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ABSTRACT 

In the twenty-first century, nanotechnology has become cutting-edge technology. It is interdisciplinary and multidisciplinary, covering numerous 
fields such as medicine, engineering, biology, physics, material sciences, and chemistry. The present work aims to cover the optical properties, 
method of preparations, surface modifications, bio-conjugation, characterization, stability, and cytotoxicity of quantum dots (QDs).  

Articles were reviewed in English literature reporting the pharmaceutical and bio-pharmaceutical aspects of QDs which were indexed in Scopus, 
web of science, google scholar and PubMed without applying the year of publication criterion.  

One significant value of utilizing nanotechnology is that one can alter and control the properties in a genuinely unsurprising way to address explicit 
applications' issues. In science and biomedicine, the usage of functional nanomaterials has been broadly investigated and has become one of the 
quick-moving and stimulating research directions. Different types of nanomaterial (silicon nanowires, QDs, carbon nanotubes, nanoparticles of 
gold/silver) were extensively utilized for biological purposes. Nanomedicine shows numerous advantages in the natural characteristics of targeted 
drug delivery and therapeutics. For instance, protection of drugs against degradation, improvement in the drug's stability, prolonged circulation 
time, deceased side effects, and enhanced distribution in tissues. The present review article deals with the quantum dots, their optical properties, 
method of preparations, surface modifications, bio-conjugation, characterization, stability, and cytotoxicity of quantum dots. The review also 
discusses various biomedical applications of QDs.  

The QDs-based bio-nanotechnology will always be in the growing list of unique applications, with progress being made in specialized nanoparticle 
development, the detection of elegant conjugation methods, and the discovery of new targeting ligands. 
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INTRODUCTION 

In 1981, Ekimov and Onushenko described the Quantum dots (QDs), 
also called nanoscale semiconductor crystals [1]. The quantum dots 
are made up of material from periodic table group II-VI (CdSe) or III-
V (InP) [2–6]. The most well studied and broadly utilized QDs are 
the cadmium selenide (Cd/Se) [3]. The cores and QDs targeting are 
protected by surface modification, and such changes significantly 
improve QDs sizes [7]. There are two kinds of fluorescent-based 
quantum dots, namely graphene and carbon quantum dots [8]. 
Quantum dots possess quantum confinement property and, on 
excitation from visible to infra-red wavelength, emit fluorescence [9, 
10]. Usually, in the crystal core of a single QD, around 100-100,000 
atoms are present. The size of QDs usually lies in between 2-10 nm 
diameter, which generally grows up to 5-20 nm in diameter after 
encapsulation of polymer [11, 12]. QDs comprise a semiconductor 
core, which is over-covered by shell and cap. The anatomy of QDs is 
represented in fig. 1 [13]. Semiconducting character and optical 
properties depend on the inorganic core. In QDs synthesis, the 
organic surfactants are developed and eventually shape ligands on 
the core surface [14–17]. The nature of the capping agent produced 
significantly relies on the final application of QDs. Frequently used 
ligands in QDs synthesis are alcohols, essential amines, and thiols 
[18, 19]. Bio-conjugation with carbohydrates, viruses, natural 
products, DNA fragments, and peptides assist by ligands through the 
covalent coupling and electrostatic or hydrophobic interactions [20, 
21]. Determination of solubility, colloidal stability, control particle 
morphology, particle size distribution, and accumulation chiefly 
depends on ligands [22–24]. The present work aims to cover the 
optical properties, method of preparations, surface modifications, 

bio-conjugation, characterization, stability, and cytotoxicity of QDs. 
Articles were reviewed in English literature reporting the 
pharmaceutical and bio-pharmaceutical aspects of QDs which were 
indexed in Scopus, web of science, google scholar and PubMed without 
applying the year of publication criterion. The keywords used for 
searching the literature are quantum dots, quantum dots in drug 
delivery system, methods of preparation of quantum dots, applications 
of quantum dots, recent advances in quantum dots, pharmaceutical 
and biopharmaceutical applications of quantum dots etc. 

