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ABSTRACT 

Diabetes mellitus (DM) is a metabolic disorder, whose prevalence is predicted to rise shortly. The present review focuses on the various ocular 
complications associated with DM, and the various ophthalmic formulation approaches developed to treat the same. Diabetic macular edema (DME), 
diabetic retinopathy, cataracts, and glaucoma are some of the major vision-threatening complications linked to DM. The ocular route of drug 
delivery has undergone several advancements in recent decades, the introduction of various novel drug delivery systems (DDS), various 
modifications in the existing formulation approaches, development of custom-designed personalized medications, being some of the major 
developments introduced in the field of ocular drug delivery. Due to the application of state-of-the-art technologies in the field of innovations 
related to ocular DDS, patients have been immensely benefited by the current modes of ocular treatment imparting fewer side effects, enhanced 
penetration, sustained drug effect, and so on. The present review includes and emphasizes the gradual development that has occurred from the 
conventional ophthalmic dosage forms to the currently reported novel ocular drug delivery approaches along with the related clinical research 
works. 
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INTRODUCTION 

Diabetes has affected approximately 285 million people around the 
world to date. According to the International Diabetes Federation, 
this number is predicted to rise to 439 million by 2030 [1]. In 1997, 
the American Diabetes Association (ADA) has reported the 
categorization scheme for type 1 (insulin-dependent), Type 2 
(insulin-dependent), and gestational diabetes mellitus (GDM), which 
have now been approved by the FDA also [2]. Diabetes mellitus (DM) 
is a metabolic disorder caused by the lack of insulin production, 
insulin activity, or both. Further, chronic hyperglycemia is caused by 
insulin insufficiency, impairing carbohydrate, lipid, and protein 
metabolisms [3, 4]. It is one of the leading global health issues that 
have arisen as a chronic non-communicable disease (CNCD). The 
major complications associated with DM, include cataracts, 
glaucoma, diabetic retinopathy (DR), and diabetic macular edema 
[5]. It also sometimes leads to amputation of limbs, blindness, and 
vascular brain diseases [3]. Further, due to the occurrence of long-
term hyperglycemia, the basement membrane of the eye 
accumulates enough toxic products, which cause irreversible 
damage to ophthalmic cells leading to cell death, ophthalmic opacity, 
and finally, vision impairment [4]. 

The present review has highlighted the development of various 
types of eye complications associated with diabetes, like diabetic 
cataracts, macular edema, formation of diabetic retinopathy and few 
others. It has also elaborated the methods of prevention of various 
ophthalmic complications resulting from diabetes, the development 
of various conventional and novel formulations used for the 
treatment of the same, as well as the associated clinical studies 
reported till date. The review has resulted from a thorough search 
on the literature available on the matter since 1969.  

Ocular complications associated with DM 

Diabetic cataracts 

This disease is the most prevalent cause of blindness in the world, as 
it arises when the natural lens of the eyes becomes obscured, and 
hence, light does not move clearly through the latter, with the 
development of cataracts, finally resulting in loss of vision, if not 
treated at the early stage of its development. The lens clouding and 

development of cataracts are caused by unwanted protein 
aggregation on the lens due to prolonged, and uncontrolled 
persistence of DM [6, 7]. The diabetics are reported to be five times 
more prone to get cataracts, especially at a young age. As the 
duration of diabetes increases, the chance of the development of 
diabetic cataracts also increases [8]. 

Glaucoma 

The term glaucoma refers to a group of eye illnesses that affects the 
optic nerves. Diabetic patients are twice as likely to develop 
glaucoma, which can cause loss of vision, and the development of 
blindness, if not treated early [9]. Various types of glaucoma have 
been reported during the last few decades. They are as follows:  

Open-angle glaucoma (OAG) 

Diabetes mellitus has been linked to an increased risk of OAG in 
various studies. The risk factors associated with DM causing OAG, 
include the development of high intraocular pressure (IOP), vascular 
abnormalities, such as malformed optic nerve vessels, and oxidative 
damages to the eye. It has been reported that the probability of 
developing OAG increases with the uncontrolled prolongation of 
type 2 DM. The disease has been reported to be painless, persistent, 
and asymptomatic at its early stages of development. In the 
advanced stages of the disease, the resistance imparted by the 
developed trabecular meshwork to the aqueous outflow within the 
eye, gradually increases, resulting in a gradual increase in IOP [10]. 

Closed-angle glaucoma (CAG) 

In CAG, the access to the drainage route from the eye is obstructed, 
resulting in the development of severe local pain, redness of the eye, 
nausea, and hike in IOP [10, 11]. 

