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ABSTRACT 

Carbon dots (CDs) have emerged as a potential material in the multifarious fields of biomedical applications due to their numerous advantageous 
properties including tunable fluorescence, water solubility, biocompatibility, low toxicity, small size and ease of modification, inexpensive scale-up 
production, and versatile conjugation with other targeted nanoparticles. Thus, CDs became a preferable choice in various biomedical applications 
such as nanocarriers for drugs, therapeutic genes, photo sensitizers, unique electronic, fluorescent, photo luminescent, chemiluminescent, and 
electro chemiluminescent, drug/gene delivery and optoelectronics properties are what gives them potential in sensing and antibacterial molecules. 
Further, their potentials have also been verified in multifunctional diagnostic platforms, cellular and bacterial bio-imaging, development of 
nanomedicine, etc. This present review provides a concise insight into the progress and evolution in the field of carbon dots research with respect to 
synthesis methods and materials available in bio-imaging, theranostic, cancer, gene therapy, diagnostics, etc. Further, our discussion is extended to 
explore the role of CDs in nanomedicine and nano theranostic, biotherapy which is the future of biomedicine and also serves to discuss the various 
properties of carbon dots which allow chemotherapy and gene therapy to be safer and more target-specific, resulting in the reduction of side effects 
experienced by patients and also the overall increase in patient compliance and quality of life and representative studies on their activities against 
bacteria, fungi, and viruses reviewed and discussed. This study will thus help biomedical researchers in percuss the potential of CDs to overcome 
various existing technological challenges. 
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INTRODUCTION 

Carbon nanodots are nano-crystals of nano materials having zero 
dimensions are smaller than 10 nm [1]. They show various size 
reliant optical properties such as photoluminescence, 
chemiluminescence, electrochemical luminescence and 
photoinduced electron transfer [2]. Besides, the high remarkable 
aqueous dispersibility, biocompatibility, good elasticity in 
modification, high resistance to photobleaching and chemical 
inertness make it well applicable in bio-imaging, bio-sensing, 
chemical-sensing, biomedical applications [3-8]. Being a new kind of 
fluorescent nanomaterial and having excellent biocompatibility, CDs 
are widely used in the area of bio-imaging both in vitro and in vivo and 
in diagnosis purposes, eco-friendliness, conductivity, desirable optical 
properties and low toxicity, carbon dots have revolutionized the 
biomedical field, in Photothermal as well as photodynamic therapy 
and drug/gene delivery carriers [9-11]. CDs could also be applied for 
the determination of cellular levels of biomolecules and ions (bio-
sensor), such as Cu2+, Hg2+, NO3−, C6H12O6, H2O2

In 2004, during electrophoretic purification of single-walled carbon 
nanotubes fluorescent carbon nanoparticles were accidentally 
discovered by Xu et al. Fluorescent-based quantum dots are of two 
types namely graphene quantum dots and carbon quantum dot. 
They make up a new class of semiconductor nano-crystals with a 
size range between 2 and 10 nm called quantum dots, and have 
received extensive attention due to their great potential like intrinsic 
photoluminescence [21]. Currently, these types of carbon dots 
emerged as efficient, superior and universal fluorophores, based on 

their characteristics, CDs have been combined with semiconductor 
nanoparticles such as Ag

, etc. CDs could also act 
as a promising photocatalyst after co-doping with heteroatoms, such 
as nitrogen, phosphorus, sulphur, and certain metal ions, such as Cu, 
Zn, Ti, etc. Incorporation of these elements improves the electron-
donation and acceptance ability of the CDs and promotes redox 
reaction on the surface of CDs [12-18]. These properties of CDs are 
being employed for wastewater treatment and hydrogen generation 
[19, 20]. CDs are as well appropriate for surface passivation and 
chemical modification with several polymeric, inorganic, organic, or 
biological materials. The physical and fluorescence characteristics are 
improved by surface passivation. 

3PO4, TiO2, and Fe2O3 

CDs are with their effective light-harvesting over a very broad spectral 
range from UV to near-IR, the photoexcited CDs are capable of 
producing reactive oxygen species, which are known to kill/inhibit 
microorganisms. According to existing research results, the major 
processes responsible for the antimicrobial effects of CDs are likely 
associated with the generation of reactive oxygen species. The 
mechanism of action includes the adhesion of CDs to the bacterial 
surface, the photoinduced production of reactive oxygen species, the 
disruption and penetration of the bacterial cell wall/membrane, the 
induction of oxidative stress with damages to DNA and RNA, leading to 
the inhibitions of gene expressions, and the induction of oxidative 
damages to proteins and other intracellular biomolecules. Under 
visible/natural light illumination, CDs in contact with the bacteria cell 
can efficiently generate ROS by activating the oxygen in air or water, 
leading to the production of hydroxyl free radicals and singlet oxygen 

to improve their 
photocatalytic property [22]. These polymeric dots are cross-linked 
or aggregated polymer, prepared from linear monomer or polymers 
this type of dots is an aggregation of carbon core and connected 
polymer chains [23]. The three main executive parameters-the 
quantum confinement effects, the surface state, and the molecule 
state-are very important in the design of fluorescent CDs. CDs can be 
designed to have various functional groups including hydroxyl, 
carboxyl, carbonyl, ether, and epoxy in addition to their easy 
functionalization with amine, phosphorous, sulphur, and boron-
containing heteroatoms containing functional groups with the 
different organic, polymeric, and biological materials during the 
preparation process. Various chemical precursors have been 
identified as the source of CDs, such as citric acid, glycerol, l-ascorbic 
acid, glucose, citric acid-urea and thiourea. To convert these 
precursors into fluorescent CDs various synthetic processes are 
used, such as ultrasonication, simple heating, arc discharge, 
solvothermal, hydrothermal, chemical oxidation, and laser ablation 
[24-40]. Plentiful efforts have been made to expand the usability of 
CDs to fulfil the growing demand for high-performance techniques, 
such as bio-imaging, drug-gene delivery, chemical sensing, as well as 
photocatalysis and kills microorganisms. 
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), which can destroy some of the critical biomolecules in cell and 
lead to cell death [41]. However, it is also important to monitor the 
dimensions of CDs during its synthesis to attain uniform properties for 
a particular application. A large number of reports entrenched the 
methods of purifying the as-prepared CDs via post-treatment, for 
example, centrifugation, filtration, gel-electrophoresis and column 
chromatography. Besides, monitoring the dimensions of CDs during its 
formation is also preferred [44]. In this current review article, we have 
elucidated the novel progress of small molecule-derived CDs in the 
field of biomedical as well as chemical applications to date and their 
future perspective. 

 

Fig. 1: Schematic illustration of the topic of this review, showing 
the recent trends in applications of CDs in biomedicine, including 

bioimaging, biosensing, and cancer therapy, [Reprinted with 
permission from  20, 53, 54, 74, 82 and 143

 

. Copyright 2017 
American Chemical Society, Copyright 2012 and 2018 John Wiley 

and Sons, Copyright 2012 and 2017 royal society of chemistry 
Copyright 2016 Springer] 

Methods of synthesis of CDs 

CDs can be synthesized mainly via two routes: (i) top-down 
approach and (ii) bottom-up approach. In top-down techniques, the 
substances mainly consisting of carbon atoms such as graphite, 
oxidized graphite, carbon soot, activated carbon, carbon nanotubes, 
etc. are subjected to relatively vigorous heating conditions, such as 
electrochemical exfoliation, oxidative acid treatment, laser ablation, 
and arc discharge, to exfoliate the bulk carbon materials into 
quantum dots of sizes below 10 nm. In recent years, large-scale 
synthesis of high-quality CDs with controlled size distribution was 
achieved via an electrochemical approach using ultrapure water as a 
solvent, and thus electrochemical synthesis is the method of the 
choice for synthesizing the homogeneous morphological CDs. The 
homogeneousness in morphology is usually achieved by varying the 
applied potential at the electrode. Top-down approach refers to 
breaking down larger carbon structures via chemical oxidation, 
discharge, electrochemical oxidation, and ultrasonic methods. 
However, drawbacks of this approach include the requirement of 
expensive materials, harsh reaction conditions, and long reaction 
time. On the other hand, the bottom-up approach refers to the 
conversion of smaller carbon structures into CDs of the desired size. 
This bottom-up approach is consisting of hydrothermal treatment, 
ultrasonic treatment, thermal decomposition, pyrolysis, 
carbonization, microwave synthesis and solvothermal method to 
synthesize CDs. The syntheses of CDs through “top-down” 
approaches usually require a separate step for surface 
functionalization/passivation, but in the case of “bottom-up” 
approaches, no separate step is necessary, and the surface 
passivation can be accomplished in a one-pot synthesis. In “bottom-
up” approaches, small organic precursors can be polymerized and 

carbonized into CDs by means of hydrothermal/solvothermal 
synthesis, pyrolysis, microwave-assisted polymerization, and 
carbonization. Here this review discussed on both the top-down and 
bottom-up approach for the synthesis of CDs obtained from small 
organic molecules and with special significance on various 
applications and bacterial detection, the antibacterial effect of CDs. 
Tables 1,2,3, and 4 summarized the different synthetic methods for 
CDs preparation from different molecules and fig. 2 shows different 
synthetic methods for the preparation of CDs 

Top-down approach 

In the “top-down” methodology, CDs are synthesized by 
electrochemical oxidation, laser ablation and arc discharge method. 