QDs core consists of several substances like cadmium, zinc, lead 
chalcogenides (CdS, CdSe, CdTe), copper salt (CuCl), arsenides (InAs, 
GaAs), semiconducting phosphides (InP, GaP), and nitrides (GaN). 
The shell of CdSe, ZnSe, PbS, ZnS, ZnTe, CdS, ZnO generally enclosed 
the core [3]. The core of nanomaterials guarded by outer covering 
from photoinitiated degradation and removing surface defects 
enhances the luminescence properties. Besides, cadmium, silver, 
copper, manganese, and rare earth metal ions can be used to dope 
the core of nanocrystals to enhance photoluminescence properties 
[25, 26]. QDs can be assembled, permitting particle shape, size, and 
chemical composition to be changed by suit a given application. The 
design and size of QDs are the properties that are frequently 
manipulated; this will decide if the QDs are chemically excited in NIR 
or UV light [27–29]. The biological targeting molecules (e. g., 
antibodies) or biocompatible polymeric materials (e. g., PEG) can be 
functionalized on the amenable external surface of QDs to improve 
their physiological system performance. The most commonly 
utilized QDs consist of graphene QDs, carbon QDs, and cadmium-
based QDs [30–32]. QDs are found to be photochemically stable with 
symmetric, narrow, and strong fluorescence emission. QDs are 
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perfectly suitable for repetitive measurements or long-term 
observations [33–35]. After intradermal administration of dots in 
mouse paw, the near IR emitting dots might be noticed in the 
intraoperative imaging system's lymphatic system [36–39]. A report 
proposed that probes of quantum rods conjugated with transferring 
were productive for in vitro blood-brain barrier transmigration [40–43]. 

In fig. 2 composition of QDs is mentioned along with the material 
used [44]. The QDs are metastable and generally, through 
chemical surface modification, need to be stabilized. QDs show 
narrow-size tunable emission spectra, high extinction 
coefficients, and much diminishing photobleaching rates 
compared to organic dyes [45–48]. 

 

 

Fig. 1: The anatomy of QDs 

 

 

Fig. 2: The composition and material used for the synthesis of QDs 

 

Advantages of QDs 

QDs possess good physical stability and speedy degradation observed 
in optical imaging probes compared to QDs, whereas QDs depicted 
high instead of degradation. As compared to traditional dyes, QDs 
comprised higher photostability due to their fluorescence intensity 
and unique inorganic composition. QDs have a narrow emission peak 
and broader excitation spectra, whereas sharp emission peaks are 
depicted by organic dyes and narrow absorption spectrum observed 
with organic fluorophores. Due to these features, less energy is 
sufficient for the excitation of QDs irrespective of size. Hence, to excite 
multi-color QDs, single ultraviolet or blue wavelength beam is 
adequate. As compared to organic dyes, QDs show considerably longer 
fluorescence lifetimes and are 10-20 times brighter. Using a single 
source, QDs can feasibly be excited, and concurrently several targets 
tracked in vivo with the application of various probes as permitted by 
the multi-color QDs. With low background interference, high signal 
intensity depicts by the QDs conjugates due to sharp emission spectra 
and large Stokes Shift. QDs can be molded into various shapes, such as 
quantum dust, small crystals, and bead forms, and can be coated with 

different biomaterials. QDs have comfortable and cost-effective 
manufacturing methods. Colloidal synthesis, epitaxial techniques, and 
lithographic techniques are various manufacturing methods of QDs 
[49–53].  

Disadvantages of QDs  

In biomedical applications, the size of the QDs has terrific 
importance. Through renal filtration, QDs having small size get 
removed from the body easily; however, there may be chances 
that the reticuloendothelial system takes the larger particles 
before reaching the targeted disease sites. The optimal activity is 
demonstrated by QDs having a 5-20 nm size of the polymer 
coating. When located in live cells, QDs aggregate and may 
interferes with cell function or kill the cells. Bio-conjugation of 
QDs results in difficult delivery of QDs into the target. QDs have 
unknown metabolism and excretion, leading to toxicity if it 
accumulates in the body tissues, spleen, liver and kidney. QDs 
become toxic if coated with mercaptoacetic acid. Even building 
material or the core of QDs (CdSe) is also toxic. Heavy metal ions 
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leak from the core due to oxidation and photolysis, which results 
in cytotoxicity [49, 50, 54–57]. 

