[75] amalgamated three dissimilar protein antigens entrapped within 
positively charged niosomes synthesized from MP/CHOL/α, αʹ-
trehalose 6, 6ʹ-dibehenate (TDB) or MP/CHOL/TDB/ 
dimethyldioctadecylammonium (DDA). Antigen entrapment within 
the niosomes enhanced the size of vesicles from sub microns to 
micrometers (1–2.7 µm), which can be attributed to the high 
molecular weight of antigens and their stronger hydrophobic nature 
that causes protein aggregation in the hydrophobic zones of the vesicle 
bilayers while feasibly establishing a level of vesicle fusion or 
manipulating the packing positioning of the surfactants. Their 
conclusions recommend that both DDA-and MP-based vesicular 
systems can boost the immunogenicity of the subunit vaccines, 
primarily with the subunit antigen Ag85B-ESAT-6 immunized against 
tuberculosis, wherein the requirement of a high cell-mediated Th1 
immune response is critical. Vangala et al. [76] also announced DDA 
formulations containing TDB, which demonstrated markedly 
improved hepatitis B surface antigen-specific splenocyte 
multiplication and induced cytokine synthesis in conjunction with a 
strong T-cell-based response, thus outlining formulations that can be 
useful for the supplementary assessment of their clinical value. Ferro 
and Stimson [77] adopted gonadotrophin-releasing hormone (GnRH) 
analog, GnRH-glycs, and joined two dissimilar carrier molecules and 
entrapped them within niosomes vesicular (NSV)-based formulations 
to attain immune-neutralization of GnRH in male Sprague-Dawley rats. 
They concluded that NSVs can be adopted as a safe immune adjuvant. 
Further, an altered GnRH peptide (CHWSYGLRPG-NH2) was linked to 
tetanus toxoid (TT), which was designed with unlike adjuvants such as 
C18EO2/CHOL-/DCP niosomes [78]. When used with nanoniosomes, 
the sterilization effect demonstrated in the synthesis of IgG2b 
antibodies is not as promising as that attained with sustained-release 
poly-(lactideco-glycolide)/triacetin (PLGA) formulation. An 
encouraging immunization outcome was announced by Lezama-Davila 
[79] in C57BL/10 mice immunized with L. m. mexicana leishmanolysin 

(gp63). For the formulation of non-parenteral niosomal vaccines, 
Rentel et al. synthesized sucrose ester niosomes for the entrapment of 
ovalbumin and orally administered the vesicular formulations to 
Balb/c mice. Considerable enhancement in antibody titers was 
observed after oral vaccination with reduced hydrophilic vesicular 
formulation [80]. Chattaraj and Das [81] encapsulated hemagglutinin 
antigens from three divergent influenza A strains in Span 40 or 60 
niosomes for nasal mucosal delivery. BSA-loaded niosomes fabricated 
from Span 60/Span 85/CHOL/stearylamine were smeared with an 
altered polysaccharide O-palmitoyl mannan (OPM) for making them 
selective toward Langerhans’ cells, the critical antigen-presenting cells 
existing in substantial amounts below the stratum corneum. Analyzing 
serum IgG titer and its subclasses (IgG2a/IgG1 ratio) induced a 
significantly greater serum IgG titer upon topical application of 
mannosylated niosomes as compared to topically applied alum 
adsorbed BSA (p<0.05). The mannosylated niosomes were also 
administered orally for showing oral mucosal immunization against 
TT. OPM coating was performed to shield the antigen-entrapped 
vesicles from bile salt dissolution activity and enzymatic breakdown in 
the gastrointestinal tract in addition to boosting the attraction of the 
antigens toward the antigen-presenting cells of Payer’s patches [82]. 
Furthermore, Gupta et al. reported that, after secondary immunization, 
topically administered TT co-transferosomes could induce an immune 
response (anti-TT-IgG) equal to that obtained after performing 
intramuscular alum-adsorbed TT-based immunization. The immunity 
response of Span 85/CHOL niosomes was found to be shaky than that 
of the transferases [83]. 

B] DNA vaccines  

DNA is a nucleic acid (biomolecule) that contains the genetic code 
specifying the biological development of all cellular forms of life and 
is often referred to as the molecule of heredity as it is responsible for 
the genetic propagation of all traits [84]. The fundamental principle 
of DNA vaccination is to induce immunity by transfecting host cells 
with plasmid DNA encoding the required antigen, contrary to the 
typical approach of injecting an antigen in the form of a protein or 
peptide [85]. Dengue ribonucleic aid has been discovered to possess 
more than five stereotypes [86]. DNA encapsulation in niosomes can 
be attributed to the shielding of genetic material in the biological 
environment, enhancing significant humoral as well as cell-mediated 
immune responses against the encoded antigen in immunized mice 
[87]. Perrie et al. [88] announced the encapsulation of nucleoprotein 
demonstrating the plasmid of the H3N2 influenza virus in NSVs 
followed by subcutaneous injection of the formulations that 
improved the immunization of treated mice relative to naked DNA. 
Vyas et al. prepared Span 85/CHOL niosomes containing DNA 
encoding HBsAg, which enhanced the serum anti HBsAg titer and the 
cytokine levels (IL-2 and IFN-γ) upon topical application in Balb/c 
mice, demonstrating the practical usefulness of the topical vesicular 
vaccine drug delivery system [89]. 

CONCLUSION 

BCS is the base upon which drugs are classified into respective 
classes according to their solubility in water and permeability 
through the GIT; thus, through BCS, the problems of drugs can be 
identified potentially resolved. BCS employs various methods for 
determining solubility and permeability. Various drug delivery 
systems are available for BCS class II drugs, of which niosomes are 
more economical and safer carriers than liposomes. This review 
forms an insightful reference base for the various administration 
and preparation methods together with evaluation parameters and 
applications of niosomes in various fields of medicine. 
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