Electrochemical method 

Electrochemical/chemical oxidation is the top-down synthetic route 
for the synthesis of CDs, because of several remarkable advantages, 
such as high yield, high purity, low cost, and easy control over size. 
However, tedious purification process of synthesized particles can 
be considered as a main disadvantage of this method. The 
electrochemical method is one of the most prominent methods used 
to synthesize ultrapure CDs from larger molecular matter like 
carbon nanotube, graphene, graphite, and carbon fiber by an 
electrolytic process where larger organic molecules are used as an 
electrode in the presence of proper electrolytes. Zhou et al. first 
reported synthesis of CDs from multiwalled carbon nanotubes in the 
presence of tetrabutylammonium perchlorate as electrolyte [42]. 
Zheng et al. synthesized water-soluble pure CDs by an 
electrochemical method using graphite as electrode in the presence 
of phosphate buffer at neutral pH. The as-prepared CDs were 
successfully applied as potential biosensor [43]. Li et al. prepared 
crystalline CDs by an electrochemical method from graphite. The as-
prepared CDs exhibited size-dependent upconversion 
photoluminescence (PL) properties and are used in photocatalysis 
[44]. Later, Ray et al. used carbon soots as the carbon source for the 
synthesis of CDs, and this approach can be used for the mg scale 
synthesis of CDs [45]. Recently, CD with polyaniline hybrid was 
synthesized by an electrochemical technique with high QY and purity. 
The as-synthesized CD-polyaniline composite reported to exhibit high 
capacitance and used in energy-related devices. Electrochemical 
soaking is a powerful method to prepare CDs using various bulk 
carbon materials as precursors [46-50]. In another investigation, 
Nakamura et al. reported the fabrication of nanocrystalline CDs based 
on an electrochemical synthesis method [31]. They applied 1-propanol 
as carbon source and similar to previous works, they used two Pt 
electrodes along with an Ag/AgCl electrode as a reference. The 
reaction was performed in a basic medium by adding of KOH to 
solution. A constant potential of 6.5 V (100 mA) was applied to the 
working electrode. The obtained CDs were collected after 4.5 h and 7.5 
h. According to their report, both CDs produced after 4.5 and 8.5 h 
showed a similar pattern of spherical geometry with an average 
diameter of 3 and 4 nm, respectively [51]. Furthermore, it was 
revealed that the CD properties significantly depended on the 
electrolysis time spent in the process.  

Chemical ablation 

Strong oxidizing acids carbonize small organic molecules to 
carbonaceous materials, which can be further cut into small sheets by 
controlled oxidation. This method may suffer from harsh conditions 
and drastic processes. Peng and Travas-Sejdic reported a facile 
aqueous solution-based procedure to produce luminescent CDs using 
carbohydrates as precursor materials [52]. First, they produced 
carbonaceous materials via dehydrating carbohydrates using 
concentrated sulphuric acid. Then, the obtained carbonaceous 
materials were treated with nitric acid and cleaved into tiny CDs. 
Finally, as the passivation step, a number of amino-terminated surface 
passivation reagents including ethylenediamine, oleylamine, bis (3-
aminopropyl) terminated poly (ethylene glycol) (PEG1500N) and 
4,7,10-trioxa-1,13-tridecanediamine (TTDDA) were investigated. 
Compared to all passivized CDs, TTDDA passivized CDs showed the 
highest QY when excited at 360 nm. Surface passivation was the 
critical step for the photoluminescence of these CDs. It was also found 
that prolonged nitric acid treatment resulted in a blue-shift in the 
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maximum emission wavelength, possibly because of a decrement in 
the particle size. Nontoxic nature and multicolour emission capabilities 
of these CDs make them good candidates in biomedical research. 

Laser ablation 

The laser ablation method uses a high-energy laser pulse to irradiate 
the surface of the target to a thermodynamic state in which high 
temperature and high pressure are generated, rapidly heats up and 
evaporates into a plasma state, and then the vapor crystallizes to 
form a nanoparticle. Laser ablation is an effective method to prepare 
CDs with narrow size distribution, good water solubility, and 
fluorescence characteristics. However, its complicated operation and 
high cost limit its application. In laser ablation route, complex 
organic macromolecules are exposed under laser radiation operated 
in pulsed mode and nanosized carbon particles are detached from 
the larger molecular structures. The laser ablation technique can 
involve three steps: (1) the carbon materials absorb the high energy by 
the laser pulse; (2) electrons are stripped from the atoms through 
photoelectric and thermionic emission; and (3) a high electric field 
produces a strong repulsive force between positive ions and solid 
material, breaking down CDs [53]. Synthesis of CDs by a laser ablation 
technique was first reported by Sun et al. in 2006 from graphite 
powder [54]. They synthesized CDs upon laser excitation from a Nd: 
YAG (1064 nm, 10 Hz) source in an atmosphere of argon at 900 °C and 
75 kPa. Thongpool et al. synthesized CDs from bulk graphite in the 
presence of ethanol using a Nd: YAG laser of wavelength 1064 nm. The 
synthesized CDs showed a broad absorption spectrum peaked at 325 
nm [55]. Presently, photoluminescent CDs of ~3 nm size have been 
synthesized by a laser irradiation technique from carbon glassy 
particles in the presence of polyethylene glycol 200. CDs so prepared 
are applied in bioimaging for cancer epithelial human cells [56]. 
Recently, Li and colleagues prepared CDs by laser ablation of a carbon 
target in a water vapour company with a carrier gas (argon) at 75 kPa 
and 900 °C. CDs with bright luminescence emission were obtained 
after refluxing in HNO3 for up to 12 h and passivation of the surface by 
organic polymers such as PEG1500N or poly propionyl ethyleneimine-
co-ethyleneimine (PPEI-EI) [57]. 

Ultrasonic treatment 

Ultrasonic treatment is also a very convenient method as the large 
carbon materials can be broken down by the action of very high 
energy of ultrasonic sound wave. Wang et al. synthesized N-doped 
CDs from ascorbic acid and ammonia via ultrasonic treatment [58, 
59]. Dang et al. fabricated CDs using oligomer-polyamide resin as the 
carbon source by ultrasonic treatment. The as-prepared CDs were 
well dispersed, had low crystallinity, and functional groups at the 
surface. Lu et al. reported the use of an ultrasonic-assisted, liquid-
phase exfoliation technique to prepare graphene carbon dots. 
Briefly, graphite can be well dispersed in organic solvent and the 
graphite layers cleave apart and are exfoliated by the surface energy 
for van der Waals forces of graphite layers under the ultrasonication 
process. This study supported that sonication can enhance the 
exfoliation effects and dispersion in the organic solvent [60, 61]. 

Arc discharge method 

CDs by an arc discharge method had been an accidental event. This 
method was first reported by Xu et al. during the synthesis of single-
walled carbon nanotubes SWCNTs [62]. Electrical discharge across 
two graphite electrodes results in the formation of small carbon 
fragment or CDs. Bottini et al. reported CDs derived from pristine 
and single-walled carbon nanotube by means of an arc discharge 
method with bright PL in the violet-blue and blue-green region, 
respectively [63]. Recently, Boron-and nitrogen-doped CDs were 
synthesized by the arc discharge method from graphite. They used 
B2H6 for doping boron and NH3

Acid oxidizing exfoliation method 

 for nitrogen [64]. 

In acid oxidizing exfoliation methods, strong acids such as HNO3, 
H2SO4, and even KMnO4 have been widely used to exfoliate CDs by 
the oxidation of carbon materials [65]. Hu et al. reported the 
oxidizing of coal with H2O2

 

 to prepare CDs to escape the side effects 
of the strong acids; damage the original structure of graphitic 
precursors as costly purification and extreme preparation 
conditions with toxic chemicals. 

 

Fig. 2: Representation of the possible synthesis methods to prepare carbon dots, [Reproduced with permission from [52]. Copyright Royal 
Society of chemistry, 2017] 

 

Bottom-up approach 

In the bottom-up approach, CDs as bulk carbon materials are formed 
as the precursors change to particle forms via chemical and physical 
techniques, including hydrothermal, solvothermal, microwave-
assisted, and thermal pyrolysis. Presently, there has been much 
interest in the development of bottom-up approaches for the 
preparation of CDs due to the precise control of precursor 
molecules, ease of techniques, low cost, and practicality and 
convenience of the procedure with generally nontoxic precursors. 
The features of bottom-up methods for the preparation of CDs are 
summarized in tables. 