Optical properties 

QDs have expanded consideration because of their exceptional 
optical properties compared to traditional fluorescent dyes [58–60]. 
The distinctive optical properties of QDs permit multi-color imaging 
with no cross-talk in fluorescence microscopes among various 
detection channels. Moreover, with one single wavelength QDs 
having different emission maxima is excite and demand for many 
excitation sources is reduced. Time-resolved detection is possible 
because of the comparatively long fluorescence lifetime of the QDs-
fluorescence, which considerably enhances the ratio (by 15 factors) 

of signal-to-background concerning cell autofluorescence. QDs 
emission maxima can be correctly adjusted by changing QDs size. 
Short-wavelength light emits by smaller QDs as compared to larger 
particles [58, 60]. Electronic and unique optical properties in QDs 
are due to quantum confinement effects offering various benefits on 
current fluorophores, like lanthanide chelates, fluorescent proteins, 
and organic dyes. Properties that significantly impact fluorophore 
behavior and subsequently relevance to multiple circumstances 
consist of photostability, the width of the emission spectrum, decay 
lifetime, and the excitation spectrum. Concurrently, various QDs can 
emit different colors beneath the same excitation light to track and 
image numerous molecular targets [28–31]. The multi-color QDs 
probes can be utilized at the same time, as shown in fig. 3 [61]. 

 

 

Fig. 3: In the visible range at various wavelengths, QDs displaying hues of colors 

 

Methods of preparation  

QDs are manufactured by various methods like chemical 
precipitation method, polyol-hydrolysis method, γ-radiation rout, 
electron beam irradiation, photochemical synthesis [35, 36, 45, 47, 
62–68]. However, few techniques of QDs fabrication are discussed 
below.  

Organic phase method/organometallic method 

Monodispersed QDs can be prepared through the organometallic 
process. Using this method, one can prepare monodispersed QDs 
with regularity in the core structure with uniform surface 
derivatization. Bis(trimethylsilyl) selenium and Me2Cd is usually 
employed, organometallic precursors. Monodisperse CdSe achieved 
through organometallic reagents' pyrolysis between 250 °C to 300 
°C by injecting in a hot coordinating liquid [69–71]. Different sizes of 
QDs formed relying upon the states of temperature. The 
organometallic method is right now regarded as the most vital 
technique to fabricate QDs. In this technique, various QDs 
demonstrating high quantum yield can be formed, and QDs size 
distribution is simply controlled by varying the reaction time or 
changing the temperature [72–74].  

Water phase method/Aqueous solution method 

Ionic perchlorates are utilized as precursors in this method. Ligands 
like Hydrosulfyl-containing materials, glutathione (GSH), 3-
mercaptopropionic acid (3-MPA), in an aqueous medium used to 
prepare CdTe quantum dots. It is an eco-friendly and economical 
method. Likewise, the QDs formulated by the technique can be 
straightly given into the biological system. As compared with QDs 
created from the organometallic process QDs with thiol cap depicted 
wide size distribution and low quantum yield, poor stability in 
aqueous solution [75–80]. 

Hydrothermal method 

QDs with narrow size and high quantum yields were formed by 
this method. This method also decreases the surface defects 
which were created during the synthesis process. In this method, 
the reagents are initially added to the hermetic container and 
increasing the temperature till supercritical temperature, a high 
pressure developed with this temperature leading to a successful 
reduction in the surface defects and reaction time of QDs [81–
84].  

Microwave-assisted method 

This method was initially presented by the Kotov group and pursued 
by Qian and colleagues. Microwave irradiation as the heating source 
and water as a solvent were utilized. Heat the reaction system more 
than 100 °C to obtained uniform QDs and acquired a quantum yield 
of 17%. The organic phase synthesis formed hydrophobic QDs. But 
the QDs must have water solubility for the biological application. 
The nanocrystals produced from the water solubilization method 
will remain stable in biological systems and with no effect/change in 
the photophysical properties. Low fluorescence and less quantum 
yield achieved with water-soluble QDs formed in the early stage. 
Afterward, water-soluble QDs provide a higher quantum yield up to 
50% with surface modifications and advanced synthetic procedures 
[85, 86]. But the huge challenge is to control the chemical and 
photophysical properties of QDs in water. Various methods have 
been established to formulate water-soluble QDs having smaller 
particle sizes. Ligand exchange is one method in which hydrophilic 
groups on QDs surface will exchange with hydrophobic groups 
through a ligand exchange mechanism. This method is merely using 
monodentate ligands; it will affect fluorescence efficiency and cause 
aggregation of nanoparticles. Few vacant sites were left by ligands 
while detaching from the surfaces, and these vacant sites work as 
trap centers and produce an accumulation of nanoparticles [87, 88].  