Neovascular glaucoma (NVG) 

This type of glaucoma is associated with the development of new 
blood vessels in the eye, obstructing the normal flow of ophthalmic 
fluid, thereby causing a rise in intraocular fluid pressure [12]. It is 
quite difficult to treat this type of condition of the eye by usual 
treatment with medicines, thus categorizing NVG as an uncommon 
kind of glaucoma [10]. 
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Diabetic retinopathy 

It is a common condition with diabetics, in which the blood vessels 
in the retina swell up, leak, or become completely obstructed due to 
impaired blood sugar regulation. There may also be the 
development of new ophthalmic blood vessels growing gradually on 
the surface of the retina [13]. 

Diabetic macular edema 

Diabetic macular edema (DME) occurs when fluid accumulates on 
the retina, causing local swelling and distorted vision, ultimately 
resulting in permanent loss of vision. Diabetes-related vision loss 
can be averted in around 90% of instances, according to the Centres 
for Disease Control and Prevention (CDC) [4]. 

Thus, DM and its associated long-term ophthalmic complications 
have been the primary reasons for blindness for the last few 
decades, and surgical removal has been the only treatment available 
for the removal of diabetic cataracts [13, 14]. Recently, the 
development of various novel and targeted drug delivery 
approaches and custom-designed personalized medications has 
made it possible to delay and retard the process of development of 
various types of ocular complications resulting from DM [15]. 

Pathogenesis of ocular complications 

Pathogenesis of diabetic cataracts 

During prolonged DM, the enzymes aldose reductase, and sorbitol 
dehydrogenase, present in the ophthalmic lens, transform glucose 
into sorbitol, causing glutathione deficiency, resulting in the 
formation of cataracts [16]. The formation of AGE (advanced 
glycation end-products), and the activation of the polyol pathway 

help the ophthalmic cells to accumulate sorbitol [17]. Another 
mechanism of cataracts formation involves induction of lens protein 
oxidation, production of free radicals, and hydrogen peroxide [16]. 

It has been reported that three processes are involved in the 
formation of diabetic cataracts, viz., the polyol pathway, non-
enzymatic glycation, and oxidation [18]. 

Polyol pathway 

In the polyol pathway (fig. 1), two enzymes are involved, viz., aldose 
reductase (AR), and sorbitol dehydrogenase (SDH). The former is 
responsible for the conversion of glucose to sorbitol, while the latter 
converts sorbitol to fructose. Osmotic, oxidative, glycation, and 
protein kinase-C (PKC) stresses are the principal cell-damaging 
effects of excessive intracellular glucose flux developed via the 
polyol pathway. The loss of NADPH, a co-factor in the reducing 
pathway, mediated by aldose reductase, is thought to produce 
oxidative stresses, resulting in a reduction in the antioxidant 
capacity of the cells [19]. Glycation of lens proteins is also caused by 
the increased glucose levels in the aqueous humor, which results in 
the generation of superoxide radicals (O2-), and advanced glycation 
end products (AGE) [20]. The advanced glycation end products then 
interact with the advanced glycation receptors and lens epithelial 
material [21]. The most prevalent antioxidant enzyme in the lens is 
superoxide dismutase (SOD), which breaks superoxide radicals (O2-) 
into H2O2, and O2 [22]. Another mechanism involved in the 
production of 3-deoxyglucosone, a key precursor to the 
development of AGEs [23]. The sorbitol dehydrogenase enzyme 
enhances the elimination of dihydroxyacetone phosphate by 
increasing the NADH: NAD+ratio, a precursor for conversion of 
diacylglycerol (DAG) to glycerol-3-phosphate, which can produce 
PKC stress [24, 25].

 

 

Fig. 1: Aldose reductase and polyol pathway [19], [NADPH: Nicotinamide adenine dinucleotide phosphate; NAD+: Nicotinamide adenine 
dinucleotide; NADP+: Oxidized nicotinamide adenine dinucleotide phosphate; NADH: Reduced nicotinamide adenine dinucleotide; GSSG: 

Oxidized glutathione; GSH: Reduced glutathione] 

 

Non-enzymatic glycation 

One of the well-known mechanisms implicated in diabetes cataracts 
with age, is non-enzymatic glycation, in which advanced glycation 
end products pile up, causing opacity of lens [26]. Advanced 
glycation is caused by a non-enzymatic interaction between excess 
glucose and proteins, which can result in the creation of superoxide 
radicals, and AGEs [27]. 