Hydrothermal synthesis/Solvothermal treatment 

Hydrothermal synthesis method is being used by most of 
researchers as a cheap, eco-friendly, easy to handle and low-cost 
route to synthesize CDs from saccharides, amines, organic acids and 

their derivatives and from diverse carbon-based precursors. In this 
methodology, a solution of organic precursors is sealed in a 
hydrothermal synthetic reactor where the reaction occurs at high 
temperature and pressure. In a typical procedure, the precursor’s 
usually small organic molecules are dissolved in a suitable solvent 
and heated to high temperatures (100−200 °C) in the absence of air 
in a Teflon-lined autoclave. The small organic moieties join together 
to form carbogenic cores and then grow into CDs ranging from 2 to 
10 nm in size. Zhang et al. first reported a one-pot hydrothermal 
method to make CD from ascorbic acid in the presence of ethanol as 
solvent. QY and average particle sizes of their synthesized CDs were 
6.79% and ~2 nm, respectively [67]. Pang et al. reported the 
synthesis of carbon doped nitrogen and sulphur in CDs (NS-CDs) 
derived from methionine by a hydrothermal method. Zhu et al. 
reported that the highest quantum as high as about 80% of CDs that 
is almost equal to fluorescent dyes. They used citric acid and 
ethylenediamine as carbon and nitrogen sources to be utilized in 
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ionization to the condensation, polymerization, and carbonization 
steps by hydrothermal treatment at 150–300 °C for 5h to prepare 
polymer-like and carbonaceous CDs. Even the utilization of amino 
acids such as serine and cystine is reported in the preparation of CDs 
[68]. 

Solvothermal carbonization followed by organic solvent extraction is 
a common technique to synthesize CDs. Ideally, carbon-yielding 
compounds were heated in a high boiling point organic solvents, this 
is then followed by extraction and concentration procedure. Bhunia 
et al. fabricated two types of CDs, hydrophilic and hydrophobic with 
a diameters less than 10 nm from carbohydrates carbonization [69]. 
The hydrophobic CD was produced by mixing different amounts of 
carbohydrate with octadecylamine and octadecene before heating to 
70–300 °C for 10–30 min. The hydrophilic ones can be produced by 
heating an aqueous solution of carbohydrate within wide range of 
pH [70]. The hydrophilic CDs with red and yellow emissions can also 
be fabricated by mixing an aqueous solution of carbohydrate with 
concentrated phosphoric acid, then heating at 80–90 °C for 60 min. 
Problems arising from CDs synthesis include;  

(i) Carbonaceous aggregation during carbonization, which can be 
bypassed using electrochemical synthesis, solution chemist-try, or 
confined pyrolysis methods.  

(ii) Uniformity and size control, which is crucial for uniform 
characteristics and mechanistic study, can be optimized through post-
treatment, such as centrifugation, gel electrophoresis, and dialysis.  

(iii) Surface characteristics that are crucial for solubility and selected 
applications, can be tuned during synthesis or posttreatment. 

Pyrolysis method 

Pyrolysis is a simplistic method to synthesize CDs from organic 
compounds by simple chemical reactions carried out at very high 
temperatures in the presence of strong acid or alkali. Pyrolysis is an 
irreversible thermal decomposition reaction in which 
decomposition of organic materials take place in an inert 

atmosphere. It involves physical as well as chemical changes in 
organic materials resulting in solid residue containing carbon. 
Generally, pyrolysis takes place at very high temperatures and under 
controlled pressure. Bourlinos et al. synthesized Gd (III)-doped CDs 
having diameter ~ 3.2 nm with dual fluorescence via pyrolysis 
method. They prepared a mixture of tris(hydroxymethyl) 
aminomethane (Tris base), gadopentetic acid, and betaine 
hydrochloride to fabricate Gd (III)-CDs followed by the pyrolysis at 
250 °C temperature [71]. Martindale et al. synthesized CDs of 
average diameter ~6 nm by pyrolysis of citric acid at 180 °C for 
generation of hydrogen fuel-utilizing solar energy [72]. Guo et al. 
synthesized stable CDs from hair (keratin) by a one-step pyrolysis 
method at 200 °C for 24 h of reaction time. They successfully 
recovered CDs and used their CDs in the detection of Hg2+with 
higher sensitivity and selectivity [73]. Recently, Rong et al. 
synthesized highly photoluminescent nitrogen-doped CDs (N-CDs) 
derived from guanidinium chloride and citric acid by a pyrolysis 
method and fluorescence quenching observed in the presence of 
Fe3+

 

. N-CDs obtained by their synthesis were profoundly used in 
metal ion detections and in bioimaging [74]. Zhu et al. reported a 
facile microwave pyrolysis approach to synthesize CDs by combining 
poly (ethylene glycol) (PEG200) and a saccharide (glucose, fructose, 
etc.) in water to form a transparent solution, followed by heating in a 
microwave oven. The obtained CDs exhibited excitation-dependent 
photoluminescence properties. This is a simple, fast and 
environment-friendly preparation method for CDs rich in oxygen-
containing groups [75], which would become the coordination sites of 
metal ions for the design of carbon-based electrocatalysts. It is of great 
importance to control the size during the preparation of discrete CDs 
with tunable and uniform sizes can be prepared via canned pyrolysis 
of an organic precursor in nanoreactors (fig. 3). Three steps were used 
as follows: (i) absorbing the organic precursor into porous 
nanoreactors via capillary force, (ii) pyrolysis of the organic precursor 
coned in the nanoreactors into carbonaceous matter, (iii) release of the 
as-synthesized CDs by removing the nanoreactors. The size and size 
distribution of the CDs produced from this method are dictated by the 
texture parameters of the nanoreactors. 

 

Fig. 3: Schematic illustration of the preparation of CDs via confined pyrolysis of an organic precursor in nanoreactors. [Adapted with 
permission.62 copyright 2012, Royal society of chemistry] 

 

Carbonization synthesis 

Carbonization of the precursor molecules is one of the best, 
inexpensive, simple, and ultrafast one-step methods to fabricate CDs. 
Carbonization is a chemical process in which solid residues with 
higher content of carbon are formed from organic materials by 
prolonged pyrolysis in an inert atmosphere. Wei et al. synthesized N-
doped CDs using this ultrafast carbonization method within two min 
from glucose as a carbon source, and ethylenediamine as the 
nitrogen source [76, 77]. The observed size of the CDs was in the 
range of 1 to 7 nm with 49% of QY. 

Microwave irradiation method 

Microwave-assisted synthesis is a fast, low-cost, scalable and non-
toxic, energy-efficient method to synthesize CDs via the irradiation 
of electromagnetic radiations having a wavelength ranging from 1 
mm to 1 m through the reaction mixture containing the precursor 
molecules. In this methodology, carbonization of the small organic 
molecule occurs by microwave heating within a very short period of 
time [78, 79]. Zhu et al. synthesized fluorescent CDs having size ~ 
3.7 nm using microwave irradiation for the first time [80]. They 
heated the aqueous solution of saccharides and polyethylene glycol 
in a domestic microwave oven (500 W) for nearly 3 min. Kiran et al. 
used citric acid as a carbon source and 3-aminophenyl boronic 
acidas the passivation agent to fabricate CDs. They heated the 

aqueous solution of citric acid, and 3-aminophenyl boronic acid in a 
microwave oven (1200 W) for 4 min and the average diameter of the 
obtained CDs was ranging from 2 to 5 nm [81]. Recently Cao et al. 
synthesized CDs from the aqueous solution of glucose and arginine 
using microwave-assisted pyrolysis in a microwave oven (700 W) for 
near about 10 min. The average diameter of the as-obtained CDs was 
between 1 and 7 nm [82]. Using sucrose as the carbon source and 
diethylene glycol as the reaction media, green luminescent CDs were 
obtained within one minute under microwave irradiation. These DEG-
stabilized CDs could be well-dispersed in water with a transparent 
appearance. With an increase in the excitation wavelength, the 
intensity of the PL first increased to a maximum (360 nm) excitation) 
and then decreased. However, no perceptible shift of the PL peak over 
an excitation range from 320 to 380 nm could be observed. Moreover, 
these DEG-CDs could be efficiently ingested by C6 glioma cells and 
exhibited low cytotoxicity, suggesting their potential in bioimaging. Liu 
et al. promoted microwave-mediated pyrolysis of citric acid with 
various amine molecules to synthesize highly luminescent CDs. Several 
other researchers have also reported the microwave-assisted 
synthesis of CDs. 