This issue can be tackled utilizing ligand cross-linking and the di-thio 
group rather than the mono-thio group. One more method for 
developing water-soluble QDs is through the amphiphilic molecule 
incorporation, for example, phospholipids or polymers [89, 90]. The 
native surface of QDs ligand in the polymer encapsulation layer does not 
change. In the long-chain polymer molecules, the increased number of 
hydrophilic groups enhances the QDs dispersibility in biological buffer 
solutions and for conjugations of bio-probes gives chemical functional 
groups. The biocompatibility of QDs-polymer nanocomposites enhances 
and decreases their cytotoxicity due to the polymers coated on QDs. The 
QDs probe's photophysical properties vary with the size, structure, and 
chemical composition of the inorganic nanoparticle utilized for the QDs 
probe's development. The nanoparticle does not interact because of the 
lack of biological functioning with biological systems. The biomolecules 
like nucleic acids and proteins provide interaction with living cells used 
to decorate inert QDs for better biological application. QDs become more 
bio-compactable with living systems by incorporation of biomolecules 
[91–93]. The steps and design criteria used in QDs probes manufacturing 
are described in fig. 4 [12]. 
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Fig. 4: The steps and design criteria used in QDs probes manufacturing 

 

Surface modifications and Bio-conjugation of QDs  

It is usually observed that the bare QDs are not practical for 
biological applications because of numerous reasons. Initially, in 
most of the synthesis approaches, QDs are water-insoluble. Thus, to 
obtain results from the optical properties of QDs, the surface has to 
be coated using a hydrophilic agent. Secondly, the core of QDs is very 
reactive, and with macromolecules, it undergoes potent unspecific 
interactions resulting in aggregation of particles and variation in 
fluorescence [94, 95]. Thirdly, the QDs toxicity can be significantly 
reduced due to the process of surface modification. The QDs have a 
hydrophobic surface modified by using hydrophilic agents to 
solubilize them in aqueous buffers. The peptides, dendrons, or 
oligomeric phosphines, thiol-containing molecules can be replaced 
with the hydrophobic surface ligands [96–98]. 

Further approaches employ phospholipids for modification or 
hydrophobic interactions between the QDs and amphiphilic 
polymers or encapsulate the QDs in a silica shell. Numerous 
potential outcomes are there in which biomolecules can be attached 
to the QDs. The utilization of QDs containing streptavidin is typically 
utilized because it is easy to link them to biotin-tagged biomolecules 
[99, 100]. Numerous strategies can be used to get QDs bio-
conjugation consisting of covalent bond formation, multivalent 
chelation, or passive adsorption. There are two famous cross-linking 
reactions; active ester maleimide mediated amine, sulfhydryl 
coupling, and carbodiimide mediated amide formation. The bio-
conjugation also determines by the hydrophilic coating as the 
required functional groups deliver by it and should be considered 
[101–103]. 

Molecules attachment for targeting 

To the biomolecules like aptamers, small molecule ligands, or 
antibodies, the QDs must be cross-linked to make them precise to 
biological targets and thus employed for targeted drug delivery and 
diagnosis. QDs functionalization can be done by replacing 
biomolecules with a protein or sulfhydryl group by thiol and 
peptides with cysteine residues [104–107]. The QDs surface 
equilibrates with the thiols after incubation, and the biomolecules 
partially substitute the initial coating molecule. Coating of the QDs 
with mercapto acid can produce stable covalent bonds. Moreover, 
the electrostatic interactions among the macromolecules like 
peptides or proteins and the QDs surface can also give a facial way 
for modification and coating. Numerous organic functionalities are 
promptly attached for the QDs encapsulated in a silica shell using 
well-developed silane chemistry. At present different affinity 
reagents for QDs modification, like aptamers, small molecules, and 
peptides, which on cancer cells primarily identify particular 
overexpressed biomarkers, have been described to manufacture 
target drug delivery vesicles and cancer diagnosis probes [16, 64, 
108–112]. 

