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ABSTRACT 

Objective: Circulating EPCs (endothelial progenitor cells) play a role in neovascularization and vascular repair. Oxidative stress impairs endothelial 
progenitor. Flavonoid is a phytochemical compound for antioxidant activity. Flavonoid effects toward oxidative stress, apoptosis, and expression of 
the cell markers on EPCs are not fully understood. This study was aimed to elucidate the effects of quercetin, kaempferol, and myricetin toward 
oxidative stress, apoptosis, and cell markers of peripheral blood-derived-EPCs.  

Methods: EPCs (endothelial progenitor cells) were isolated from peripheral blood mononuclear cells (PBMNCs) using cultivation under EPCs 
spesific media. Oxidative stress in EPCs was induced by H2O2 and then treated by quercetin, kaempferol, and myricetin. Cytotoxicity was measured 
by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, while intracellular reactive oxygen 
species (ROS), apoptosis and characterization of cells, which expressed CD133 and KDR, was measured using flow cytometry.  

Results: Quercetin, kaempferol, and myricetin at concentration 12.50 µmol/l were not toxic on EPCs as the cells viability were 96.11±4.03%, 
95.42±7.75%, and 94.22±9.49%, respectively. Flavonoids decreased intracellular ROS level in EPCs (quercetin: 14.38±1.47%, kaempferol: 
20.21±6.25%, and myricetin: 13.88±4.02%) compared to EPCs treated with H2O2 (30.70%±1.04). Percetage of EPCs apoptosis was not significantly 
different among each treatment. Immunophenotyping showed the increasing of CD133 and KDR expression in EPCs treated with flavonoids.  

Conclusion: Quercetin, kaempferol, and myricetin were safe for EPCs, decreased ROS levels, and increased CD133 and KDR expression. However, 
the flavonoids did not significantly affect EPCs apoptosis. 
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INTRODUCTION 

Endothelial progenitor cells (EPCs) are bone marrow-derived cells 
that can be found in peripheral blood. EPCs promote 
neovascularization and indirectly regulate local endothelial cells’ 
angiogenic functions [1]. Through this action, EPCs are involved in 
vascular repair and their impairment leads to an increase risk of 
various vascular endothelial and cardiovascular dysfunction [2]. 
Several factors, including oxidative stress, contribute to the 
development of endothelial dysfunction through EPCs senescence 
[3]. Oxidative stress impairs EPCs function by activating 
downstream pathways leading to cellular senescence or apoptosis 
[4]. Oxidative stress can lead the apoptosis by mitochondrial 
signaling pathway [5, 6] and cellular senescence by activated DNA 
damaging response pathway [7].  

Flavonoids are phytochemical compounds readily available in daily 
human diet with a wide range of biological activities. Kaempferol, 
quercetin, and myricetin are members of flavonoid flavonol class 
that can be found easily in fruits and vegetables. This type of 
flavonoids is known for numbers of biological activities, including 
antioxidant, antidiabetic, antiinflammatory, and many others [8–10]. 
Population studies found that consumption of food rich in flavonoid 
was related with decreased risk of cardiovascular health problem 
[11]. The mechanism of flavonoid in decreasing cardiovascular 
health problem is likely involving more than one pathway, including 
antioxidant and anti-inflammatory function and vascular effect [12]. 
Benefit of flavonoids was likely due to their interaction with 
endothelial cells and EPCs. For example, quercetin is taken up 
rapidly in cell and accumulated mostly in mitochondria. Intra-

mitochondrial quercetin appears to prevent mitochondrial 
disfunction as well as for the redistribution to cytosol, if flavonoid 
fraction retained in cell is consumed progressively either by 
cell‐permanent oxidants such as peroxynitrite or by activation of 
plasma membrane oxidoreductases [13].  

A previous study demonstrated the ability of green tea extract, tea 
catechins including catechin (C), epigallocatechin (EGG), epicatechin 
gallate (ECG) and epigallocatechin gallate (EGCG) to protect EPCs 
from cellular injury through reduction of intracellular reactive 
oxygen species (ROS) [14, 15]. More studies are required to 
investigate whether other groups of flavonoids may posses similar 
properties. Another study showed that quercetin treatment was able 
to ameliorate EPCs number [15]. Despite those facts, the effects of 
quercetin, kaempferol, and myricetin toward cellular injuries and 
several important endothelial markers are unkown. Based on the 
protective properties of flavonoids against free radicals, this 
research aimed to investigate the effect of quercetin, kaempferol, 
and myricetin on oxidative stress, apoptosis, and cell markers of 
peripheralblood-derived-EPCs. 