Thermal decomposition 

This method offers various advantages, such as easy to operate, less 
time consuming, low cost, and large-scale production. In thermal 
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decomposition, a substance or compound decomposes chemically by 
the action of heat. Thermal decomposition reactions are generally 
endothermic. This type of decomposition reactions are either 
irreversible (decomposition of starch, proteins) or reversible 
(decomposition of ammonium chloride, limestone) [83]. Wang et al. 
synthesized CDs by this method from citric acid. They heated citric 
acid on a hot plate at 200 °C for 30 min; neutralized with sodium 
hydroxide solution, and finally dialyzed for purification. The size of 

CDs was observed within the range from 0.7 to 1 nm [84]. These CDs 
showed both excitation-dependent as well as independent 
photoluminescent properties, and different QY depending on 
different synthesis conditions. Wan et al. used the thermal 
decomposition of 1-butyl 3-methyl imidazolium bromide and l-
cysteine for the synthesis of CDs at 240 °C [85]. Some other 
researchers also reported the synthesis of CDs from small organic 
molecules via this method. 

 

Table 1: Synthesis of CDs from small organic molecule via top-down approach 

S. 
No. 

Source Method of preparation Doping (d)/surface 
passivating (p) agents 

Color Size (nm) Ref. 

1. Carbon soot Chemical oxidation - Green 2-5 [123] 
2. Oligomer polyamide resin Ultrasonic treatment Silane Coupling agent (p) Bright white 2-4 [126] 
3. Graphite powder Laser ablation - Red, black, and blue 1.5, 1.6 and 1.8 [128] 
4. Carbohydrates Chemical oxidation (TTDDA) 4,7,10-trioxa-

1,13-tridecanediamine (P) 
Red, blue, green, 
and yellow 

5 [130] 

5. Carbon nanotube Electrochemical synthesis - Blue 2.8±0.5 [132] 
6. Tolune Laser ablation - Red, black and 

blue 
2-3.9, 3-10.0,10-
17.2 and 13-20.5 

[125] 

7. Graphite electrode Electrochemical synthesis - Bright yellow 4±0.2 [131] 
8. Sodium citrate and urea Electrochemical synthesis - Blue 1.0-3.5 [127] 
9. Low molecular-weight 

alcohols 
Electrochemical synthesis - Red and Blue 2.1, 2.9,3.5 and 

4.3 
[129] 

10. Ascorbic acid and 
ammonia 

Ultrasonic treatment Silane Coupling agent (p) Bright blue 2-4 [124] 

 

Table 2: Synthesis of CDs from small organic molecule via hydrothermal treatment 

S. 
No. 

Source Method of preparation  Doping (d) surface 
passivating (p) agent 

Color Size 
(nm) 

Ref. 

1.  Dopamine Hydrothermal Treatment - Blue, yellow, 
green 

3.8 [133] 

2. Streptomycin Hydrothermal Treatment - Violet 2.97 [138] 
3. Sodium citrate Hydrothermal Treatment - Blue 1.59 [141] 
4. Glucosamine HCL Hydrothermal Treatment Glucosamine HCL (d) Green 15-70 [146] 
5. Glucose, monopotassium phosphate  Hydrothermal Treatment - Violet 1.83-3.83 [146] 
6. Citric acid and ethylene diamine Hydrothermal Treatment - Blue 2-6 [135] 
7. Histidine, NAOH Hydrothermal Treatment - Blue 3-5 [151] 
8. bPEL, ammonium persulfate Hydrothermal Treatment bPEL Blue 3-4 [144] 
9. Ammoinum citrate, ethylenediamine Hydrothermal Treatment N (d) Blue 4.8 [153] 
10. Citric acid Hydrothermal Treatment Isoleucine (d) Violet 6-15 [152] 
11. L-Serine, L-Cystine Hydrothermal Treatment N,S (d) Orange 2.6 [148] 
12. Ammonium citrate Hydrothermal Treatment Ethylene diamine (d) Indigo 4.8 [142] 
13. 1-Octadecane 1-hexadecylamine Hydrothermal Treatment Dihydrolipoic acid (P) Yellow 6-8 [136] 
14. Citric acid, ethanediamine Hydrothermal Treatment - Violet <5 [137] 
15. Citric acid, GSH Hydrothermal Treatment - Blue 2.5-3 [140] 
16. Citric acid, NAOH Hydrothermal Treatment - Green  11.3 [147] 
17. Folic acid, Phosphoric acid Hydrothermal Treatment Folic acid, Phosphoric acid (d) Indigo 13.2±1.6 [140] 
18. Citric acid, NH3. H2 Hydrothermal Treatment 0 N (d) Blue 2 [145] 
19. Glucose Hydrothermal Treatment - Blue 1.65 [149] 
20. Sodium nitrate, histidine Hydrothermal Treatment - Indigo 1.5 [143] 
21. L-Phenylalaninol Hydrothermal Treatment - Violet 2.8 [139] 
22. APTS (3-Aminopropyl) 

(Triethoxysilane), Glycerol 
Hydrothermal Treatment - Violet  9±0.5 [150] 

 

Applications of CDs 

Gene and biomedicine/drug delivery 

CDs have been micro-sized, they are readily available for cell uptake 
and more biocompatible to reduce cytotoxic effects, thus, they are 
likely to be safe, potent, and good delivery vectors and nanostructured 
materials in conjugate with the drug(s) can improve the drug delivery 
systems with respect to the drugs absorption, distribution and 
elimination. Currently, CDs have received increasing attention for drug 
delivery due to their superior properties such as fluorescence 
emission, and resultant cell membrane permeability, low toxicity, 
chemical inertness, water-solubility, easy synthesis, potential 
functionalization, and drug loading. Several researchers have applied 
CDs in drug delivery systems. For example, Wang et al. synthesized 
doxorubicin (DOX)-loaded CDs, which showed potential for 
application in both cell imaging and cancer therapy [86]. Initially, they 

prepared hollow CDs from bovine serum albumin by solvothermal 
reaction (6.8 nm in diameter, pore size of 2 nm and QY=7.5%) and 
then the produced particles were loaded with DOX. The sonicated 
solution of BSA (10 mg), ultrapure water (5 ml) and ethanol (10 ml) 
was heated at 180 °C for 12 h and then cooled to room temperature. 
Hollow CDs were centrifuged (10,000 rpm) and then added to DOX 
(0.1 mg ml-1) and stirred for a couple of hours for loading of DOX into 
Hollow CDs. Fluorescence images of A549 cells confirmed that hollow 
CDs could be internalized by A549 cells and were mainly localized in 
the cytoplasm but could not enter the nucleus. Cell viability and 
cellular uptake results suggest that the Hollow CDs show low toxicity 
and act as a potential platform in drug delivery field. pH-triggered drug 
release, rapid cellular uptake, excitation-dependent and excellent 
biocompatibility were reported as the prominent advantages of 
designed HCDs-based drug delivery system [87]. Thakur et al. 
reported designing of antibiotic-conjugated CDs via a microwave-
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assisted method using gum arabic as the precursor, which used a 
theranostic agent for controlled drug release, bioimaging and 
enhanced antimicrobial activity. In this work, CDs served as a carrier 
for ciprofloxacin hydrochloride, a broad-spectrum antibiotic, which 
was attached to the surface of synthesized CDs. The Cipro carbon dots 
showed good biocompatibility on Vero cells as compared to free 
ciprofloxacin (1.2 mmol) and ciprofloxacin release from CDs depended 

extremely on physiological conditions. These CDs exhibited improved 
antimicrobial effect against both gram-negative (E. coli) and gram-
positive (S. aureus) microorganisms and also showed bright green 
fluorescent when live imaging was applied to view yeast cells under 
the fluorescent microscope and also give an effective new nanocarrier 
for controlled drug release with a high antimicrobial activity under 
physiological conditions [88]. 

 

Table 3: Synthesis of CDs from small organic molecules via decomposition, carbonization, pyrolysis, solvothermal, and Ultrasonic treatment 

S. 
No. 

Source Method of preparation Doping (d) surface 
passivating (p) agent 

Color Size 
(nm) 

Ref. 