Characterization of QDs 

Important information regarding the morphology, structure, and 
physiochemical changes because of conjugation reactions can be 
disclosed by QDs optical characterization [113, 114]. For optical 
characterizations of QDs, UV-Vis and photoluminescence 
spectroscopy are the most utilized, non-destructive, quick, and 
contactless [115]. The size of QDs is finding out by employing atomic 
force microscopy, scanning tunneling microscopy, scanning electron 
microscopy, dynamic light scattering, transmission electron 
microscopy (TEM) studies [115–117]. The use of Raman scattering 
spectroscopy and photoluminescence excitation are also reported to 
determine the size and composition of QDs [118]. 

Stability of QDs 

In aqueous conditions, a vital role in deciding the stability of QDs 
depends on the organic molecules and shell attached to the QDs 
surface. Finally, QDs precipitate with loss in their luminescence 
because of the loss of surface ligands. The stability of surface ligands 
can be affected by various processes. It was revealed that common 
surface ligands used and their photooxidation can cause desorption 
of hydrophilic thiols by their protonation [113]. To the cadmium 
chalcogenide QDs deprotonated thiols, thiolates are bound; if the 
QDs-ligand interface pH turns down to a particular value, 
protonation of ligand occurs and remove from the surface of QDs [2, 
49, 102, 119]. Generally, in a low pH range, the hydrophilic thiols 
coated QDs precipitated in a pH range of 2 and 7, based on the 
chemical composition and the size of QDs [2, 45, 66, 67].  

The photophysical properties and stability of QDs within the cells 
firmly subject to the local environment and intracellular localization. 
Its UV illumination over a long time leads to the photooxidation of 
surface ligands [46, 47, 65]. Enhancing the packing density and 
thickness of the ligand shell can hinder the beginning of 
photooxidation. The core of QDs resists photodegradation because 
of its inorganic nature, but the core integrity is influenced by the 
extended UV light exposure [86, 88, 91].  

Cytotoxicity of QDs 

In human beings, cadmium's half-life is around 20 y and is supposed 
to be carcinogenic, which can deposit in the kidney, liver, and bio-
distribution in all tissues [120]. The toxicity of QDs relies on 
numerous chemicals, environmental and physical factors such as 
size, surface coating, charge, chemical composition, concentration, 
and free radical production, which might be deciding components of 
short and long-term in vivo side effects QDs [121]. The particles' 
biocompatibility has to be described, as QDs are utilized for studies 
including living cells and organisms [122].  

QDs have not been characterized concerning their toxicity because 
they are new materials. The majority of the QDs contain cadmium, 
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which causes lethal impacts when it comes in contact with cells. 
Efforts need to be taken to secure the core of QDs, by developing a 
much lower toxicity shell, most of the time ZnS [123], which brought 
about a marked decrease in cytotoxic effects. The optical properties 
also enhance this layer; in most biological applications, core-shell 
systems have turned into the standard. But, to resolve the issue of 
cytotoxicity completely, the introduction of capping layers was still 
not adequate. A variety of other factors, such as the particle 
aggregation on the surface of the cell and even the QDs surface 
ligands stabilization, have been revealed to affect the cell's viability. 
The number of factors decides the degree of cytotoxicity, including 
size, dose, color, capping materials, surface chemistry, and 
processing parameters [124, 125]. So far, less information on QDs 
toxicity, particularly for in vivo use, is accessible. In this manner, QDs 
toxicity is a fundamental restriction for their utilization. Roberts 
reported that after administering CdSe/ZnS QDs, it caused lung 
injury and inflammation in rats. Likewise, Ho et al. detected 
granuloma following cadmium-based QDs administration in the lung 
of mice [123, 126, 127].  