MATERIALS AND METHODS 

Materials 

Human blood samples (n=3) were provided by healthy human 
volunteers. The EPCs were characterized based on the binding of 
lectin Ulex europaeus agglutinin-1 (FITC-UEAI) (Sigma-Aldrich, USA) 
and uptake of acetylated-low density lipoprotein (DiI-Ac-LDL) 
(Sigma-Aldrich, USA). 2'-7'-dichlorofluorescein diacetate (DCF-DA), 
4',6-diamidino-2-phenylindole (DAPI) (Invitrogen, USA), Ficoll-
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Paque (GE Healthcare, Sweden), human fibronectin (Roche, 
Switzerland), VascGrowTM medium (Stem Cell and Cancer Institute, 
Indonesia), Fc Receptor (FcR) blocker (Miltenyi Biotec, Germany), 
CD133 PE (Miltenyi Biotec, Germany), VEGFR2/KDR/Flk-1 PE 
(RandD System, USA). quercetin, kaempferol, myricetin used from 
(Biopurify Phyto-chemical, China). 

Methods 

Isolation and culture 

Human blood samples (n=3) were provided by healthy human 
volunteers. All volunteers signed an informed consent prior to blood 
collection. Ficoll-Paque density gradient centrifugation was 
employed to isolate total peripheral blood mono-nuclear cells (PB-
MNCs) from peripheral blood samples. PB-MNCs were cultured for 7 
d in culture dishes, which were coated with human fibronectin, in 
VascGrowTM medium (Stem Cell and Cancer Institute, Indonesia) at 
37 °C, humidified, and 5% CO2 to get EPCs that were used in the 
experiments [14, 15]. 

EPCs functional characterization  

The EPCs was characterized based on the binding of lectin Ulex 
europaeus agglutinin-1 (FITC-UEAI) and uptake of acetylated-low 
density lipoprotein (DiI-Ac-LDL) [14, 15, 17]. Cultured cells were 
incubated in DiI-Ac-LDL (1 mg/ml) at 5% CO2, 37 °C for 4 h. The cells 
were then fixed for 10 min with paraformaldehyde (3%). Then, the 
cells were washed and incubated at 37 °C for 1 h using FITC-UEAI (1 
mg/ml). The nucleus staining was done using 2'-7'-
dichlorofluorescein diacetate (DCF-DA) and 4',6-diamidino-2-
phenylindole (DAPI). The cells both positive FITC-UEA-I and Dil-ac 
LDL were characterized as EPCs [14, 15]. 

Cytotoxicity assay 

Cytotoxicity of quercetin, kaempferol, and myricetin (Biopurify 
Phyto-chemical, China) toward isolated EPCs were measured using 
MTS (Promega, USA) assay. EPCs (5 × 103) were inoculated with 
serum-free medium in 96-well plates then incubated at 37 °C, 5% 
CO2 for 24 h. The EPCs were treated using different concentrations 
(100; 50; 25; 12.5 µmol/l) of quercetin, kaempferol, and myricetin 
that were diluted in dimethyl sulfoxide (DMSO). MTS was then 
added and incubated at 37 °C, 5% CO2 for 4 h [9, 10, 14, 15]. The 
absorbance were measured using a microplate reader with 490 nm 
wave length (Biorad, USA). 

Intracellular ROS assay 

EPCs (5 × 105) were inoculated with serum-free medium in 6-well 
plates then incubated at 37 °C, humidified, and CO2 5%. EPCs were 
treated with quercetin, kaempferol, and myricetin (12.5 µmol/l) 
diluted in DMSO for 24 h. Oxidative stress in EPCs was induced using 
H2O2 treatment. H2O2 treated cells and cells without treatment were 
used as positive and negative controls, respectively. EPCs were then 
harvested and stained with DCF-DA (10 μmol/l) at 37 °C, humidified, 
and CO2 5% for 30 min. The stained cells were washed with PBS 

containing KCl solution. FACSCalibur flowcytometry was used to 
measured the levels of intracellular ROS (Becton Dickinson, USA) 
[14, 15].  

Apoptosis assay 

EPCs (5 × 105) were inoculated in 6-wells with serum-free medium 
and incubated for 24 h at 37 °C, 5% CO2. EPCs were treated with, 
kaempferol, quercetin, and also myricetin (12.5 µmol/l) diluted in 
DMSO and incubated for 24 h. The EPCs were harvested, diluted in 
PBS, and stained with propidium iodide (PI) for 15 min. FACSs 
Calibur flowcytometry was used to determine the apoptotic cells as 
SubG1. The apoptotic cells were determined based on a broad 
hypodiploid (sub-G1) peak [15, 18]. 

