

ISSN- 0975-7058

Vol 13, Issue 6, 2021

Original Article

STRUCTURE-BASED MULTITARGETED MOLECULAR DOCKING ANALYSIS OF PYRAZOLE-CONDENSED HETEROCYCLICS AGAINST LUNG CANCER

JAINEY P. JAMES^{1*}, AISWARYA T. C.¹, SNEH PRIYA¹, DIVYA JYOTHI¹, SHESHAGIRI R. DIXIT²

¹Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Deralakatte, Mangaluru 575018, Karnataka, India, ²Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India Email: jaineyjames@nitte.edu.in

Received: 02 Aug 2021, Revised and Accepted: 03 Sep 2021

ABSTRACT

Objective: The significant drawbacks of chemotherapy are that it destroys healthy cells, resulting in adverse effects. Hence, there is a need to adopt new techniques to develop cancer-specific chemicals that target the molecular pathways in a non-toxic fashion. This study aims to screen pyrazole-condensed heterocyclics for their anticancer activities and analyse their enzyme inhibitory potentials EGFR, ALK, VEGFR and TNKS receptors.

Methods: The structures of the compounds were confirmed by IR, NMR and Mass spectral studies. The *in silico* techniques applied in this study were molecular docking and pharmacophore modeling to analyse the protein-ligand interactions, as they have a significant role in drug discovery. Drug-likeness properties were assessed by the Lipinski rule of five and ADMET properties. Anticancer activity was performed by *in vitro* MTT assay on lung cancer cell lines.

Results: The results confirm that all the synthesised pyrazole derivatives interacted well with the selected targets showing docking scores above-5 kcal/mol. Pyrazole 2e interacted well with all the four lung cancer targets with its stable binding mode and was found to be potent as per the *in vitro* reports, followed by compounds 3d and 2d. Pharmacophore modeling exposed the responsible features responsible for the anticancer action. ADMET properties reported that all the compounds were found to have properties within the standard limit. The activity spectra of the pyrazoles predicted that pyrazolopyridines (2a-2e) are more effective against specific receptors such as EGFR, ALK and Tankyrase.

Conclusion: Thus, this study suggests that the synthesised pyrazole derivatives can be further investigated to validate their enzyme inhibitory potentials by *in vivo* studies.

Keywords: Lung cancer, Pyrazolopyrimidines, Pyrazolopyridines, Molecular docking, Pharmacophore modeling, Anticancer activities

© 2021 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/) DOI: https://dx.doi.org/10.22159/ijap.2021v13i6.42801. Journal homepage: https://innovareacademics.in/journals/index.php/ijap

INTRODUCTION

Lung cancer is one of the leading causes of cancer mortality in men and women, [1, 2] responsible for 1.6 million deaths. Non-small-cell lung cancers (NSCLCs), including large-cell carcinoma, adenocarcinoma, and squamous cell carcinoma, contribute approximately 80-85% of lung cancer.

The major shortcoming of lung cancer chemotherapy is that it causes damages to normal cells, causing surplus adverse effects. Therefore targeted therapies [3] are needed to target only cancer cells, avoiding injuries to the healthy cells. One of the novel methods adopted in lung cancer therapy is developing cancer-specific compounds that can attack the molecular signalling pathways, thus creating non-toxic substances. The significant targets of paramount importance for lung cancers are EGFR (Epidermal growth factor receptor) [4, 5] ALK (Anaplastic lymphoma tyrosine kinase) [6, 7] BRAF (v-raf murine sarcoma viral oncogene homolog B1) [8, 9] VEGFR receptors (Vascular endothelial growth factor) [10, 11], and Wnt signalling pathway [12].

The EGFR receptor is recognised as a significant anticancer target. It belongs to the ErbB (epidermal growth factor) receptor tyrosine kinase family and is expressed at high levels on the surface of some cancer cells. The inhibition of EGFR plays a crucial role in angiogenesis, tumour suppression, and metastasis [13].

In anaplastic non-Hodgkin's lymphoma, the ALK gene was first described as a driver mutation. Dysregulated ALK expression is now an identified driver mutation in nearly twenty different human malignancies. The dysregulated ALK expression is now recognised as the driver mutation, including 4-9% of NSCLC [14].

One of the critical mediators promoting the angiogenesis process is VEGFR, as it has a prominent role in maintaining the vascular supply

within the tumour. Its increased levels are a confirmatory factor in diverse human cancers, including NSCLC [15]. The Wnt signalling pathway is another potential target for lung cancer. Effective pharmacological inhibitors of the Wnt pathway have only recently become available. The tankyrase (TNKS), a poly-ADP-ribose polymerase (PARP) enzyme, was the critical mediator of Wnt signalling by the screens for small molecular antagonists of the Wnt pathway. Hence, using the targets mentioned above as partial agonists/antagonists can show promising treatment strategies [16].

The approved therapeutic EGFR inhibitors are gefitinib, erlotinib, afatinib, osimertinib, dacomitinib [17], and ALK inhibitors crizotinib, alectinib, brigatinib, lorlatinib [18], VEGFR inhibitors are axitinib, bevacizumab, sorafenib [19]etc.

Nitrogen-containing heterocycle-pyrazole has a vital role in the development of cancer therapies. The anticancer activity of these compounds is by the inhibition of different types of proteins, receptors and enzymes, which has a crucial role in cell division. Condensed pyrazole rings such as pyrazolopyrimidines, pyrazolopyridines and pyranopyrazole are known for their anticancer properties [20], and the available drugs with these core moieties are depicted in fig. 1.

An extension of previous works on pyrazole scaffolds [21, 22] and *in silico* studies [23, 24], we have performed an analysis to screen the inhibitory potency of synthesized pyrazole fused derivatives on various targets EGFR, ALK, VEGFR and TNKS by employing molecular docking and pharmacophore modelling techniques.

MATERIALS AND METHODS

Most of the chemicals were purchased from Sigma Aldrich, and further purification was not required. Melting points was determined by the capillary method and were uncorrected. Shimadzu Perkin Ekmer 8201 Pc IR Spectrometer used in recording IR spectra (KBr pellets), and frequencies are expressed in $\rm cm^{-1}.$ Bruker Avance II, 400 NMR

spectrometer, recorded NMR spectra and Shimadzu LCMS 8030, Japan Mass spectrometer recorded mass spectra.

Fig. 1: Available drugs with pyrazolopyrimidines and pyrazolopyridines moiety

Preparation of pyrazolopyrimidines (2a-2e) and pyrazolopyridines (3a-3e)

A solution of 0.01 mole of malonitrile/diethyl malonate and different pyrazole carbonitrile derivatives 1 (0.01 mole) was prepared in sodium ethoxide and ethanol, which was refluxed for eight hours. The solution was concentrated, and the obtained residue was filtered, washed with ice-cold water [25].

Modeling platform

In silico analysis was carried out on Maestro 11.9 (Schrödinger, 2019-4) [26]. This software package is programmed on DELL Inc.27" workstation machine running on Intel Core i7-7700 CPU@ 3.60 GHz x8, a processor with 8GB RAM and 1000 GB hard disk with Linux-x86_64 as the operating system.

Molecular docking and binding free energy calculation

Based on the literature, the selected targets for lung cancers are EGFR, ALK, VEGFR and tankyrase and their crystal structures EGFR (PDB ID: 4WKQ) [27], ALK (PDB ID: 4Z55) [28], VEGFR (PDB ID: 4AG8) [29], TNKS (PDB ID: 4W5S) [30] were availed from the protein data bank. The downloaded proteins were minimised by Protein Preparation Wizard, using the OPLS-2005 force field of Schrodinger software. The designed fused-pyrazoles were prepared by LigPrep application (Schrödinger, 2019-4) [26] and were used for docking. The minimized protein was employed to generate the grid, and the grid box was developed by applying default parameters. Glide-XP (extra precision) [31] was used for molecular docking computations. The binding free energy MMGBSA (Molecular Mechanics, Generalized Born Model and Solvent Accessibility) dGbind (kcal/mol), between the receptor and ligands, were calculated by the Prime module (Schrödinger, 2019-4) [26]. The docking scores and the 2D and 3D conformations were generated to analyse further the affinities and binding interactions of the selected ten fused-pyrazole molecules.