Biomedical applications of QDs 

Cell imaging 

Recently as an optional to organic dyes, QDs have been utilized for 
bioimaging. Furthermore, QDs have a broad absorption spectrum that 
makes easy excitation of two or multi-photon, particularly in the near-
infrared range. Among all newly proposed imaging strategies, the 
bioimaging acknowledged by the confocal multi-photonic excitation 
system is by all accounts the best solution utilizing QDs as fluorescent 
labels. In this imaging technique, the relatively low excitation energy is 
harmless for the samples. The QDs' resistance to photobleaching and 
bright photoluminescence allows even their real-time and long-term 
imaging. Recently, bioimaging of cancer cells can be done by utilizing 
QDs as bi photonic fluorescent probes. Based on fluorescence imaging 
and magnetic resonance imaging (MRI) techniques, a multimodal tumor 
imaging system was given by Tan et al. [128]. Liu et al. have also 
fabricated other MRI nanoprobes and bimodal fluorescence with 
improved fluorescence and can be utilized for labeling HeLa cells [129]. 
The strong positive MRI contrast was used to characterize these QDs. 

Bio-sensing 

A new class of nanomaterials is luminescent semiconductor 
nanocrystals, the unique generation of fluorescent biosensors are 
created with the help of specific photophysical properties. Hence, 
the most common techniques utilized depend on fluorescence 
changes monitoring in immunoassays for the detection of 
biomolecules. The fluorescent probes have depicted extensive 
biosensing applications, diagnostic and clinical assays, ion detection, 
nucleic acid detection. Generally, the decline in QDs fluorescence 
emission intensity is seen in the presence of an analyte. For the 
detection of heavy metal ions and toxic organic substances, 
fluorescent nanocrystals are usually used. The L-cysteine-capped 
CdTe QDs synthesis and their utilization in selective trinitrotoluene 
recognition as the fluorescent probe was reported Chen et al. [130].  

Photodynamic therapy 

In the most recent couple of years, the photodynamic treatment (PDT) 
has come into sight as an advanced technique for malignancy treatment. 
PDT is an effective alternative to antibiotic therapy. PDT consists of a 
light, molecular oxygen, and photoactivable agent called photosensitizer 
(PS). Because of its specificity, PDT is a promising technique, simply the 
affected cells are exceptionally close to the PS, and until illuminated, the 
PS isn't cytotoxic. In photodynamic cytotoxicity, through this mechanism, 
the in situ generations of singlet oxygen (1O2) seem to assume a crucial 
role because of the exceedingly productive interaction of the 
biomolecules with the 1O2 species [131].  

Multiplex coding 

For applications demanding high throughput analysis of 
biomolecules, multiplex coding has tremendous potential. The small 
polymer multiplexed beads are embedded inside a finely controlled 
ratio, which provides a unique optical code. In contrast, 
oligonucleotides or antibodies act as molecular identifiers, 

conjugated to the beads' surface [132, 133]. The intensity levels and 
types of fluorophores are the two variables that decide the 
maximum order of multiplexing possible. For instance, two 
fluorophores provide nine different microbeads with three intensity 
levels (1:1, 1:2,., 3:2, 3:3). Prior efforts utilized organic fluorophores 
at multiplexed coding. Spectral overlaps occurred due to their broad 
emission spectra, and the number of fluorophores that could be used 
was constrained to only 2–3 dyes, leading to low multiplexing orders 
[134]. QDs proved to be an ideal replacement for this application 
because of their narrow and Gaussian-shaped emission spectra. For 
example, Xu et al. utilized QDs embedded microspheres to 
demonstrate the reliability and accuracy of polymerase chain 
reaction (PCR)-based single nucleotide polymorphism (SNP) 
genotyping assay [135, 136]. 

Bio-imaging of live cell 

Live-cell imaging is a tough assignment compared with fixed cells and 
tissues because the thought that must be taken to keep cells alive and 
delivery of probes across the plasma membrane for examining 
intracellular targets is the challenging task. For the labeling of cell 
surface antigens, in vivo use of QDs have been shown. In recent times, 
the genuine favorable circumstances of QDs have been demonstrated 
for live-cell imaging by labeling plasma membrane receptors, for 
example, erbB/HER receptors and glycine receptors enabling single 
imaging molecules and real-time tracking of biomarkers [137–139]. 
The information gives new bits of knowledge into the mechanism of 
the ligand-receptor interaction. For delivery of QDs into the cells, 
different mechanisms have been utilized, for example, conjugation of 
QDs to cationic peptides or translocating proteins, or specific 
membrane receptors, via endocytosis non-specific uptake, and 
microinjection. Every one of these methods has effectively conveyed 
QDs into cells, even though it appears that the peptide-mechanism 
might be the most proficient [140–142].  