1.  CCl4, NANH Solvothermal treatment 2 N (d) Blue, Cyan, Kelly, 
and yellow 

3.3 [154] 

2. Hydroquinone Solvothermal method BBR3 Blue  (d) 16 [144] 
3.  Sicl4 Solvothermal method , Hydroquinone Si (d) Blue 7±2 [125] 
4. Glucose, HCl/NaOH Ultrasonic treatment - Blue <5 [160] 
5. Active carbon, H2O Ultrasonic treatment 2 - Blue, green, 

yellow, red 
5-10 [157] 

6.  Glucose Carbonization Ethylene diamine (d), 
phosphoric acid (p) 

Green 1-7 [162] 

7. Citric acid Carbonization - Blue 4.8-9 [164] 
8. 6-O-(O-O-dilauroyl-tartaryl)-D-glucose Carbonization Green  Green 2.4±0.5 [147] 
9. Tris base, betaine Hcl Pyrolysis Gadopetetic acid (d) Purple, Green 3.2 [161] 
10. GDs Pyrolysis L-glutamic acid Blue, green and 

red 
4.66-1.24 [165] 

11. D-Glucose Pyrolysis L-Aspartic acid (d) Yellow 2.28±0.42 [159] 
12. Sodium alginate Pyrolysis - Blue <10 [144] 
13. Citric acid  Pyrolysis Diethylenetriamine (p) Indigo 5-8 [155] 
14. Citric acid, N-(β-Aminoethyl)-γ-

aminopropyl methyl dimethoxy silane 
Thermal decomposition AEAPMS (p) Blue 0.9 [124] 

15. Citric acid  Thermal decomposition DETA (p) Blue 3-5.5 [138] 
16. Citric acid Thermal decomposition Ruthenium (III) Blue 6.8±2.3 [156] 
17. Citric acid Thermal decomposition - Blue 0.7-1.0 [163] 
18. Citric acid  Thermal treatment Dicyanamide (d) Green 8-16 [158] 
19. L-Cystein Thermal Decomposition 1-butyl 3-methyl 

imidazolium bromide 
Blue, yellow, red, 
green 

1.0-3.5 [150] 

 

Table 4: Synthesis of CDs from small organic molecule via microwave treatment 

S. No. Source Method of 
preparation 

Doping (d) surface 
passivating (p) agent 

Color Size 
(nm) 

Refs. 
No. 

1. Glycerol Microwave synthesis PEI (d, p) Blue 9±1.1 [155] 
2. Citric acid Urea Microwave-assisted 

synthesis 
- Green 2-6 [166] 

3. Arginine and glucose Microwave synthesis - Blue 1-7 [169] 
4. Triammonium Citrate Microwave synthesis - Indigo 6.6 [171] 
5. Citric acid Microwave synthesis Tryptophan (d) Indigo 2.6 [167] 
6. Glycerol Microwave synthesis TTDA (p) Blue, turquoise, green, 

jacinth, and red  
5 [134] 

7. Saccharides and polyethylene glycol Microwave synthesis - Blue 3.7 [164] 
8. Carbohydrates and inorganic salts Microwave synthesis - Blue, green, yellow 2.1 [152] 
9.  Citric acid Microwave synthesis RNase A (d) Blue 25-45 [168] 
10. Citric acid Microwave synthesis Boric acid (d) Indigo 2-6 [170] 
11. Citric acid Microwae synthesis 3-Aminophenyl 

boronic acid (d) 
Indigo 2-5 [164] 

 

Cationic CDs have shown great potential as gene carriers and 
delivery applications because of their ability of electrostatic 
interaction with positively charged functionalized CDs and 
negatively charged nucleic acids. Cao et al. prepared positively 
charged CDs from porphyra polysaccharide and ethylenediamine 
precursors with a high QY of 57.3% to induce the neuronal 
differentiation of adult stem cells through nonviral gene deliver [89]. 
Gene transfection is faster and more efficient in neuronal induction 
from the adult stem cells by using these plasmid DNA-loaded CDs 
that can be used in bioimaging, gene delivery, and tissue 
engineering. Yang et al. reported turn on-off theranostic fluorescent 
CDs against hyaluronidase (HAase) in cancer cells for self-targeted 
imaging and drug delivery. Negatively charged CDs were modified 
with cationic polyethyleneimine (PEI) through electrostatic 

interaction to prepare P-CDs and functionalized with hyaluronic 
acid-Doxorubicin conjugate (P-CDs/HA-Dox) and these nanoprobe 
can pass into the cells readily with targeting specify to the CD44 
receptor on the cancer cell. HA can be degraded to tetra saccharide 
units in the presence of the HAase enzyme [90]. Therefore, Dox can 
be released from a P-CDs/HA-Dox nanoprobe into cancer cells 
because of the enzyme-triggered drug delivery and induce apoptosis 
in Hela cancer cells. Therefore, this study clearly showed that CDs 
can be successfully used in the targeted bioimaging and delivery 
vehicles for image-guided chemotherapy. Tables 5 and 6 
summarized some of the methods for the delivery of QDs. 

CDs is a carbon material attracting tremendous interest in distinct 
fields of biomedicine. A facile and green synthesis of DNA-CDs using 
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genomic DNA isolated from Escherichia coli has been reported. The 
DNA-CDs were purified by column centrifugation-based technique. 
During the course of the formation of DNA-CDs, it was assumed that 
nitrogen is released by the thermal degradation of ribose which 
resulted in the formation of several new bonds (C−OH, N−O, and N−P) 
where many covalent bonds of the DNA were retained. The presence 
of ample amino and hydroxyl groups enables further functionalization. 

The remarkable biocompatibility warranted the DNA-CDs to be used 
in the design of novel type of fluorescent probes for bioimaging and 
drug delivery and CDs synthesized from carbon nano powder have 
high binding affinity to calcified bones in vivo with specificity [91, 92], 
and the bone-binding ability of the CDs was not significantly altered by 
surface passivation, which demonstrated the promising applications of 
CDs as highly bone-specific bioimaging agents and drug carriers. 

 

Table 5: Methods used for the delivery of carbon dots 

S. No.  Strategy Mode of action  Examples Targeted cells Refs 
1. Facilitated 

delivery 
Peptide-mediated Histidine-Arginine-rich peptide gH625 

(Herps simplex virus derived-peptide) 
A549(lung adenocarcinomal cytosol) 
HeLa (cervical adenocarcinoma; cytosol 

[172] 

JB577 peptide (palmitoylated) HEK, COS-1, A549, primary fibroblast, chick 
embryo, rat hippocampal neurons(cytosol) 

[176] 

LAH, sweet arrow peptide COS-1 (African green monkey kidney) [181] 
Chemoseletive Peptides A549 [179] 
Chitosan L929 (murine fibrosarcoma) [174] 
Liposomes B16F10 (mouse melanoma) [178] 

Polymers Triblock copolymers Panc-1 [183] 
Small molecule Lactose Hela, Araki Sasaki (human corneal 

epithelium) 
[182] 

Galactose HepG2 (Hepatocyte), MCF-7 [175] 
Gambogic acid HepG2 [173] 

2. Active 
Delivery 

Nanoneedle Injection  HeLa  [177] 
Reversible membrane  Rat cardiomyocyte (H9C2) [180] 
Permeabilization    
Nanochannel 
electroporation 

 A549 [173] 

Nanoblade  HeLa [177] 
Microfluidic cell 
‘squeezing’ 

 HeLa [173] 

3. Passive 
uptake 

QD surface 
character/chaarge 

 Human primary epithelial [180] 

 

Table 6: A summary on CD use in drug delivery 

S. 
No. 

Source of CD Drug/Method Disease/Model 
system 

Efficiency Reference 
number 

1. FA-Gd CD green CDs synthesized from 
crab shell doped with Gd+ 

Targeted drug delivery of 
doxorubicin and conjugated 

with folic acid 

HeLa cell line Significantly higher to toxicity 
towards HeLa cells and less 
toxicity in vivo (zebrafish 
embryos and other cell lines) 

[185] 

2. MSN-SS-CDPAA Multifunctional 
nanosystem (targeted and 
controlled delivery of drug 
doxorubicin along with 
bioimaging 

-DOX CQD synthesized by 
hydrothermal polymerization method 
using poly-acrylic acid 

In vitro (human 
prostrate cancer cell 
line) 

High therapeutic effect 
against cancers and good 
biocompatibility and stability 
silica particles containing the 
drug doxorubicin 

[185] 

3. CQD (Nitric acid oxidation of candle soot) Phototherapy Cell line Higley cytotoxic to cancer 
cells  

[188] 

4. CQD hydrothermal treatment of citric 
acid, hyaluronic and ethylenediamine 

Bio-nanoplatform (CQD-
HA-SiO4

Cancer cell line 
-DOX 

Low cytotoxicity [191] 

5. MSN-SS-CDHA-DOX CQD synthesized by 
decomposition of citric acid and conjugated 
with HA, which were further mesoporous 
silica nanoparticles enclosing the anti-
tumor drug, doxorubicin 

Multifunctional 
nanosystem (targeted 
and controlled drug 
delivery of doxorubicin 
along with bioimaging) 

In vivo mouse model High therapeutic efficiency 
towards cancer cells 

[187] 

6. CQD-Asp (Thermolysis of d-glucose and 
1-aspartic acid 

- In vivo mouse model 
of brain tumor 

High biocompatibility and 
less toxicity 

[193] 

7. CQD (hydrothermal treatment of citric 
acid monohydrate, with diethylene glycol 
bis ether) 

-  Both in vitroandin 
vivo model of glioma 
(brain cancer) 

Successful targeting of 
glioma 
 

[190] 

8. CQDs Pt(IV)@PEG-(PAH/DMMA) 
CQD, prepared by thermal pyrolysis of citric 
acid, conjugated with PEG-(PAH/DMMA) 

Cisplatin Both in vitroandin 
vivo model 

High tumor inhibition 
efficiency and low side 
effects 

[184] 

9. CQD-PEG-Ag acid oxidation of carbon 
nanotube and graphite 

Radiotherapy Cell lines Cytotoxic to cancer cells [189] 

10. mPEG-OAL-DOX/CQD (CQD, prepared by 
pyrolysis of citric acid, cross-linked with 
PEGylated oxidized alginate (mPEG-OAL) 

Doxorubicin In vitro cell model Cytotoxic specifically to 
cancer cells 

[186] 

11. CQDs Microwave synthesis method using 
acrylic acid and ethylene diamine 
followed by functionalization with 
glycidyl methacrylate 

Targeted cancer drug 
delivery 

Nanogel 
(copoymerized with 
zwitterionic amini 
acid ornithine 
methacrylamide) 

Low cytotoxicity [192] 
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Table 7: Role of CDs in gene delivery system 

S. No. Source molecule Ligand attached  Drug/gene 
delivery 

Cell type Refs. 
No. 