The docking procedure was confirmed by redocking the co-crystal ligand of the proteins into the binding sites, respectively. The docking poses of the co-crystals in XP method and experimental conditions were compared and found to be similar with RMSD, thus validating the docking results.

Pharmacophore modeling

Pharmacophore modeling was performed by Phase tool (Schrödinger, 2019-4) [26]. In this model, six pyrazoles were considered active (\geq 69 %), and four were inactive based on their percent inhibition on lung cancer cells. Common pharmacophore hypotheses (CPH) were searched, and the best CPH was selected based on the survival score until at least one hypothesis was found and scored successfully. Pharmacophore-matching tolerance was set to 2 A°.

Drug-likeness, ADMET property and prediction of activity spectral studies

The compounds were screened for drug-likeness properties by checking with the Lipinski Rule of five [32] and ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) property prediction by the QikProp tool [26]. The features considered for ADMET studies are the following: QPlogHERG, QPPCaco Caco-2 cell permeability, QPlogKhsa, Percent Human Oral Absorption. Further, to validate them as appropriate drug candidates, an online tool, prediction of activity spectra for substances (PASS), was used, which evaluate the biological activity based on their structural data [33]. This tool gives the values for the probability of activity (Pa) and inactivity (Pi) by comparing more than 300 pharmacological effects and biochemical mechanisms of compounds.

In vitro anticancer study by MTT assay

We procured A-549 (Human small-cell lung carcinoma) cell culture from National Centre for Cell Sciences (NCCS), Pune, India. Ten compounds were incubated with different concentrations (25, 50, 100, 200 μ M) to screen the cytotoxic activity of the compounds against human small-cell lung carcinoma (A-549). The cell viability was then determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay after 24 h of incubation. Percent inhibition was calculated from the absorbance as % growth inhibition [34].

RESULTS

Chemistry

The fused pyrazole derivatives were synthesized from substituted aminopyrazoles cyclising with malononitrile and diethyl malonate to yield pyrazolopyridines and pyrazolopyrimidines. IR, NMR and mass spectroscopic techniques were used to confirm the structures (table 1).

S. No.	Compound code	Structure	IR (KBr, cm ⁻¹)	¹ H NMR (400 MHz, DMSO, δ/ppm	LC-MS (m/z)
1.	2a	N N N N N	1625.78 (C=N), 1583.61 (C=C), 3463.56 and 3296.45 (NH ₂), 2213.54 (CN)	3.67 (s, 2H, CH ₂), 7.74 (s, 2H, NH ₂), 8.19 (s, 1H, CH), 7.51-7.60 (m, 5H, Ar- H)	(M*) 250
2.	2b		1666.38 (C=N), 1592.32 (C=C), 3423.76 and 3265.45 (NH ₂), 2219.34 (CN), 767.97 (C-Cl)	3.12 (s, 2H, CH ₂), 7.68 (s, 2H, NH ₂), 8.33 (s, 1H, CH), 7.52-7.61 (m, 4H, Ar- H)	(M*) 284
3.	2c		1635.89 (C=N), 1593.82(C=C), 3421.45 and 3288.32 (NH ₂), 2214.43 (CN), 786.23 (C-Cl)	3.31 (s, 2H, CH ₂), 7.58 (s, 2H, NH ₂), 8.35 (s, 1H, CH), 7.53-7.60 (m, 4H, Ar- H)	(M⁺) 284
4.	2d		1646.32 (C=N), 1594.69 (C=C), 3408.08 and 3269.67 (NH ₂), 2245.76 (CN), 732.43 (C-Cl)	3.52 (s, 2H, CH ₂), 7.64 (s, 2H, NH ₂), 8.42 (s, 1H, CH), 7.54-7.63 (m, 4H, Ar- H)	(M*) 284
5.	2e		1654.21 (C=N), 1591.81 (C=C), 3414.34 and 3285.67 (NH ₂), 2249.76 (CN), 1447.93 (C-F)	3.61 (s, 2H, CH ₂), 7.73 (s, 2H, NH ₂), 8.39 (s, 1H, CH), 7.57-7.64 (m, 4H, Ar- H)	(M*) 268
6.	3a		1653.08 (C=N), 1588.63 (C=C), 3444.54 and 3281.32 (NH ₂), 2243.76 (CN)	3.34 (s, 2H, CH ₂), 7.78 (s, 2H, NH ₂), 8.41 (s, 1H, CH), 7.55-7.59 (m, 5H, Ar- H), 11.52 (s, 1H, OH)	(M*) 298
7.	3b		1687.24 (C=N), 1589.11 (C=C), 3451.65 and 3256.78 (NH ₂), 2234.31 (CN), 778.98 (C-Cl)	3.51 (s, 2H, CH ₂), 7.62 (s, 2H, NH ₂), 8.37 (s, 1H, CH), 7.52-7.58 (m, 4H, Ar- H), 11.23 (s, 1H, OH)	(M*) 332
8.	3c		1632.58 (C=N), 1589.31 (C=C), 3454.44 and 3268.91 (NH2), 2247.04 (CN), 778.12 (C-Cl)	3.11 (s, 2H, CH ₂), 7.55 (s, 2H, NH ₂), 8.39 (s, 1H, CH), 7.37-7.57 (m, 4H, Ar- H), 11.05 (s, 1H, OH)	(M+) 332
9.	3d		1651.32 (C=N), 1598.12 (C=C), 3464.07 and 3256.17 (NH ₂), 2241.75 (CN), 756.76 (C-Cl)	3.52 (s, 2H, CH ₂), 7.77 (s, 2H, NH ₂), 8.47 (s, 1H, CH), 7.50-7.56 (m, 4H, Ar- H), 11.41 (s, 1H, OH)	(M*) 332
10.	3e		1643.13 (C=N), 1591.32 (C=C), 3401.67 and 3239.31 (NH ₂), 2208.89 (CN), 1432.76 (C-F)	3.12 (s, 2H, CH ₂), 7.67 (s, 2H, NH ₂), 8.31 (s, 1H, CH), 7.48-7.60 (m, 4H, Ar- H), 11.41 (s, 1H, OH)	(M⁺) 316

Molecular docking

The docking and binding free energy scores obtained from their respective receptor targets EGFR, ALK, VEGFR, and TNKS, confirmed the molecular interactions. The co-crystallised structures of gefitinib, ceritinib, axitinib, 3J1, which are active against lung cancer with the corresponding PDB IDs 4WKQ, 4Z55, 4AG8 and 4W5S, were obtained and found to have docking scores-8.80 kcal/mol,-11.36 kcal/mol,-14.41 kcal/mol, and-13.95 kcal/mol respectively; and their binding free energies are-95.15 kcal/mol,-100.94 kcal/mol,-123.86 kcal/mol,-101.34 kcal/mol towards their respective receptors EGFR, ALK, VEGFR and TNKS, (table 1). The RMSD values of the crystallised structures showed RMSD values as 1.231 Å, 1.321

Å, 1.412 Å, 1.114 Å, respectively, which validated the docking results.

All the ten pyrazole derivatives screened for lung cancer targets exhibited docking values above-5 kcal/mol. The top pyrazole derivatives were 2e, 2d and 3d towards EGFR, ALK, VEGFR and TNKS. Their docking scores and binding affinity were given in table 2. In these top evaluations, 2e showed the best docking conformation with docking scores-7.75,-7.23,-8.52 and-8.31 kcal/mol and binding free energy-62.77,-53.42,-77.78, and-63.67 kcal/mol against, followed by pyrazoles 2d (-7.70,-7.13,-8.47,-8.22 kcal/mol) and 3d (-7.51,-7.20,-8.30,-8.01 kcal/mol) EGFR, ALK, VEGFR and TNKS respectively (table 2).