DNA and RNA detection 

QDs have become an essential tool because of resilient 
photoluminescence and multiple color properties for multiplexed 
detection of different DNA targets [138,143,144]. For DNA detection 
FRET technique has been one of the well-known methods. An 
enzyme is utilized to propel the detection sensitivity and to amplify 
the target. Excluding FRET, with the help of a magnetic nanoparticle-
tagged DNA probe and a QDs labeled DNA probe with the DNA focus 
across hybridization detection, could be carried out [139, 145–148].  

Gene delivery 

For gene therapy, QDs depicted satisfactory performance as a 
promising candidate. RNA interference (RNAi) is an encouraging 
method with an extraordinary chance to battle disease. As RNase 
quickly degrades siRNAs, they have a short half-life, and they cannot 
cross the cell membrane because of their negative charge. For the 
loading of gene molecules, the fluorescent QDs have been examined as 
potential carriers among a large number of nanoparticles. The 
positively charged liposomes or polymers suppressed the negative 
charge of the nucleic acids. Using QDs liposome and QDs-polymer 
conjugates, imaging of siRNA transfection has been done successfully 
[149–151]. In a study performed by Lin et al. [152], reported that for 
silencing and efficient gene delivery, cadmium sulphoselenide/zinc 
sulfide quantum dots-polyethyleneimine (CdSSe/ZnS QDs–PEI) was 
found to be a proficient nanoplex formulation. 

Plant bio-imaging 

There is expanding use of QDs as markers in plant science for the 
cells or cell wall. For external agents, the cell wall is the first target 
location in a plant cell. Djikanovic et al. revealed that in the cell wall 
of the Picea omorika branch CdSe QDs usually attach to lignin and 
cellulose. Likewise, by interaction with the chains of C=C and C-C 
alternating bonds and interaction with the OH groups, binding to 
cellulose and lignin are accomplished [153, 154]. Data demonstrated 
that for the homogenous marking of the whole cell wall, the QDs are 
suitable, which is an outcome of the cell wall polymers that are 
structurally arranged inside the whole cell wall network. Inside the 
polymer structures in the cell wall composite, these qualities make 
possible a feasible nanoparticle penetration [155, 156].  
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QDs as antimicrobial agents 

The various inorganic nanoparticles having antimicrobial activity 
have been tried. These comprised a range of metals and their oxide 
nanoparticles, such as zinc oxide, titanium dioxide, etc. Although 
upon excitation, these work on the principle of generating reactive 
oxygen species utilizing high wavelength lights, size-dependent 
optical properties are an additional benefit of QDs [157]. QDs are 
known to generate free radicals upon irradiation, and the core 
material of the semiconductor determined its quality. To the 
microbes, these produced free radicals are described as toxic, and 
also, in the process of irradiation, the liberated free heavy-metal ions 
are harmful to the bacteria [157–159]. Lu et al. depicted that 
excellent antimicrobial activity possessed by CdTe QDs. In their 
research, it was also shown that after binding to the bacteria's 
surface, the QDs disturbs the cellular antioxidative systems, reduces 
antioxidative enzyme activities, and instigate down-regulation of 
antioxidative genes [158].  

In diagnosis and treatment of cancer 

In the past several decades, cancer has attracted substantial 
research interest as a leading cause of human death [131, 143]. 
Ongoing advancements in QDs innovation have effectively had a 
tremendous effect on cancer imaging.  