1. Sorbitol and sodium hydroxide Folic acid DOX HeLa [196] 
2. EDTA Mesoporous silica 

nanoparticles (MSPs) 
DOX HeLa [199] 

3. β-Cyclodextrin(βCD), oligoethylenimine 
(OEI) and Phosphoric acid 

OEI/CD DOX H1299 [194] 

4. Polyethyleneimine and fluorinated 
diglycidyl ethers 

Flourine doped siRNA/DNA HeLa cells [202] 

5. Citric acid and tryptophan PEI siRNA MGC-803 [197] 
6. Citric acid and Polyene polyamine - Oxaliplatin Hepatic cancer cells [204] 
7. Glycerol and polyethyleneimine Fc-rPEI(folate conjugated 

reducible PEI rPEI) 
siRNA H460 [194] 

8. Arginine and glucose - pSOX-9 Chondrogenic differentiation of 
mouse embryogenic Fibroblasts  

[200] 

9. ATP (Adenosine Triphosphate) moreover, 
polyethyleneimine (PEI) 

Hyaluronic acid (HA) DOX HeLa cells [198] 

10. Urea and citric acid Carboxyl groups on CDs DOX HepG2 and HL-7702 [203] 
11. D-Glucose (2.5 mmol) and L-glutamic acid Polydopamine coated DOX HeLa cells [195] 
12. Carbon nanopowder  Transferrin DOX Glioblastoma cells; CHLA-266, 

DAOY,CHLA-200 and SJGBM2 cells 
[205] 

13. Branched polyethyleneimine, Hyaluronic 
acid 

Hyaluronate (HA) and 
polyethyleneimine (PEI)  

DNA/RNA HeLa Cells [201] 

14. Citric acid and o-phenylenediamine - DOX HeLa, mouse fibroblast cells 
(L929) 

[198] 

 

Bioimaging 

CDs have similar remarkable fluorescent properties but extremely low 
cytotoxicity, which makes them strong candidates to be used to design 
novel bioimaging probes. The researcher also selected the blue 
luminescent N-CDs to incubate with a human cervical cancer cell line 
for 2 h under different channels, clearly visualized the fluorescent 
imaging of HeLa cells. As a control, the HeLa cells untreated with N-
CDs did not show any fluorescence. To confirm the potential 
application of S, N-CDs as a bioimaging probe, and also conducted in 

vitro cellular uptake experiments in MCF-7 cells, which was recorded 
by laser scanning confocal microscopy [93-95]. Polythiophene phenyl 
propionic acid-derived red-emissive CDs were synthesized by Ge et al. 
and used for both in vitro and in vivo imaging [96]. For in vitro 
bioimaging, HeLa cells were treated with the CDs which showed red 
fluorescence localized in the cytoplasm when excited at 542 nm. They 
also intravenously injected CDs in the HeLa-tumor-bearing mice and 
observed that the CDs were mostly accumulated inside the tumor due 
to enhanced permeation and retention effect. The various bioimaging 
applications are summarised in table 8. 

 

Table 8: Role of CDs in bioimaging applications 

S. No. Source molecule Color Application (bio-imaging) Refs. No. 
1. Glycine Green MCF-7 cell [208] 
2. Glycerol solvent  Blue HeLa Cell [215] 
3. Carbon soot Blue-yellow HepG2 cell [215] 
4. Activated carbon Blue/yellow/green COS-7cells [211] 
5. Graphene oxide and ammonia Green HeLa Cells [217] 
6. Glucose TTDDA Green HeLa, MCF-7, NH-3T3 cells [207] 
7. Citric acid and ethylenediamine Blue MC3T3 cell [219] 
8. Sucrose and oil acid Green  16HBE CELL [212] 
9. Graphene oxide and 

Dimethylformamide 
Green HeLa Cells [221] 

10. Graphite Powder Green/Blue A549 cell [209] 
11. Polycyclic aromatic hydrocarbon Green MCF-7 cell [219] 
12. Folic acid Blue/Green U87glioma cell [213] 
13. Citric acid, PEG diamine, and Glycerin Blue Cholesterol imaging [216] 
14. Urea, polyethylene glycol Blue L929 cells [220] 
15. Citric acid, urea, and sodium fluoride Red Glioma C6 cells [207] 
16. Citric acid, phosphoric acid, and 

ethylene diamine 
Red, green Raw 2647 cells, PA and FL 

imaging of mice tumors 
[223] 

17. Glycerol polyethyleneimine Blue/green/red COS-7 cell [212] 
18. CX-72 carbon black Green MCF-7 cell [225] 
19. Graphite rods and hydrazine Yellow Neutrospheres cells, pancreas progenitor cells, and 

cardiac progenitor cells were performed 
[206] 

20. Carbon nanotubes and graphite Yellow In vivo NIR fluorescence imaging in mice [222] 
21. Carbon fibers Green 147D Cell [218] 
22. Glucose, monopotassium phosphate  Green HepG2 cell [227] 
23. Graphene oxide and DMF Green  MG-63 cell [210] 
24. Carbon soot Blue-yellow HepG2cell [224] 
25. Activated carbon Blue/yellow/green COS-7 [214] 
26. Citric acid, AEAPMS and silica Blue BGC823 cell [226] 
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Sensor and biosensors 

Fluorescence CDs can be used as sensors for the detection and 
identification of a wide range of analytes, that is, cations, anions, 
drugs, small molecules, and macromolecules, depending on high 
sensitivity and selectivity, and the easy operation as benign 
biocompatible, and low-cost device applications. There are three 
main strategies to design CDs as a sensor material: As the prepared 
CDs interact with the analyte, the fluorescence signals could be 
changed; Specific receptors or special functional groups can be 
conjugated via post-modification on CDs to generate sensing ability; 
and Quenchers, fluorophores, and substrates integrations of CDs 
could be used as sensory materials [97-99]. The functional groups 
on the surface can be interacted with several metal ions such as Ag+, 
Au3+, Fe3+, Cr3+, Cu2+, Eu2+, As3+, Hg2+, Pb2+, Sn2+, Co2+

Atashi et al. also demonstrated the same “on-off-on” fluorescent 
using Cu

, and their binary 
and ternary mixtures with nonspecific sensing [101, 102]. The types 
of precursors and their surface state can be designated the 
quenching responsive of CDs to specific analytes.  

2+and D-penicillamine. It is obvious that these studies 
clearly reveal that the fluorescent effects of CDs from chitin 
nanofibers was quenched or “turned off” after the addition of 
Cu2+ions, whereas the fluorescent was “turned on” again in the 
presence of D-penicillamine as the Cu2+

 

ions were bound to D-
penicillamine instead of CDs with high affinity [103-105]. Therefore, 
using a specific ligand and competitive binding interaction can be 

used in the design of very specific sensors for biomedical and 
environmental applications. The utilization of CDs as biosensing 
devices to recognize specific biological molecules such as glucose, 
amino acids, peptides, nucleotides, proteins, DNA, vitamins, cells, 
and bacteria has attracted great attention, especially for clinical 
sample analysis, early diagnosis of sickness, and so on. For example, 
the glucose level in the human body is of vital importance for the 
treatment of diabetes and/or cancerous diseases [97]. Moreover, Li 
et al. showed the biosensing effects of mannose-modified CDs 
against bacteria labelling by high selectivity of the CDs that bind to a 
specific lectin unit of the filegalle of the wild type E. coli K12 strain. 
In addition, these CDs can be successfully used in the labelling of 
bacteria by the fluorescence detection method in the real samples, 
including tap water, apple juice, and human urine [107]. Residue 
corresponding to antibiotics was determined by a CD-based composite 
sensor where either PL quenching (turn off) or enhancement (turn on) 
was observed. Antibiotics or their residues like tetracycline, 
cephalexin, ciprofloxacin, norfloxacin, oxytetracycline, and 
chlortetracycline have been detected from raw milk, egg, meat, and 
human urine sample. Estrogen drugs those were used in animals, 
birds, for fast growth can also be traced out by CD-based sensor very 
effectively [108-113]. Consequently, the utilization of different CDs in 
the recognition of different biomolecules is a viable procedure and 
offers a great advantage over the common diagnostic procedures in 
many aspects in biomedical applications summarised in table 9, 10 
and also discussed in this review. 