Table 2: Structures, docking score and MMGBSA dG bind of reference compounds
--

Reference compounds available in PDB	Structures	Target receptors	Docking scores	MMGBSA dG Bind
Gefitinib		4WKQ	-8.806	-95.15
Ceritinib		4Z55	-11.362	-100.94
Axitinib		4AG8	-14.414	-123.86
3J1		4W5S	-13.953	-101.34
	~ Ĵ			

To validate the chemical interactions, the analysis of co-crystals conformations are as follows; in enzyme EGFR, the common amino acids that make interactions with standard geftinib and pyrazole derivatives are Gln 791, Thr 790 and Thr 854 (hydrophobic); Met 793 (hydrogen bond); Leu 718, Leu 844, Met 793, Leu 792, Val 726, Ala 743, Met 766, Leu 788 (polar). Further, the common amino acids for the standard ceritinib and pyrazole derivatives that make interactions with enzyme ALK are Asn 1254; polar interactions are Leu 1122, Val 1130, Met 1199, Leu 1198, Leu 1256, Leu 1196, Val 1180, Ala 1148, Val 1180 and hydrogen bond with the same amino acid for the standard ceritinib and pyrazole derivatives that make interactions with enzyme ALK are Asn 1254; polar interactions are Leu 1122, Val 1130, Met 1199, Leu 1198, Leu 1256, Leu 1196, Val 1180, Ala 1148, Val 1180 and hydrogen bond with the same amino acid Met 1199. Similarly, for the enzyme, VEGFR, the common amino acids for axitinib and pyrazole

derivatives that bond by hydrophobic interactions is Asn 923 and polar interactions are Cys 919, Phe 918, Val 916, Leu 1035, Ala 866, Val 899, Phe 1047, Cys 1045, Leu 840, Val 848. In the case of the TNKS enzyme, for the ligand 3J1 and pyrazoles, the amino acids that frequently make hydrophobic interactions are Ser 1221, Hid 1184, Ser 1186; Tyr 1224, Tyr 1213, Phe 1214, Ala 1215, Phe 1188, Pro 1187; polar interactions are Ala 1215, Phe 1214, Tyr 1213, Tyr 1203, Ile 1228, Pro 1187, Tyr 1224.

The finest docking conformations were also examined to reveal the primary interacting amino acid residues in the active pockets of EGFR, ALK, VEGFR and TNKS (table 3-5 and fig. 2-5).

Compounds	Docking scores (in kcal/mol)			MMGBSA dG bind (in kcal/mol)				
	EGFR-	ALK-	VEGFR-	TNKS-4W5S	EGFR-	ALK-4Z55	VEGFR-	TNKS-4W5S
	4WKQ	4Z55	4AG8		4WKQ		4AG8	
2a	-6.11	-6.75	-6.50	-6.64	-49.30	-50.17	-59.46	-56.49
2b	-6.08	-6.04	-6.17	-7.96	-48.88	-55.08	-52.09	-56.23
2c	-5.25	-5.39	-6.55	-7.43	-54.55	-54.42	-59.13	-66.61
2d	-7.70	-7.13	-8.47	-8.22	-54.62	-48.27	-69.69	-67.16
2e	-7.75	-7.23	-8.52	-8.31	-62.77	-53.42	-77.78	-63.67
3a	-6.97	-7.04	-7.83	-7.06	-61.04	-53.37	-68.07	-58.26
3b	-6.35	-5.91	-7.72	-7.02	-60.63	-57.81	-85.72	-69.41
3c	-7.44	-7.06	-7.66	-7.94	-65.99	-59.02	-81.08	-79.86
3d	-7.51	-7.20	-8.30	-8.01	-63.06	-55.07	-78.91	-73.87
3e	-7.21	-6.75	-7.48	-7.91	-60.18	-50.9	-70.68	-64.4

Reference compounds	Protein and PDB IDs	Nature of interactions	Amino acids on active sites with
Gefitinib	EGFR-4WKQ	Hydrophobic Interaction	Gln 791,Thr 790, Thr 854
		Polar Interactions	Leu 718, Leu 844, Met 793, Leu 792, Val 726, Ala 743, Met 766, Pro
			794, Phe 795, Leu 788
		H-Bond	Met 793, Cx 797
		Halogen Bonding	Leu 788, Lys 745
		Pi-Pi Stacking	
		Pi Cation	
Ceritinib	ALK-4Z55	Hydrophobic Interaction	Asn 1254
		Polar Interactions	Leu 1122, Val 1130, Met 1199, Leu 1198, Leu 1256, Leu 1196, Val
			1180, Ala 1148, Ala 1200, Val 1180
		H-Bond	Met 1199, Glu 1197, Lys 1150
		Halogen Bonding	
		Pi-Pi Stacking	
		Pi Cation	
Axitinib	VEGFR-4AG8	Hydrophobic Interaction	
		Polar Interactions	Phe 921, Cys 919, Phe 918, Leu 1035, Val 916, Ala 866, Val 899, Cys
			1045, Leu 840, Val 848, Phe 1047, Val 867, Val 914, Leu 889
		H-Bond	Asp 1046, Glu 885, Glu 917
		Halogen Bonding	
		Pi-Pi Stacking	Phe 1047
		Pi Cation	
3J1	TNKS 1-4W5S	Hydrophobic Interaction	Ser 1221, Hid 1184, Ser 1186, Hid 1201
		Polar Interactions	Tyr 1203, Ile 1228, Met 1207, Tyr 1224, Tyr 1213, Phe 1214, Ala
			1215, Phe 1188, Pro 1187
		H-Bond	Gly 1185, Glu 1291, Ser 1221
		Halogen Bonding	
		Pi-Pi Stacking	Tyr 1224
		Pi Cation	

Table 4: Molecular interactions of reference compounds with the active site of protein

Table 5: Molecular interactions of the pyrazole derivatives with the active site of protein

Compounds	Protein and PDB IDs	Nature of Interactions	Amino acids on active sites
2a	EGFR-4WKQ	Hydrophobic Interaction	Gln 791, Thr 790, Thr 854
		Polar Interactions	Leu 718, Leu 844, Met 793, Leu 792, Val 726, Ala 743, Ile 744, Ile 789, Leu 788,
			Leu 777, Met 766
		H-Bond	Met 793
	ALK-4Z55	Hydrophobic Interaction	Hid 1124
		Polar Interactions	Leu 1122, Val 1130, Met 1199, Leu 1198, Leu 1256, Leu 1196, Val 1180, Ala
			1148, Val 1180, Ala 1126
		H-Bond	Met 1199
	VEGFR-4AG8	Hydrophobic Interaction	Asn 923
		Polar Interactions	Cys 919, Phe 918, Val 916, Leu 1035, Ala 866, Val 899, Phe 1047, Cys 1045, Leu
			840, Val 848
		H-Bond	Cys 919
		Pi-Pi Stacking	Phe 1047
	TNKS-4W5S	Hydrophobic Interaction	Ser 1221, Hid 1184, Ser 1186
		Polar Interactions	Ala 1215, Phe 1214, Tyr 1213, Met 1207, Tyr 1203, Ile 1228, Pro 1187, Tyr 1224
		H-Bond	Tyr 1224, Tyr 1203
		Pi-Pi Stacking	Tyr 1224
2b	EGFR-4WKQ	Hydrophobic Interaction	Gln 791, Thr 790, Thr 854
		Polar Interactions	Leu 718, Leu 844, Met 793, Leu 792, Val 726, Ala 743, Ile 744, Ile 789, Leu 788,
			Leu 777, Met 766
		H-Bond	Met 793
		Halogen Bonding	Asp 855
	ALK-4Z55	Hydrophobic Interaction	Hid 1124
		Polar Interactions	Leu 1122, Val 1130, Met 1199, Leu 1198, Leu 1256, Leu 1196, Val 1180, Ala
			1148, Val 1180, Ala 1126
		H-Bond	Lys 1150, Ala 1126, Hid 1124
		Halogen Bonding	Met 1199
	VEGFR-4AG8	Hydrophobic Interaction	Asn 923
		Polar Interactions	Cys 919, Phe 918, Val 916, Leu 1035, Ala 866, Val 899, Phe 1047, Cys 1045, Leu
			840, Val 848
		H-Bond	Cys 919
		Halogen Bonding	Glu 917
	TNKS-4W5S	Hydrophobic Interaction	Ser 1221, Hid 1184, Ser 1186, Hid 1201
		Polar Interactions	Ala 1215, Phe 1214, Tyr 1213, Tyr 1203, Ile 1228, Pro 1187, Tyr 1224, Ala 1202, Phe 1188, Phe 1183
		H-Bond	Tyr 1213, Hid 1201