Immunophenotyping 

Flavonoid treated EPCs were harvested and incubated with Fc 
Receptor (FcR) blocker at room temperature for 15 min. The EPCs 
then were incubated with each of the following fluorochrome 
conjugated antibodies: CD133 PE (Miltenyi Biotec, Germany), and 
VEGFR2/KDR/Flk-1 PE. Expression for each surface marker was 
analyzed using a FACS Calibur flowcytometry. Calculation of the 
percentage of markers was done based on percentage reduction of 
markers with the isotype using BD Cell QuestTM Pro software 
(Becton Dickinson, USA) [14, 15]. 

Statistical analysis  

Data were depicted as mean±standard deviation. Statistical analysis 
of the data was evaluated using SPSS software. ANOVA (One-way 
Analysis of Variance) followed by Duncan post-hoc test was 
performed to evaluate the statistical significance between the three 
flavonoid treatments. The result is considered as significant if the P-
value was lower than 0.05. 

RESULTS AND DISCUSSION 

In this study, the effect of flavonols commonly found in dietary 
source: quercetin, kaempferol, and myricetin on cellular injury in 
EPCs were examined. EPCs were isolated from peripheral blood 
mononuclear cells (PBMNCs) using cultivation under EPCs specific 
media. PB-MNCs were cultured and isolated; then the result was 
spindle-shaped endothelial cell-like morphology. The lectin UEA-I 
binding and Ac-LDL uptake of the cells were confirmed by 
fluorescent cells [15] and functional characterization of Dil-ac-LDL 
uptake and lectin binding resulted percentage of the double-stained 
cells 70.74±16.28 [14]. 

To determine the cytotoxicity of quercetin, kaempferol, or myricetin, 
the EPCs were treated using various concentrations of quercetin, 
kaempferol, or myricetin for 24 h. Cell viability decreased after 
flavonoid treatment, but there were no significant changes between 
concentrations 50 to 12.5 µmol/l (table 1). EPCs viability decreased 
up to 26-30%, at the highest flavonoid concentration relative to the 
negative control (untreated). Flavonoids with concentrate at 12.5 
μmol/l had the lowest point in reducing EPCs viability. 

 

Table 1: Effect quercetin, kaempferol, and myricetin toward cell viability in EPCs 

Sample Cells viability (%) 
Quercetin Kaempferol Myricetin 

Untreated 100.00±6.67a 100.00±6.67a 100.00±6.67a 
DMSO 94.50±12.91a 94.50±12.91a 94.50±12.91a 
12.5 µmol/l 96.11±4.03a 95.41±7.75a 94.22±9.49a 
25 µmol/l 93.53±9.69a 92.65±16.05a 89.86±12.21ab 
50 µmol/l 90.54±10.20ab 86.95±8.95ab 84.08±14.83ab 
100 µmol/l 74.31±13.61b 72.46±5.75b 70.71±20.07ab 

*Based on Duncan’s post-hoc comparisons (P<0.05), data are presented as mean±standard deviation. Different superscripts (a,ab,b) in the same 
column show significant differences among concentrations of flavonoids (quercetin, kaempferol, myricetin). 
 

The results of cytotoxicity tests were calculated using probit 
analysis, which is logistic regression (method of analyzing the 
correlation between a stimulus (dose) and the quantal response, 
then the value of median inhibitory concentration (IC50) was 
determined (table 2). IC50 of kaempferol (767.50 µmol/l) was the 

highest compared to IC50 of quercetin (566.81 µmol/l) and myricetin 
(399.17 µmol/l). Myricetin has the lowest IC50 compared to two 
other compounds; thus myricetin was the most cytotoxic toward 
EPCs among flavonoids used in the present study. Three flavonoids 
compounds were safe on EPCs. 
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Table 2: IC50 value of quercetin, kaempferol, and myricetin in EPCs 

 Sample IC50 (µmol/l) 
Quercetin 566.81 
Kaempferol 767.50 
Myricetin 399.17 
 

The effect of the three flavonoids compounds on oxidative stress 
was examined. Percentages of ROS level in EPCs significantly 
increased after H2O2 induction, compared to the untreated 

control. The EPCs treated with quercetin, kaempferol, or 
myricetin has lower ROS level compared to control (untreated) 
(table 3). 

 

Table 3: Effect quercetin, kaempferol, and myricetin toward ROS level in EPCs 

Sample ROS level (%) 
Untreated 8.43±1.59 a 
H2O2 200 µM 30.70±1.04 c 
Quercetin 12.5 µmol/l+H2O2 200 µM 14.38±1.47 ab 
Kaempferol 12.5 µmol/l+H2O2 200 µM 20.21±6.25 b 
Myricetin 12.5 µmol/l+H2O2 200 µM 13.88±4.02 ab 

*Based on Duncan’s post-hoc comparisons (P<0.05), data are presented as mean±standard deviation. Data are presented as mean±standard 
deviation. Different superscripts (a, ab, b, c) in the same column show significant differences among treatment (quercetin, kaempferol, myricetin). 
 