Table 9: Role of CDs in bio-sensing application 

S. No. Precursor molecule Color Application (bio-sensing) Ref. 
1. Oxalic acid (OA) and urea Blue Fe3+and Ag [331] + 
2. Fullerenes (C60) Blue Fe [229] 3+ 
3. SiCl4 Blue  hydroquinone Fe3+, H2O2 [331]  and melamine 
4. Lactose and NAOH Blue Folic acid [333] 
5. Citric acid, aminoguanidine Blue Nitric oxide (NO) [333] 
6. Galactose and m-aminophenyl boronic acid Blue Galactose [335] 
7. L-Glutamic acid Blue, green, red H2O [228] 2 
8. Citric acid and melamine Blue Glutathione [332] 
9. BBr3, Blue hydroquinone H2O2, [334] and glucose 
10. Dopamine and (3-aminopropyl) triethoxysilane, glycerol Blue Ag [330] + 

 

Table 10: Role of CDs in chemical-sensing application 

S. No. Precursor molecule Application (chemical-sensing Ref.  
1. Sodium citrate and citric acid Hg [341] + 
2. Citric acid, NH3. H2 HgO [346] + 
3. Ammonium citrate and ethylenediamine Hg [338] + 
4. Sodium citrate and citric acid Hg [344] + 
5. Ethylenediaminetetra acetic acid (EDTA) Hg [351] + 
6. Folic acid and 3-aminopropyl trimethoxy silane Fe [340] + 
7. Cetylpyridinium bromide (CPB) Fe [356] + 
8. Citric acid Fe [358] + 
9. Citric, thiourea Fe [343] + 
10. Ethylene glycol Fe [352] + 
11. Polycyclic aromatic hydrocarbon (PAH) Fe [347] + 
12. Graphite rods Fe [353] + 
13. Phenolphthalein and ethylenediamine Hg+, lemon yellow dye, Fe2+and H2O [359] 2 
14. Phenylenediamine Fe [337] + 
15. D-sorbitol Fe [348] + 
16. Citric acid Fe+, and I [357] + 
17. Uric acid Ag+and Hg [336] 2+ 
18. CCl4 Ag as a carbon and diamines as nitrogen precursors [350] + 
19. Citric acid and amino acid Ag [338] + 
20. 1,2 diaminobenzene Ag [345] + 
21. Uric acids Ag [340] + 
22. Urea, polyethylene glycol Ag [345] + 
23. Citric acid and guanidine thiocyanate Ag [351] + 
24. Citric acid, polyethyleneimine for BPEI-CQDs Cu [341] 2+ 
25. Citric acid Selenite (SeO3 2- [331] ) 
26. Ammonium citrate and ethylenediamine I [342] - 
27. Citric acid, and 1,6,-diaminohexane hydrochloride  Cr6 [349] + 
28. Sodium alginate Ascorbic acid [345] 
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Electrocatalytic/energy 

CDs have been used in energy conversion and storage as well as 
electrocatalytic and photocatalytic devices, owing to their outstanding 
features such as low cost, broad optical absorbance, high photo and 
chemical stability, environmental friendless and nontoxicity, and 
scalable synthesis methods. Hu et al. reported ZnO nanorode-
functionalized CDs (ZnO@CDs) as an energy conversion and storage 

material in photoelectrochemical (PEC) water splitting from solar to 
hydrogen energy conversion. ZnO@CDs as a photoanode enhanced the 
Photo-electrochemical activity compared with the bare ZnO nanorodes 
for solar water splitting, due to the extended-spectrum response range 
improving the photo conversion efficiency. This study cornered out 
that functionalization of the CD surfaces with photosensitive materials 
can improve the photo-electrochemical activity for solar conversion 
[114]. The various applications are summarised in table 11. 

 

Table 11: Role of CDs in electrocatalytic application 

S. No. Nanomaterial Source molecule Photocatalysis applicaaation/role of support Ref. 
No. 

1. N doped GDs-ZnNb2O6/g-C3N4 Urea for g-C 
hetero structures 

3N4and C6H5O7(NH4)3 H, 
NAOH for NGDs 

2 [345] generation 

2. CDs Citric acid H2 [368] generation 
3. CDs/TiO Vitamin C 2 H2 [346] generation 
4. CDs/TiO Graphite 2 H2 [367] generation 
5. PEG 1500N-functionalized CDs 

with Au/Pt doping 
Carbon-based H2 generation and CO2 [346] Photoreduction 

6. Au-doped CDs Carbon-based CO2 [348] Photoreduction 
7. g-C3N Urea or melamine 4 Conversion of CO2 [351] into methanol 
8. Reduced graphene oxide/ZnO Graphene Oxide CO2 [354] Photoreduction 
9. CDs/la2Ti2O Vitamine C and ethanol 7 Rhodamine B (RhB) [364] 
10. Ultrafine amorphous iron 

oxyhydroxide/ultrathin g-C3N
Urea 

4 
Degradation of Rhodamine B, methylene blue, and 
methyl orange 

[361] 

11. CDs/Bi2 L-Ascorbic acid O3 Degradation of Rhodamine b [360] 
12. S, N doped GDs/g-C3N Citric acid and thio urea 4 Rhodamine B (RhB) degradation [356] 
13. CDs/g-C3N Citric acid, ethylenediamine 4 Degradation of Rhodamine B and tetracycline 

hydrochloride (TC-HCl) 
[349] 

14. CDs/Ag/Ag2 Glucose O Rhodamine b [353] 
15. S, N doped GDs/TiO Citric acid for c-dots and 

urea/thiourea for N, S 
2 Degradation of Rhodamine B [358] 

16. CDs/g-C3N4/MoO Citric acid, urea and dicyandiamide 3 Degradation of tetracycline (TC) [365] 
17. Ag-CDs/g-C3N Citric acid, ethylenediamine 4 Naproxcen [362] 
18. Pb-CDs-TiO Ascorbic acid and kollicoat 2 Degradation of RBX,CRB, and CNB dye [366] 
19. CDs/ZnFe2O L-Ascorbic acid, glycol and deionized 

water 
4 NO removal [347] 

20. CDs/Bi2WO Citric acid, ethylenediamine 6 Degradation of methyl orange and bisphenol A [352] 
21. Ultrafine amorphous iron 

oxyhydroxide/ultrathin g-C3N4 
nanosheets 

Urea Methyl Orange [361] 

22. N doped CDs Glucose and ammonia Photodegradation of methyl orange [350] 
23. La/Cu/Zr/CDs D-Fructose, NaOH Degradation of ampicillin antibiotic, malachite green [355] 
24. CDs/nitrogen-doped ZnO Carbon black pigment Degradation malachite green [357] 
25. Fe (III)/CDs Oxidative coupling of Xylene by 

anhydrous FeCl
H

3 
2O2 [363]  reduction 

26. N doped CDs/TiO Glycerol and TTDDA 2 Degradation of methylene blue [359] 

 

Biomedicine delivery system  

It is an attractive prospect to combine medical therapy and 
bioimaging diagnostics for visual drug distribution and monitoring 
of their effects. A multifunctional theranostic agent (CD-Oxa) was 
prepared by the conjugation of an anticancer agent (oxidized 
oxaliplatin, oxa(IV)–COOH) onto the surface of CDs containing amine 

groups. CD-Oxa successfully integrates the optical properties of the 
CDs and the therapeutic performance of Oxa. The in vitro results 
indicated that CD-Oxa possesses good biocompatibility, bioimaging 
function, and anticancer effects. The in vivo results demonstrate that 
it is possible to follow the track or distribution of the drug by 
monitoring the fluorescence signal of CD-Oxa, which helps customize 
the injection time and dosage of the medicine (fig. 5) 

 

 

Fig. 5: Synthetic scheme for CD-Oxa and its applications in bioimaging and theranostics, [Adapted with permission.53 Copyright 2014, 
Wiley-VCH. (B) A schematic illustration for the gene delivery and real-time monitoring of cellular trafficking utilizing CD-PEI/Au-

PEI/pDNA assembled nanohybrids. Adapted with permission.112 Copyright 2013, Elsevier] 
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Anti-fungi/Anti-viral effects 

The fortuitous discovery of CDs concerted efforts have been devoted to 
discover novel nanomaterial-based strategy for combating the 
infectious disease with high selectivity/specificity to overcome 
multidrug-resistant bacterial infection. The recent studies have proved 
that the doping of commonly used antibiotics, e. g., ciprofloxacin on 
CDs’ surface remarkably increases the selectivity and specificity of the 
antibiotics which makes the CDs an efficient platform to construct a 
novel drug delivery system and enhance the efficacy/selectivity of the 
existing antibacterial agents [115]. Yang et al. synthesized of a novel 
kind of CDs using glycerol as a carbon source and 3-[2-(2 

aminoethylamino) ethylamino]propyl-trimethoxysilane as a surface 
passivating agent [116, 117]. The as-synthesized CDs showed the 
capabilities of selective recognition of Gram-positive bacteria and 
remarkable antibacterial activity. Recently, Huang, et al. found that 
CDs synthesized from benzoxazine monomer could block the infection 
of life-threatening flaviviruses (Japanese encephalitis, Zika, and 
dengue viruses) and non-enveloped viruses (porcine parvovirus and 
adenovirus-associated virus) in vitro, probably via directly binding to 
the surface of the virion and eventually impeding the first step of 
virus-cell interaction [118]. There have been a few reported on the 
anti-fungi activities of CDs are shown in table 12 is a brief summary of 
CDs samples and their various antimicrobial uses. 