Compounds	Protein and PDB IDs	Nature of Interactions	Amino acids on active sites
		Pi-Pi Stacking	Hid 1184, Tyr 1224
2c	EGFR-4WKQ	Hydrophobic Interaction	Gln 791, Thr 790, Thr 854
		Polar Interactions	Leu 718, Leu 844, Met 793, Leu 792, Val 726, Ala 743, Ile 744, Leu 788, Met 766,
			Phe 856
		H-Bond	Met 793
		Halogen Bonding	Leu 788, Lys 745, Ala 743
	ALK-4Z55	Hydrophobic Interaction	Hid 1124
		Polar Interactions	Leu 1122, Val 1130, Met 1199, Leu 1198, Leu 1256, Leu 1196, Val 1180, Ala
			1148, Val 1180
		H-Bond	Glu 1197
	VEGFR-4AG8	Polar Interactions	Cys 919, Phe 918, Val 916, Leu 1035, Ala 866, Val 899, Phe 1047, Cys 1045, Leu
			840, Val 848, Val 914, Ile 915, Val 867, Leu 889, Val 898, Ile 1044
		Pi Cation	Lys 868
	TNKS-4W5S	Hydrophobic Interaction	Ser 1221, Hid 1184, Ser 1186, Hid 1201
		Polar Interactions	Phe 1214, Tyr 1213, Met 1207, Tyr 1203, Ile 1228, Pro 1187, Tyr 1224, Ile 1212,
			Ala 1202
		H-Bond	Hid 1201, Tyr 1213
		Halogen Bonding	Ser 1221, Gly 1185
		Pi-Pi Stacking	Tyr 1224, Hid 1184
2d	EGFR-4WKQ	Hydrophobic Interaction	Thr 790, Thr 854
		Polar Interactions	Leu 718, Leu 844, Met 793, Leu 792, Val 726, Ala 743, Met 766, Pro 794
		H-Bond	Csx 797, Met 793
		Halogen Bonding	Cys 745
	ALK-4Z55	Hydrophobic Interaction	Hid 1124
		Polar Interactions	Leu 1122, Val 1130, Met 1199, Leu 1198, Leu 1256, Leu 1196, Val 1180, Ala
			1148, Val 1180
		H-Bond	Glu 1197
	VEGFR-4AG8	Hydrophobic Interaction	Asn 923, Thr 926
		Polar Interactions	Cys 919, Phe 918, Val 916, Leu 1035, Ala 866, Val 899, Phe 1047, Cys 1045, Leu
			840, Val 848
		H-Bond	Cys 919
		Halogen Bonding	Asp 1046
		Pi-Pi Stacking	Phe 1047
	TNKS-4W5S	Hydrophobic Interaction	Ser 1221, Hid 1184, Ser 1186
		Polar Interactions	Ala 1215, Phe 1214, Tyr 1213, Met 1207, Tyr 1203, Ile 1228, Pro 1187, Tyr 1224
		H-Bond	Tyr 1224, Tyr 1203
2		Pi-Pi Stacking	Tyr 1224
Ze	EGFR-4WKQ	Hydrophobic Interaction	Gin 791, Thr 790
		Polar Interactions	Leu / 18, Leu 844, Met / 93, Leu / 92, Vai / 26, Aia / 43, Met / 66, Pro / 94
	ALV 4755	H-BONG Hydrophobic Interaction	USX 797, Met 793
	ALK-4255	Delar Interactions	ПИ 1124 Lau 1122 Val 1120 Mat 1100 Lau 1100 Lau 1266 Lau 1106 Val 1100 Ala
		Folar Interactions	Leu 1122, Val 1150, Met 1157, Leu 1190, Leu 1250, Leu 1190, Val 1100, Ala 1140, Val 1100, Ala 1126
		H-Bond	1140, Val 1100, Ala 1120 Ala 1126 Luc 1150 Hid 1124
	VECER_44C8	Hydrophobic Interaction	Ata 1120, Lys 1150, 110 1124 Asn 923 Thr 926
	VEGIA MAD	Polar Interactions	Cvs 919 Phe 918 Val 916 Leu 1035 Ala 866 Val 899 Phe 1047 Cvs 1045 Leu
		i olar interactions	840 Val 848
		H-Bond	Cvs 919
		Pi-Pi Stacking	Phe 1047
	TNKS-4W5S	Hydrophobic Interaction	Ser 1221 Hid 1184 Ser 1186 Hid 1201
	11110 11100	Polar Interactions	Ala 1215. Phe 1214 Tvr 1213. Tvr 1203. Ile 1228. Pro 1187. Tvr 1224. Ala 1202.
			Phe 1188. Ile 1212
		H-Bond	Hid 1201. Tvr 1213
		Pi-Pi Stacking	Hid 1184. Tvr 1224
3a	EGFR-4WKO	Hydrophobic Interaction	Gln 791. Thr 790. Thr 854
		Polar Interactions	Leu 718, Leu 844, Met 793, Leu 792, Val 726, Ala 743, Met 766, Leu 788, Pro
			794. Cvs 775
	ALK-4Z55	Hydrophobic Interaction	Ser 1206
		Polar Interactions	Leu 1122, Val 1130, Met 1199, Leu 1198, Leu 1256, Leu 1196, Val 1180, Ala
			1148, Val 1180, Ala 1200
	VEGFR-4AG8	Hydrophobic Interaction	Thr 926, Asn 923
		Polar Interactions	Phe 921, Cys 919, Phe 918, Leu 1035, Val 916, Ala 866, Val 899, Cys 1045, Leu
			840, Val 848, Phe 1047
		H-Bond	Cys 919, Leu 840
	TNKS-4W5S	Hydrophobic Interaction	Ser 1221, Hid 1184, Ser 1186, Hid 1201
		Polar Interactions	Ala 1215, Tyr 1213, Tyr 1203, Ile 1228, Pro 1187, Tyr 1224, Phe 1188, Ala 1202.
			Ile 1212, Phe 1214
		H-Bond	Hid 1201, Tyr 1213
		Pi-Pi Stacking	Hid 1184, Hid 1201
3b	EGFR-4WKQ	Hydrophobic Interaction	Gln 791, Thr 790, Thr 854
		Polar Interactions	Leu 718, Leu 844, Met 793, Leu 792, Val 726, Ala 743, Ile 789, Met 766, Leu 788,
			Pro 794, Ile 744, Leu 777