The results showed that flavonols were able to decrease ROS in 
EPCs. Flavonoid could act as a potent antioxidant because of the 
combination between chelating activity via ortho-dihydroxy 
structures, and its ability to scavenge free radicals. There’s three 
stages needed: formation of the hydroxyl radicals (*OH) and anion 
superoxide (O2*) by Fenton's reaction, mechanisms that decrease 
lipid peroxidation, and formation of lipid radicals [19]. This finding 
was in line with a previous study where quercetin could protect 
EPCs from oxidative stress that was induced by high concentration 
of glucose [16]. Oxidative stress was known to contribute to the 
progression of cardiovascular disease through known mechanism 
involving senescence of EPCs [3].  

Oxidative stress is known to affect nitric oxide (NO), a key factor that 
regulates EPCs function. This fact is due to the regulation of 
endothelial nitric oxide synthetase (eNOS), which was an enzyme 
that synthesize NO, by ROS [20]. Many polyphenols, such as EGCG, 
genestein and anthocyanin was reported to enhance NO [21–23]. 

Polyphenol acts on NO signaling and metabolism, reducing eNOS 
uncoupling and improving eNOS expression, activity [24].  

Consumption of beverage with high content of polyphenolic 
compound was found to increase circulating EPCs level through the 
enhancement of NO bioavailability [25]. A previous study found that 
quercetin induced rapid eNOS phosphorylation through Akt-
independent and PKA-dependent mechanism [26]. Increased eNOS 
activity was demonstrated to prevent apoptosis in EPCs [27]. Thus 
the protective effect of flavonoid against cellular injury is likely 
caused by its antioxidant properties and NO promoting activity [28]. 

The apoptosis assay was measured to know effect of quercetin, 
kaempferol, and myricetin in EPCs. The EPCs treated with 12.5 
μmol/l of quercetin, kaempferol, or myricetin resulted in similar 
percentage of apoptotic cells compared to control (table 4.). The 
lowest percentage of apoptosis was found in EPCs treated with 
myricetin (12.07±3.61%), but all treatment group was not 
significantly different among each other. 

 

Table 4: Effect quercetin, kaempferol, and myricetin toward apoptosis in EPCs 

Sample Apoptosis (%) 
Untreated 13.5±1.1 
DMSO 14.4±1.6 
Quercetin 12.5 µmol/l  12.4±1.1 
Kaempferol 12.5 µmol/l  14.1±2.2 
Myricetin 12.5 µmol/l  12.1±3.6 

*Data are presented as mean±standard Deviation. Data was not significant differences among treatment 
 

H2O2 is one example of ROS that mean when H2O2 increase the ROS 
level must be increase too [28-39]. EPCs are characterized based on 
their cell surface expressions, including CD133, and KDR [1, 14, 15]. 
This study finding showed that quercetin, kaempferol, and myricetin 

significantly increased the percentages of KDR expressions but not for 
CD133 (table 5). EPCs that were treated with quercetin had the highest 
percentage of KDR (2.15±0.54%) cell population. Whereas myricetin 
had the highest percentage of CD133 (0.73±0.06%) cell population.

 

Table 5: Effect quercetin, kaempferol, and myricetin toward CD133, KDR expression in EPCs 

Sample CD133 (%) KDR (%) 
Untreated 0.14±0.03 a 0.28±0.02 a 
Quercetin 12.5 µmol/l  0.19±0.01 ab 2.15±0.14 c 
Kaempferol 12.5 µmol/l  0.16±0.02 ab 0.77±0.13 b 
Myricetin 12.5 µmol/l  0.73±0.06 b 1.13±0.16 b 

*Based on Duncan’s post-hoc comparisons (P<0.05), data are presented as mean±standard deviation. Data are presented as mean±standard seviation. 
Different superscripts (a, ab, b) in CD133 and (a, b, c) in KDR show significant differences among treatment (quercetin, kaempferol, myricetin)  
 

A previous study showed that EPCs with CD133 expression 
promoted neovascularization of tissue-engineered constructs in vivo 

[30]. Moreover, FACS analysis revealed that KDRof EPCs decreased 
with a progression to stroke in an animal study, suggesting their 
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roles in vascular health for ischemic-hemorrhagic stroke [31]. This 
study showed that flavonols like quercetin, kaempferol, and 
myricetin were able to increase the population of cells with 
important phenotypes in cardiovascular health. Thus, this fact might 
show the benefit of these common flavonols toward lowering the 
risk of cardiovascular diseases.  

CONCLUSION 

Quercetin, kaempferol, and myricetin were safe for EPCs, decreased 
ROS level, and increased CD133 and KDR expression. However, the 
flavonoids did not significantly affect EPCs apoptosis. 
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