 

Table 12: Summary of carbon dots samples and their antimicrobial actions/results 

CDs configuration Light 
activation 

Microorganism Highlight of antimicrobial action  Refs. 

Dot sample from Carbonization 
synthesis coupled with ampicillin 

Visible light E. Coli The MIC value decreased to 14 µg/ml from free 
ampicillin of 25 µg/ml 

[360] 

Dot sample carrying penicillin Visible light S. aureus, E. coli (DH5α), 
MDR E. coli, MRSA 

The treatment at 100 µg/ml, inhibited more than 50% 
0f MDR E. coli and MRSA 

[368] 

Dot sample from carbonization in 
polymer films 

Blue Light S. aureus, E. coli,  
K. pneumoniae 

Light irradiation for 60 min caused up to 5 logs of 
inhibition effects 

[366] 

Dot sample with Na2W4O13/WO Visible light 3 E. coli The treatment for 100 min inactivated about 2x107 [370]  
CFU/ml, of E. Coli, cells 

Dot sample from Carbonization 
synthesis coupled with ZnO in 
hydrogel  

660 nm and 
808 nm light 

S. aureus, E. coli With the dual-light irradiation, inactivated 99.9% of 
the bacteria  

[362] 

Dot sample from electrochemical 
processing of carbon rod and 
then coupled with TiO

Visible light 

2 

S. aureus, E. coli The treatment at 1 mg/ml for 1 h reduced>7 logs and 
1.82 logs viable cells, respectively  

[364] 

Dot sample from carbon nano 
powders combined with H2O

White light  
2 

E. coli A mixture of 10 µg/ml dots and 8.82 mmol H2O2 
reduced 

[371] 
2.46 logs of viable cells 

EDA-CDs, EPA-CDs, PEI 600-CDs 
and PEI1200

 

-CDs (all from 
functionalization of CNP) 

Visible light B. Subtilis EDA-CDs treatment at 0.1 mg/ml for 1 h reduced 3.26 
logs of viable cells, while EPA-CDs treatment barely 
showed any reduction. 
PEI 600-CDs and PEI1200

[374] 

-CDs treatment at 0.1 mg/ml for 
1h reduced>7 logs and 1.82 logs viable cells, respectively. 

EDA-CDs (from chemical 
functionalization of CNPs) 

Visible light  S. aureus, E. coli EDA-CDs treatment for 30 min reduced ~4 logs E. coli 
viable cell numbers 

[363] 

EDA-CDs, EPA-CDs (both from 
chemical functionalization of 
CNPs) 

- Human noroviruses 
virus-like particles 
(VLPs) 

EDA-CDs and EPA-CDs at 5 µg/ml inhibited 100 % and 
85-99%, of the binding of VLP to histo-blood group 
antigens receptors on human cells. 

[375] 

Dot sample made from 
benzoxazine monomer 

- Japanese encephalitis, 
Zika and dengue viruses, 
and porcine parvovirus 
and adenovirus-
associated viruses 

The dots could directly bind to the surface of the 
virion, and 95 eventually impede the first step of virus-
cell interaction 

[377] 

Dot sample made from vitamin C - R. Solani and P. grisea 
fungi 

The treatment at 300 µg/ml significantly inhabited the 
growth of the fungi 

[373] 

Dot sample carrying ciprofloxacin 
hydrochloride  

 S. aureus, E. coli The MIC value lower for, E. coli than that for E. coli [376] 

Dot sample from carbonization 
synthesis doped with Au  

- C. albicans fungus Antifungal activity with MIC80 [361]  ~ 250 µg/ml 

Dot sample carrying 
metronidazole  

- P. gingivalis Only selectively inhibiting obligate anaerobes [372] 

Dot sample from PEG-diamine 
and ascorbic acid as a precursor 

- Pseudorabies virus, porcine 
reproductive and respiratory 
syndrome virus 

Significantly inhibited the multiplication of the viruses [365] 

Dot sample from carbonization 
synthesis carrying quaternary 
ammonium moieties 

- S. aureus Killing the Gram-positive bacteria and also staining the 
dead cells for fluorescent analysis 

[366] 

Dot sample from carbonization of 
ammonium citric coupled with 
spermidine 

- P. aeruginosa, MRSA Antibacterial activities against all of the tested 
bacteria.  

[369] 

 

Photothermal therapy (PTT) 

CDs with idiosyncratic optical properties, robust stability, and 
remarkable biocompatibility are of significant importance 
manifesting potential applications in bioimaging and PTT of various 
kinds of carcinomas [119]. Yang et al. used dopamine as a carbon 
source to synthesize CDs via a facile hydrothermal process. The as-

synthesized CDs was subjected to in vitro PTT study after irradiation 
with an 808 nm laser (1.5W cm−2); 100% tumor cell eradication 
was reported with no serious side effects to the normal tissues 
[120]. Moreover, Wang et al. reported novel self-assembled red-
emissive CDs@Au nanoflowers were fabricated and demonstrated 
efficient photothermal properties under 750 nm laser irradiation, 
and fluorescence imaging abilities [121, 122].  
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Photodynamic therapy (PDT) 

Carbon dots in photodynamic therapy (PDT) Photodynamic therapy 
(PDT) offers low toxicity, minimal invasiveness, and targeted 
therapy towards cancer. It comprises three main factors, a light 

source, a photosensitizer, and a radical. Here, a laser excites the 
photosensitizer to generate reactive oxygen that eventually destroys 
the cancer cells shown in fig. 6. CDs are shown in table 13 is a brief 
summary of CDs samples and their various photo-dynamic and 
photothermal therapy. 

 

 

Fig. 6: Graphical representation showing the preparation carbon dots, and its improved nucleus-targeted photodynamic therapy 
application, [Reproduced with permission (DeRosa, 2002), Copyright 2018, American Chemical Society] 

 

Table 13: Role of CDs in photo-dynamic therapy (PDT) and photo-thermal (PTT) therapy 

S. No. Source molecule Ligand attached Targeted cell type  Refs. 
1.  Dopamine - HeLa cells [419] 
2. Citric acid and urea - HeLa [423] 
3. Urea - HeLa cells [425] 
4. Polythiophene phenyl propionic acid - HeLa cells [421] 
5. Citric acid and 5, 10, 15, 20-tetrakis(4-aminophenyl) porphyrin Cetuximab(C225) HCC827 and MDA-MB-231 cells [427] 
6. m-Phenylenediamine and L-Cysteine Protoporphyrnix HeLa [420] 
7. Diaminohexane and carboxylic group of Ce6 Ce6-HA (hyaluronate) B16F10 melanoma [426] 
8. EDTA-2Na and CuCl - 2 Murine melanoma (B 16) cells [424] 
9. Acrylic acid, 1,2-ethylenediamine (EDA) and Mg (OH) Mg/N 2 HePG2 [418] 
10. Hydrophobic cyanin dye and poly (ethylene glycol)  - HePG2, CT26 [422] 

 

CONCLUSION  

In this article, recent developments in the field of CDs, concentrating 
on their synthetic approaches, surface modification methods, 
various optical properties and their applications in bioimaging, 
photocatalysis, biosensing and drug delivery and anti-fungal effects 
and antiviral effects have been discussed. Furthermore, the superior 
recognition capabilities of CDs in biosensors and theranostic 
applications also make them the favourable choice for the 
development of new diagnostic and treatment devices in many 
biomedical and environmental applications as well as the early 
determination of different kinds of sicknesses and environmental 
contaminations. In the inquisition for novel alternative antimicrobial 
approaches that are not only effective in mitigating the threat of 
resistant microorganisms but also benign and nontoxic, CDs have 
emerged to represent a promising new platform for visible/natural 
light-activated microbicidal agents. The excellent potential of the 
CDs platform in the killing/inhibition of bacteria, fungi, and viruses, 
including some multi-drug resistant species, has been demonstrated 
in many reported studies, so has been the path towards theragnostic 
uses, as highlighted in this review article. 
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