Compounds	Protein and PDB IDs	Nature of Interactions	Amino acids on active sites
		H-Bond	Met 793, Glu 791
		Halogen Bonding	Lys 745
	ALK-4Z55	Hydrophobic Interaction	
		Polar Interactions	Leu 1122, Met 1199, Leu 1198, Leu 1256, Leu 1196, Val 1180, Ala 1148, Val 1180, Ala 1200
		H-Bond	Met 1199
	VEGFR-4AG8	Hydrophobic Interaction	Asn 923
		Polar Interactions	Phe 921, Cys 919, Phe 918, Leu 1035, Val 916, Ala 866, Val 899, Cys 1045, Leu 840, Val 848, Phe 1047, Val 867, Val 914, Leu 889
		H-Bond	Cys 919
		Pi-Pi Stacking	Phe 1047
	TNKS-4W5S	Hydrophobic Interaction	Lys 000 Sar 1221 Hid 1184 Sar 1186 Hid 1201
	11110 11105	Polar Interactions	Ala 1215, Phe 1214, Tyr 1213, Tyr 1203, Ile 1228, Pro 1187, Tyr 1224, Ala 1202, Ile 1212, Phe 1188, Phe 1183
		Halogen Bonding	Tyr 1224, Tyr 1213
3c	EGFR-4WKQ	Hydrophobic Interaction	Gln 791, Thr 790, Thr 854
		Polar Interactions	Leu 718, Leu 844, Met 793, Leu 792, Val 726, Ala 743, Met 766, Leu 788, Pro 794
		H-Bond	Met 793
	ALK-4Z55	Hydrophobic Interaction	Asn 1254
		Polar Interactions	Leu 1122, Val 1130, Met 1199, Leu 1198, Leu 1256, Leu 1196, Val 1180, Ala 1149, Val 1190, Ala 1200, Ala 1197
		H-Bond	1140, Val 1180, Ala 1200, Ala 1126 Lus 1150 Mat 1199
	VEGER-44C8	Hydrophobic Interaction	Asn 923
	V LGI N-TAUO	Polar Interactions	Phe 921, Cys 919, Phe 918, Leu 1035. Val 916. Ala 866. Val 899. Cys 1045. Leu
			840, Val 848, Phe 1047, Val 914, Leu 889
		H-Bond	Cys 919
		Pi-Pi Stacking	Phe 1047
		Pi Cation	Lys 868
	TNKS-4W5S	Hydrophobic Interaction	Ser 1221, Hid 1184, Ser 1186, Hid 1201
		Polar Interactions	Phe 1214, Tyr 1213, Tyr 1203, Ile 1228, Pro 1187, Tyr 1224, Ile 1212, Phe 1188, Phe 1197, Ile 1192
		H-Bond	
		Halogen Bonding	Gly 1185, Ser 1221
34	ECEP-AWKO	PI-PI Stacking Hydrophobic Interaction	1 yr 1224 Thr 790 Thr 954
Su	LUFK-4WKQ	Polar Interactions	1111 7 50, 1111 054 Leu 718 Leu 844 Met 793 Leu 792 Val 726 Ala 743 Met 766 Pro 794 Phe 795
		H-Bond	Met 793
		Halogen Bonding	Asp 855
		Pi-Pi Stacking	-
		Pi Cation	
	ALK-4Z55	Hydrophobic Interaction	Asn 1254
		Polar Interactions	Leu 1122, Val 1130, Met 1199, Leu 1198, Leu 1256, Leu 1196, Val 1180, Ala 1148, Val 1180, Ala 1200 Met 1100, Luc 1150
		Halogen Bonding	Met 1199, Lys 1150
		Pi-Pi Stacking	
		Pi Cation	
	VEGFR-4AG8	Hydrophobic Interaction	Thr 926, Asn 923
		Polar Interactions	Phe 921, Cys 919, Phe 918, Leu 1035, Val 916, Ala 866, Val 899, Cys 1045, Leu 840, Val 848, Phe 1047
		H-Bond	Cys 919, Leu 840
		Halogen Bonding	Asp 1046
		PI-PI Stacking Di Cation	
	TNKS-4W5S	Pr Cauon Hydrophobic Interaction	 Ser 1221 Hid 1184 Ser 1186 Hid 1201
	11113-41035	Polar Interactions	Ala 1215, Phe 1214, Tyr 1213, Tyr 1203, Ile 1228, Pro 1187, Tyr 1224, Ile 1212, Phe 1188, Phe 1197, Ile 1192, Ala 1191
		H-Bond	Ser 1186
		Pi-Pi Stacking	Tyr 1224
3e	EGFR-4WKQ	Hydrophobic Interaction	Gln 791, Thr 790, Thr 854
		Polar Interactions	Leu 718, Leu 844, Met 793, Leu 792, Val 726, Ala 743, Met 766, Leu 788, Phe 794
		H-Bond	Met 793
		Halogen Bonding	
		FI-FI Stacking Pi Cation	-
	ALK-4755	FI Gauon Hydrophobic Interaction	 Asn 1254
	<u>ишк</u> -т <i>L</i> JJ	Polar Interactions	Leu 1122, Val 1130, Met 1199, Leu 1198, Leu 1256, Leu 1196, Val 1180, Ala
			1148, Val 1180, Ala 1200, Ala 1126
		H-Bond	Met 1199, Lys 1150
		Halogen Bonding	
		Pi-Pi Stacking	

Compounds	Protein and PDB IDs	Nature of Interactions	Amino acids on active sites
	100105	Pi Cation	
	VEGFR-4AG8	Hydrophobic Interaction	Asn 923
		Polar Interactions	Cvs 919, Phe 918, Leu 1035, Val 916, Ala 866, Val 899, Cvs 1045, Leu 840, Val
			848. Phe 1047
		H-Bond	Cys 919, Leu 840
		Halogen Bonding	
		Pi-Pi Stacking	Phe 1047
		Pi Cation	
	TNKS-4W5S	Hydrophobic Interaction	Ser 1221, Hid 1184, Ser 1186, Hid 1201
		Polar Interactions	Ala 1215, Phe 1214, Tyr 1213, Tyr 1203, Ile 1228, Pro 1187, Tyr 1224, Ile 1212,
			Phe 1188, Phe 1197, Ile 1192, Ala 1191
		H-Bond	Ser 1186
		Halogen Bonding	
		Pi-Pi Stacking	Tyr 1224
		Pi Cation	

Fig. 2: Molecular docking (a) 2D (b) 3D interactions of pyrazolopyrimidine 2e with 4WKQ

Fig. 3: Molecular docking (a) 2D (b) 3D interactions of pyrazolopyrimidine 2e with 4Z55

Fig. 4: Molecular docking (a) 2D (b) 3D interactions of pyrazolopyrimidine 2e with 4AG8

Fig. 5: Molecular docking (a) 2D (b) 3D interactions of pyrazolopyrimidine 2e with 4W5S

Pharmacophore hypothesis generation and modeling

The results of all featured pharmacophore hypotheses are in table 6. DHRRR_1 is having the best survival score of 5.1979 in this study,

which consists of one hydrophobic group (H), one hydrogen bond donor (D), and three aromatic rings (R). The distances between the sites in the common pharmacophore hypothesis DHRRR_1 are given in fig. 6 (a-b) and table 7.

Hypothesis ID	Survival score	Site score	Vector score	Volume	Selectivity	
DRRR_1	4.753541	0.967441	0.897639	0.778978	1.331332	
DRRR_2	4.742687	0.966377	0.897544	0.777513	1.323101	
ADRR_1	4.638511	0.966887	0.897754	0.779634	1.216084	
ADRR_2	4.622626	0.970017	0.898106	0.777694	1.198658	
ADRR_3	4.508706	0.942376	0.90864	0.690508	1.18903	
DHRRR_1	5.197949	0.90054	0.861293	0.812639	2.021416	
DHRRR_2	5.164714	0.882849	0.854915	0.809522	2.015368	
ADHRR_1	5.000595	0.864909	0.861097	0.813654	1.858875	
ADHRR_2	4.968628	0.864643	0.858113	0.807504	1.836308	
ADHRR_3	4.915803	0.853138	0.86407	0.814323	1.782212	
ADHRR_4	4.904614	0.868992	0.865852	0.813708	1.754002	
ADHRR_5	4.898018	0.851548	0.85963	0.807438	1.777342	
ADHRR_6	4.893939	0.846438	0.886796	0.781327	1.777319	
ADHRR_7	4.881754	0.844744	0.859158	0.814788	1.761005	
DHRR_5	4.529072	0.70509	0.955143	0.688846	1.481023	
DHRR_1	4.712077	0.988826	0.852928	0.775829	1.492433	
DHRR_2	4.684691	0.934964	0.862256	0.786716	1.498695	
DHRR_3	4.682611	0.917492	0.865663	0.781164	1.51623	
DHRR_4	4.620457	0.867853	0.852025	0.783564	1.514955	
DHRRR_3	4.901226	0.663248	0.935309	0.690003	2.010606	