Sentinel lymph node mapping 

The first lymph node or groups of nodes are the sentinel lymph 
nodes (SLNs) to which a primary tumor gives metastasizing cancer 
cells. A method that allows the recognition and the SLNs removal is 
known as SLN biopsy. Further lymph-node sampling is avoided if 
cancer is not found in the SLNs. At present, for breast cancer and 
melanoma staging and prognosis, SLN biopsy is in routine clinical 
use. Precise nodal mapping is required for success in SLN biopsy. 
Current mapping methods consist of utilizing peritumoral injection 
of radioisotopes, for example, the isosulfan blue dye, Technetium-
99m-colloidal albumin, or the combination of the two agents. Kim et 
al. prepared the type II QDs and coated them with polydentate 
phosphine making soluble and stable QDs in serum [160]. It was 
observed that both in pigs and mice, the QDs were promptly 
identified in nearby SLN after intradermal injection. The multiple 
QDs under a single excitation source with different emission 
wavelengths may be used to identify and sort the complicated 
lymphatic system [161, 162]. 

Primary tumor detection 

Prostate-specific membrane antigens (PSMA) for cancer imaging 
may serve as markers or targets for diagnosis. In principle, 
conjugating the QDs to antibodies, particularly for these antigens, 
helps the primary tumor recognition and identification of distant or 
regional metastases. Nie's group has performed some original work 
utilizing conjugated antibody QDs to target prostate tumor. To nude 
mice bearing prostate tumor xenografts, a specific PSMA antibody 
conjugated with Cd/Se QDs is intravenously administered. 
Localization of the QDs to the tumor was seen after 2 h of 
circulations [163, 164]. On the other hand, at 15 times higher 
concentration as compared to conjugated PSMA antibody QDs, when 
the PEG-modified QDs injected, only after 24 h circulation reached 
the tumor presumably by diffusion, a much longer time interval 
[165, 166].  

An efficient lymphatic drainage system lacks in the tumor, and blood 
vessels are leaky; hence at the tumor site, the passive diffusion 
occurred because of enhanced permeability and retention of QDs. In 
the clinical setting, to accomplish a maximal impact on cancer 
diagnosis, research must be progress in the direction of small tumor 
identification and localization, which are currently not detected 
through conventional imaging methods [167–169].  

QDs as drug nano-carriers 

In the previous decade, with the development of surface 
modification technique, QDs with water-soluble capping stabilizer, 
for example, polyethylene glycol polymer, mercaptoethylamine, and 
mercaptoacetic acid are conjugate promptly with drug molecules 

through electrostatic interaction or covalent bonds, giving complex 
nanomedicine with QDs as drug carriers [8, 14, 22, 24].  

Other applications 

QDs have additionally been observed to be valuable in the study of 
microorganisms. Kloepfer et al. revealed that fungi and bacterial 
glycoproteins could be targeted with QDs conjugates [170]. 
Numerous different pathogens such as Salmonella Typhi, Giardia 
lamblia and Cryptosporidium parvum, and Listeria monocytogenes 
were targeted using QDs [157–159].  

Additionally, for Escherichia coli, the QDs were utilized as cell 
membrane permeable indicators. It might be possible that QDs 
surface graft with the therapeutic enzymes and activate them 
producing free radicals (for example, singlet oxygen) or by light by 
optically cycling the QDs. For determining the content of 
spironolactone in the tablet, the first applications of QDs were 
exhibited by Liang and colleagues [171]. In neuroscience research, 
QDs stand for a new device of enormous potential. The studies that 
are restricted by the limited anatomy of neuronal and glial 
interactions are helpful. Photostability, multiplexing potential and 
inorganic nature are the features of QDs that make them significant 
worth for drug discovery [8, 11, 15, 21]. Outstanding review articles 
are available in the literature for additional information on QDs 
fundamentals and applications. 

CONCLUSION 

In nanomedicine, the potential applications of QDs span the areas of 
nano-diagnostics, drug delivery, therapy, and imaging. In the last 
place, the most promising applications are intracellular imaging, 
tissue imaging, multiplexed diagnostics, tumor detection, infectious 
agent detection, immunohistochemistry, and fluoro-immunoassays. 
Despite all their potential in nanomedicine, QDs are still away from 
large-scale utilization because of toxicity concerns, regulatory and 
commercialization issues. The QDs-based bio-nanotechnology will 
always be a growing list of amazing applications with progress being 
made in specialized nanoparticle development and the detection of 
elegant conjugation methods, discovering new targeting ligands. 
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