Table 6: Score hypothesis

Table 7: Distances between different sites of model DHRRR_1

S. No.	Site 1	Site 2	Distance
1.	H8	D6	5.12
2.	H8	R11	3.16
3.	H8	R9	5.09
4.	H8	R10	6.53
5.	D6	R11	3.41
6.	D6	R9	4.57
7.	D6	R10	8.34
8.	R11	R9	2.15
9.	R11	R10	5.12
10.	R11	H8	3.16
11.	R11	D6	3.41
12.	R9	R10	3.97
13.	R9	H8	5.09
14.	R9	D6	4.57
15.	R9	R11	2.15
16.	R10	H8	6.53
17.	R10	D6	8.34
18.	R10	R11	5.12
19.	R10	R9	3.97

Fig. 6: a) Pharmacophore hypothesis DHRRR_1 b) Distances in the pharmacophore hypothesis DHRRR_1

S. No.	Comp-	MW	Log P	donorHB	Accpt	PSA	QPlogHERG	QPP	QPlog	Percent human oral
	ounds				HB			Caco	Khsa	absorption
1.	Ceritinib	577.743	4.838	2	9.75	119.604	-7.51	54.854	1.146	73.44
2.	Axitinib	386.47	4.721	2	4.5	74.603	-6.767	861.397	0.728	100
3.	Gefitinib	446.908	4.314	1	7.7	61.213	-7.105	1044.67	0.351	100
4.	3J1	332.361	2.438	2	6.7	89.242	-6.288	352.29	0.097	86.808
5.	2a	250.262	1.41	2	5	89.799	-5.273	236.605	-0.209	77.689
6.	2b	284.707	1.859	2	5	90.018	-5.241	237.627	-0.107	80.355
7.	2c	284.707	1.897	2	5	89.767	-5.223	236.907	-0.108	80.553
8.	2d	284.707	1.895	2	5	89.789	-5.208	236.913	-0.109	80.543
9.	2e	268.253	1.638	2	5	89.79	-5.153	237.079	-0.173	79.045
10.	3a	298.301	3.232	1	3	104.222	-5.703	299.715	0.471	90.197
11.	3b	332.746	3.679	1	3	105.318	-5.612	282.256	0.597	92.346
12.	3c	332.746	3.728	1	3	104.218	-5.626	299.505	0.59	93.095
13.	3d	332.746	3.728	1	3	104.227	-5.624	299.536	0.591	93.099
14.	3e	316.291	3.468	1	3	104.233	-5.583	299.429	0.515	91.575

Table 8: Physicochemical and ADMET properties of pyrazole derivatives

Table 9: PASS prediction of anticancer properties

	Compounds	Activity	Ра
1.	2a	Antineoplastic (melanoma)	0.155
		Antineoplastic antimetabolite	0.108
		Epidermal growth factor receptor kinase inhibitor	0.142
		ALK inhibitor	0.107
		Tankyrase inhibitor	0.254
2.	2b	ALK inhibitor	0.101
		Antineoplastic (melanoma)	0.139
		Tankyrase inhibitor	0.174
		Epidermal growth factor receptor kinase inhibitor	0.133
3.	2c	Epidermal growth factor receptor kinase inhibitor	0.138
		ALK inhibitor	0.100
		Tankyrase inhibitor	0.182
4.	2d	Tankyrase inhibitor	0.192
		Epidermal growth factor receptor kinase inhibitor	0.146
		ALK inhibitor	0.108
5.	2e	Tankyrase inhibitor	0.275
		ALK inhibitor	0.115
		Epidermal growth factor receptor kinase inhibitor	0.145
6.	3a	Antineoplastic (melanoma)	0.148
		Antineoplastic antimetabolite	0.113
		ALK inhibitor	0.097
		Antileukemic	0.205
7.	3b	Antineoplastic (multiple myeloma)	0.269
		Antineoplastic (melanoma)	0.136
		ALK inhibitor	0.094
8.	3c	Antileukemic	0.152
		ALK inhibitor	0.093
9.	3d	Antineoplastic (multiple myeloma)	0.223
		ALK inhibitor	0.098
10.	3e	Antineoplastic antimetabolite	0.102
		ALK inhibitor	0.104
		Antileukemic	0.186
		Tankyrase inhibitor	0.175

Drug-likeness, ADMET and prediction of activity spectral studies

The synthesized ten pyrazoles have good drug-likeness properties, as shown in table 8. We evaluated the physicochemical properties to fit into the Lipinski rule of five, which is a way to determine if they are orally bioavailable. The compounds have shown no violations for the Lipinski rule of 5. Their ADMET properties were analysed, and reported that all the compounds checked were found to have all the properties within the standard limit (table 8). The activity spectra for anticancer activity of the pyrazoles were predicted to find out the inhibitory effect on the particular enzymes (table 9). The compounds bearing pyrazolopyridines (2a-2e) are more effective against specific receptors such as EGFR, ALK and tankyrase.

In vitro anticancer study by MTT assay

The results of the cytotoxicity studies were presented in table 10. Compound 2e, at the highest concentration, 200 μ M, exhibited the most increased activity, which was 92% cytotoxic in nature and compounds 2d and 3d showed moderate cell growth inhibition around 80%. On correlating with their docking scores, these compounds have excellently interacted with the four lung cancer targets. Thus the results interpret that the synthesized derivatives might inhibit any of the four targets discussed and exert their anticancer action. On further analysis of the top interacted pyrazole 2e, they have maximum interaction with the VEGFR receptor, which proves their mechanism.

able 10: Cytotoxicity studies of the pyrazole derivatives	Fable	10: Cytot	toxicity st	udies of	the pyraz	zole deriv	atives
---	--------------	-----------	-------------	----------	-----------	------------	--------

S. No.	Compound ID	% Cytotoxicity					
		Concentration	n (μM)				
		25	50	100	200		
1.	2a	08	18	33	48		
2.	2b	15	32	48	71		
3.	2c	13	31	44	69		
4.	2d	17	34	51	84		
5.	2e	40	58	78	92		
6.	3a	09	20	30	45		
7.	3b	17	34	51	78		
8.	3c	08	19	36	53		
9.	3d	11	26	51	85		
10.	3e	10	22	38	56		

DISCUSSION

We found that the pyrazole condensed derivatives interacted with four lung cancer targets EGFR, ALK, VEGFR and TNKS, and their cytotoxicity action was proved against lung cancer. The compound 2e was the most active in both *in silico* and *in vitro* studies, followed by 3d and 2d. Top compound 2e interacted with the VEGFR receptor excellently with stable binding mode and affinity. The best pharmacophore hypothesis, DHRRR_1 reveals the importance of the hydrogen bond donors, hydrophobic and aromatic groups essential for the anticancer action. Thus, validating the hydrogen bonds, hydrophobic groups and pi-pi interactions, which were showed by molecular docking. As per the cytotoxicity studies, the anticancer activity of the compounds 2e, 3d and 2d might be due to the introduction of electron-withdrawing fluorine and chlorine atoms in the benzene ring attached to the pyrazole ring.

Lung cancer development is stimulated by specific signaling pathways produced by receptors such as EGFR, ALK, VEGFR and TNKS. Much research has been performed to prove the anticancer efficacy of pyrazolopyrimidines on lung cancer [35], and some reported their inhibitory potentials on specific targets such as EGFR [36], VEGFR [37], tankyrase inhibitors [38] etc. We have screened the anticancer action by in vitro studies using A549 cell lines as a preliminary evaluation. Some reports are interfering in EGFR [39, 40] /VEGFR [41] /ALK [42] /Wnt [43, 44] /pathways inhibits the proliferation of A549 cell lines, and with this proof, we have carried the MTT assay. Cucurbitacin [39] and diazole [40] have been reported in proliferation inhibition in A549 cells by interfering EGFR signaling pathway. A study was performed to evaluate the TNKS small molecule inhibitor XAV939 on the proliferation and migration of lung adenocarcinoma A549 cells and found that XAV939 intervention inhibited A549 cell proliferation [43]. Determination of the appropriate target should be performed by analysing the enzyme antagonistic potential further, authenticating the mechanism of inhibition.

CONCLUSION

The synthesized pyrazole derivatives interacted well with the selected lung cancer targets-EGFR, ALK, VEGFR and TNKS; with their docking scores above-5 kcal/mol equivalent with their standards. The molecular interactions are based on various parameters such as glide score, binding free energy, polar interactions, hydrophobic interactions, and hydrogen bond interactions. Further, the *in vitro*

results exhibit compounds 2e as the best anti-lung cancer agents followed by 3d and 2d, which was in agreement with their docking results. ADMET properties reported that all the compounds were found to have properties within the standard limit. The activity spectra of the pyrazoles predicted that pyrazolopyridines (2a-2e) are more effective against specific receptors such as EGFR, ALK and Tankyrase. Thus, this study suggests that the synthesized pyrazole derivatives can be further investigated to validate their enzyme inhibitory potentials by *in vivo* studies.

ACKNOWLEDGEMENT

We acknowledge Nitte Deemed to be University, Mangaluru, for the funding to carry out this project (University Research Grant No. NUFR1/2017/06/16). Also, thankful to the authorities of the NGSM Institute of Pharmaceutical Sciences, Mangaluru and NGSMIPS CADD lab for providing requirements for this work. Thanks to CUSAT, Cochin for NMR, Mysore University, Mysuru for Mass and Yenepoya Research Centre for anticancer studies.

AUTHORS CONTRIBUTIONS

All authors have contributed equally.

CONFLICT OF INTERESTS

The authors declare no conflict of interest, financial or otherwise.

REFERENCES

- Prabhu VV, Devaraj N. Epidermal growth factor receptor tyrosine kinase: A potential target in the treatment of nonsmall-cell lung carcinoma. J Environ Pathol Toxicol Oncol. 2017;36(2):151-8. doi: 10.1615/JEnvironPatholToxicolOncol. 2017018341, PMID 2017018341.
- Alferez D, Wilkinson RW, Watkins J, Poulsom R, Mandir N, Wedge SR, Pyrah IT, Smith NR, Jackson L, Ryan AJ, Goodlad RA. Dual inhibition of VEGFR and EGFR signaling reduces the incidence and size of intestinal adenomas in Apc(Min/+) mice. Mol Cancer Ther. 2008;7(3):590-8. doi: 10.1158/1535-7163.MCT-07-0433, PMID 18347145.
- Antonicelli A, Cafarotti S, Indini A, Galli A, Russo A, Cesario A, Lococo FM, Russo P, Mainini AF, Bonifati LG, Nosotti M, Santambrogio L, Margaritora S, Granone PM, Dutly AE. EGFRtargeted therapy for non-small cell lung cancer: focus on EGFR

oncogenic mutation. Int J Med Sci. 2013;10(3):320-30. doi: 10.7150/ijms.4609, PMID 23423768.

 Castanon E, Martin P, Rolfo C, Fusco JP, Ceniceros L, Legaspi J, Santisteban M, Gil-Bazo I. Epidermal growth factor receptor targeting in non-small cell lung cancer: revisiting different strategies against the same target. Curr Drug Targets. 2014;15(14):1273-83.doi:

10.2174/138945011514141216092935, PMID 25511613.

- Jänne PA, Yang JCH, Kim DW, Planchard D, Ohe Y, Ramalingam SS, Ahn MJ, Kim SW, Su WC, Horn L, Haggstrom D, Felip E, Kim JH, Frewer P, Cantarini M, Brown KH, Dickinson PA, Ghiorghiu S, Ranson M. AZD9291 in EGFR inhibitor-resistant non-smallcell lung cancer. N Engl J Med. 2015;372(18):1689-99. doi: 10.1056/NEJMoa1411817, PMID 25923549.
- Gerber DE, Minna JD. ALK inhibition for non-small cell lung cancer: from discovery to therapy in record time. Cancer Cell. 2010;18(6):548-51. doi: 10.1016/j.ccr.2010.11.033, PMID 21156280.
- Sang J, Acquaviva J, Friedland JC, Smith DL, Sequeira M, Zhang C, Jiang Q, Xue L, Lovly CM, Jimenez JP, Shaw AT, Doebele RC, He S, Bates RC, Camidge DR, Morris SW, El-Hariry I, Proia DA. Targeted inhibition of the molecular chaperone Hsp90 overcomes ALK inhibitor resistance in non-small cell lung cancer. Cancer Discovery. 2013;3(4):430-43. doi: 10.1158/2159-8290.CD-12-0440, PMID 23533265.
- Nguyen-Ngoc T, Bouchaab H, Adjei AA, Peters S. BRAF alterations as therapeutic targets in non-small-cell lung cancer. J Thorac Oncol. 2015;10(10):1396-403. doi: 10.1097/JTO.00000000000644, PMID 26301799.
- Gautschi O, Milia J, Cabarrou B, Bluthgen MV, Besse B, Smit EF, Wolf J, Peters S, Früh M, Koeberle D, Oulkhouir Y, Schuler M, Curioni-Fontecedro A, Huret B, Kerjouan M, Michels S, Pall G, Rothschild S, Schmid-Bindert G, Scheffler M, Veillon R, Wannesson L, Diebold J, Zalcman G, Filleron T, Mazières J. Targeted therapy for patients with BRAF-mutant lung cancer: results from the European EURAF cohort. J Thorac Oncol. 2015;10(10):1451-7. doi: 10.1097/JTO.00000000000625, PMID 26200454.
- Feng Y, Hu J, Ma J, Feng K, Zhang X, Yang S, Wang W, Zhang J, Zhang Y. RNAi-mediated silencing of VEGF-C inhibits non-small cell lung cancer progression by simultaneously downregulating the CXCR4, CCR7, VEGFR-2 and VEGFR-3-dependent axes-induced ERK, p38 and AKT signalling pathways. Eur J Cancer. 2011;47(15):2353-63. doi: 10.1016/j.ejca.2011.05.006, PMID 21680174.
- Villaruz LC, Socinski MA. The role of anti-angiogenesis in nonsmall-cell lung cancer: an update. Curr Oncol Rep. 2015;17(6):26. doi: 10.1007/s11912-015-0448-y, PMID 25947099.
- Yang J, Chen J, He J, Li J, Shi J, Cho WC, Liu X. Wnt signaling as potential therapeutic target in lung cancer. Expert Opin Ther Targets. 2016;20(8):999-1015. doi: 10.1517/14728222. 2016.1154945, PMID 26882052.
- Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol. 2018;12(1):3-20. doi: 10.1002/1878-0261.12155, PMID 29124875.
- Shackelford RE, Vora M, Mayhall K, Cotelingam J. ALKrearrangements and testing methods in non-small cell lung cancer: a review. Genes Cancer. 2014;5(1-2):1-14. doi: 10.18632/genes and cancer.3, PMID 24955213.
- 15. Alevizakos M, Kaltsas S, Syrigos KN. The VEGF pathway in lung cancer. Cancer Chemother Pharmacol. 2013;72(6):1169-81. doi: 10.1007/s00280-013-2298-3, PMID 24085262.
- Riffell JL, Lord CJ, Ashworth A. Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat Rev Drug Discovery. 2012;11(12):923-36. doi: 10.1038/nrd3868, PMID 23197039.
- Santarpia M, Liguori A, Karachaliou N, Gonzalez-Cao M, Daffina MG, D'Aveni A, Marabello G, Altavilla G, Rosell R. Osimertinib in the treatment of non-small-cell lung cancer: design, development and place in therapy. Lung Cancer (Auckl). 2017;8:109-25. doi: 10.2147/LCTT.S119644, PMID 28860885.
- Descourt R, Perol M, Rousseau-Bussac G, Planchard D, Mennecier B, Wislez M, Cortot A, Guisier F, Galland L, Dô P, Schott R, Dansin E, Arrondeau J, Auliac JB, Chouaid C. Brigatinib in patients with ALKpositive advanced non-small-cell lung cancer pretreated with

sequential ALK inhibitors: A multicentric real-world study (BRIGALK study). Lung Cancer. 2019;136:109-14. doi: 10.1016/i.lungcan.2019.08.010. PMID 31491676.

- Martinelli E, Troiani T, Morgillo F, Rodolico G, Vitagliano D, Morelli MP, Tuccillo C, Vecchione L, Capasso A, Orditura M, De Vita F, Eckhardt SG, Santoro M, Berrino L, Ciardiello F. Synergistic antitumor activity of sorafenib in combination with epidermal growth factor receptor inhibitors in colorectal and lung cancer cells. Clin Cancer Res. 2010;16(20):4990-5001. doi: 10.1158/1078-0432.CCR-10-0923, PMID 20810384.
- Shukla P, Sharma A, Fageria L, Chowdhury R. Novel spiro/nonspiro pyranopyrazoles: eco-friendly synthesis, *in vitro* anticancer activity, DNA binding, and in-silico docking studies. Curr Bioact Compd. 2019;15(2):257-67. doi: 10.2174/1573407213666170828165512.
- Pj J, K IB. Synthesis, *in silico* physicochemical properties and biological activities of some pyrazoline derivatives. Asian J Pharm Clin Res. 2017;10(4):456-9. doi: 10.22159/ ajpcr.2017.v10i4.17093.
- Bhat IS, Jainey PJ. Antimicrobial studies of some substituted pyrazoline derivatives derived from acetyl hydrazines. Asian J Pharm Clin Res. 2014;7(4):237-9.
- James JP, Kumar P, Kumar A, Bhat KI, Shastry CS. In silico anticancer evaluation, molecular docking and pharmacophore modeling of flavonoids against various cancer targets. Lett Drug Des Discovery. 2020 Dec 1;17(12):1485-501. doi: 10.2174/1570180817999200730164222.
- Kodical DD, James JP, Deepthi K, Kumar P, Cyriac C, Gopika KV. ADMET, Molecular docking studies and binding energy calculations of pyrimidine-2-thiol derivatives as cox inhibitors. Res J Pharm Technol. 2020 Sep 1;13(9):4200-6. doi: 10.5958/0974-360X.2020.00742.8.
- Salaheldin AM, Oliveira Campos AMF, Rodrigues LM. Heterocyclic synthesis with nitriles: synthesis of pyrazolopyrimidine and pyrazolopyridine derivatives. Synth Commun. 2009;39(7):1186-95. doi: 10.1080/00397910802517814.
- Schrödinger. Schrödinger Release; 2019. Vol. 4. Available from: https://www.schrodinger.com. [Last accessed on 10 Jul 2021]
- PDB database. Available from: https://www.rcsb.org/ structure/4WKQ. [Last accessed on 10 Jul 2021].
- Michellys PY, Chen B, Jiang T, Jin Y, Lu W, Marsilje TH, Pei W, Uno T, Zhu X, Wu B, Nguyen TN, Bursulaya B, Lee C, Li N, Kim S, Tuntland T, Liu B, Sun F, Steffy A, Hood T. Design and synthesis of novel selective anaplastic lymphoma kinase inhibitors. Bioorg Med Chem Lett. 2016;26(3):1090-6. doi: 10.1016/j.bmcl.2015.11.049, PMID 26750252.
- McTigue M, Murray BW, Chen JH, Deng YL, Solowiej J, Kania RS. Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proc Natl Acad Sci USA 2012;109(45):18281-9. doi: 10.1073/pnas.1207759109, PMID 22988103.
- 30. Johannes JW, Almeida L, Barlaam B, Boriack Sjodin PA, Casella RP, Croft RA, Dishington AP, Gingipalli L, Gu C, Hawkins JL, Holmes JL, Howard T, Huang J, Ioannidis S, Kazmirski S, Lamb ML, McGuire TM, Moore JE, Ogg D, Patel A, Pike KG, Pontz T, Robb GR, Su N, Wang H, Wu X, Zhang HJ, Zhang Y, Zheng X, Wang T. Pyrimidinone nicotinamide mimetics as selective tankyrase and wnt pathway inhibitors suitable for *in vivo* pharmacology. ACS Med Chem Lett. 2015;6(3):254-9. doi: 10.1021/ml5003663, PMID 25815142.
- Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006;49(21):6177-96. doi: 10.1021/jm0512560, PMID 17034125.
- 32. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev. 2001;46(1-3):3-26. doi: 10.1016/s0169-409x(00)00129-0, PMID 11259830.
- Druzhilovskiy DS, Rudik AV, Filimonov DA, Lagunin AA, Gloriozova TA, Poroikov VV. Online resources for the prediction of biological

activity of organic compounds. Russ Chem Bull. 2016;65(2):384-93. doi: 10.1007/s11172-016-1310-6.

- Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. J Immunol Method. 1986;89(2):271-7. doi: 10.1016/0022-1759(86)90368-6.
- El-Kalyoubi SA. Synthesis and anticancer evaluation of some novel pyrimido[5,4-e][1,2,4]triazines and pyrazolo[3,4d]pyrimidine using DMF-DMA as methylating and cyclizing agent. Chem Cent J. 2018;12(1):64. doi: 10.1186/s13065-018-0424-3, PMID 29796716.
- Ismail NSM, Ali EMH, Ibrahim DA, Serya RAT, Abou El Ella DA. Pyrazolo [3, 4-d] pyrimidine-based scaffold derivatives targeting kinases as anticancer agents. Future J Pharm Sci. 2016;2(1):20-30. doi: 10.1016/j.fjps.2016.02.002.
- Sun N, Ji H, Wang W, Zhu Q, Cao M, Zang Q. Inhibitory effect of dexamethasone on residual Lewis lung cancer cells in mice following palliative surgery. Oncol Lett. 2017;13(1):356-62. doi: 10.3892/ol.2016.5422, PMID 28123567.
- Chedid M, Eissa HO, Engler TA, Furness KW, Woods TA, Wrobleski AD. US Patent No. 9,624,218. Washington, DC: US Patent and Trademark Office; 2017.
- 39. Zhang J, Song Y, Liang Y, Zou H, Zuo P, Yan M, Jing S, Li T, Wang Y, Li D, Zhang T, Wei Z. Cucurbitacin IIa interferes with EGFR-MAPK signaling pathway leads to proliferation inhibition in A549 cells. Food Chem Toxicol. 2019 Oct 1;132:110654. doi: 10.1016/j.fct.2019.110654.

- 40. Vinod Prabhu V, Elangovan P, Niranjali Devaraj S, Sakthivel KM. Targeting apoptosis by 1, 2-diazole through regulation of EGFR, Bcl-2 and CDK-2 mediated signaling pathway in human nonsmall cell lung carcinoma A549 cells. Gene. 2018 Dec 30;679:352-9. doi: 10.1016/j.gene.2018.09.014, PMID 30218747.
- 41. Shi L, Zhang S, Wu H, Zhang L, Dai X, Hu J, Xue J, Liu T, Liang Y, Wu G. MiR-200c increases the radiosensitivity of non-small-cell lung cancer cell line A549 by targeting the VEGF-VEGFR2 pathway. PLOS ONE. 2013 Oct 30;8(10):e78344. doi: 10.1371/journal.pone.0078344, PMID 24205206.
- Yang L, Li G, Zhao L, Pan F, Qiang J, Han S. Blocking the PI3K pathway enhances the efficacy of ALK-targeted therapy in EML4-ALK-positive non-small-cell lung cancer. Tumour Biol. 2014 Oct;35(10):9759-67. doi: 10.1007/s13277-014-2252-y, PMID 24972969.
- Li C, Zheng X, Han Y, Lv Y, Lan F, Zhao J. XAV939 inhibits the proliferation and migration of lung adenocarcinoma A549 cells through the WNT pathway. Oncol Lett. 2018 Jun 1;15(6):8973-82. doi: 10.3892/ol.2018.8491, PMID 29805633.
- 44. Li P, Zhao S, Hu Y. SFRP2 modulates non-small cell lung cancer A549 cell apoptosis and metastasis by regulating mitochondrial fission via Wnt pathways. Mol Med Rep. 2019 Aug 1;20(2):1925-32. doi: 10.3892/mmr.2019.10393, PMID 31257495.