Oxidation 

The effects of oxidative stress on diabetic lens fibers, generated by 
the free radicals, have been studied in several types of recent 
researches. There isn't any proof, however, that the process of 
cataracts formation is initiated by these free radicals, but it rather 
accelerates and aggravates its growth. The aqueous humor of 
diabetics contains high levels of hydrogen peroxide (H2O2), which 
causes hydroxyl radicals (OH-) to develop after entering the lens 
through a mechanism known as Fenton reactions [28]. Another 

component that is increasingly deposited on diabetic lenses, and 
aqueous humor, is the free radical nitric oxide (NO) Because of its 
oxidizing properties, it can cause an increase in the formation of 
peroxynitrite, which further causes cell damage [29]. 

Pathogenesis of glaucoma 

The secretion of aqueous humor from the ciliary body, and drainage 
of the former through two distinct routes, the trabecular meshwork 
and the uveoscleral outflow pathway, regulate the intraocular 
pressure (the pressure inside the eye), the increase of which has 
been the key feature in the development of glaucoma. Diabetes 
mellitus also has been linked to a variety of glaucoma conditions, 
including open-angle glaucoma (OAG), angle-closure glaucoma 
(CAG), and neovascular glaucoma (NVG) [30, 31]. 

Several common links have been established and explained to 
contribute to the possible correlation between diabetes and 
glaucoma [32]. Diabetes or hyperglycemia is associated with lipid 
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glycation, and lipid metabolism disorders, which can lead to 
increased intraocular pressure (IOP), vascular dysfunction, oxidative 
damage, excitotoxic damage, and so on (fig. 2). The malfunction, and 
death of retinal ganglion cells (RGCs) in glaucomatous eyes, cause 
permanent loss of vision [33, 34]. Vascular dysregulation, as well as 
elevation of nitric oxide, a potent vasodilator, have been observed in 
both the disorders, diabetic eye disease, and glaucoma. Nitric oxide 
is not only a well-known regulator of vascular tone but also causes 
apoptosis [35]. Furthermore, it has been reported that reactive 

nitrogen species play a significant role in inflammatory reactions 
through oxidative stresses, resulting in the damage of optic nerves 
[36]. The elevation of protein kinase C may also be linked to matrix 
metalloprotease trabecular meshwork abnormalities, which may 
result in impaired aqueous outflow and higher IOP [32]. 
Furthermore, overexpression of the metalloprotease-9 matrix has 
been linked to structural abnormalities in the optic nerve head in 
diabetic individuals, suggesting yet another probable link between 
diabetes, and glaucoma [37, 38].

 

 

Fig. 2: Systematic representation of various factors leading to glaucoma [30] 

 

Pathogenesis of diabetic retinopathy and diabetic macular 
edema 

As described in (fig. 3), hyperglycemia leads to the generation of free 
radicals (oxidative stress), activation of protein kinase C, and 
formation of advanced glycation end products (AGEs), which may 
trigger the development of DR, and maculopathy [39]. Disruption of 
the blood-retinal barrier (BRB) is important in the pathogenesis of 
diabetic macular edema; the altered vitreomacular interface may 
also play a role in the progression of macular edema. Other factors 
connected to the progression of DME, include hypoxia, reduced 
blood flow, retinal ischemia, and associated inflammation [40]. 
Inflammatory processes are upregulated within the diabetic retinal 
vasculature, such as increase in the vascular endothelial growth 
factor (VEGF) levels, endothelial dysfunction, leukocyte adhesion, 
decrease in the levels of pigment epithelium-derived factor (PDF), 

and increased development of protein kinase C, causing BRB 
breakdown, and increased vascular permeability [40-42]. 
Historically, DR has been thought to be caused by retinal capillary 
microvascular injury. However, there is mounting evidence that 
retinal neural failure occurs before vascular problems [43]. 
Neurodegeneration, neuroinflammation, and activation of RAS 
(renin-angiotensin system) have been identified as the important 
factors responsible for the development of DR [44]. Furthermore, 
both the stress in the endoplasmic reticulum (ER) and the abnormal 
production of mitochondria-derived reactive oxygen species play an 
important role in the development of DR [45]. As the unfolded 
protein response is unable to reduce ER stress, it contributes to 
increased oxidative damage, inflammation, and apoptosis in the ER 
lumen. All these are likely to play a significant role in the 
development of a variety of neuronal diseases in the brain, and 
retina, thereby aggravating DR from its early stage [46].

 

 

Fig. 3: Pathophysiology of DR and DME [41], [AGE: Advanced glycation end-product; PKC: Protein Kinase C; eNOS: Endothelial nitric oxide 
synthase 3; ET-1: Endothelin-1; VEGF: Vascular endothelial growth factor; TGF-β: Transforming growth factor-beta; IL-1a: Interleukin 1 

alpha; IL-6: Interleukin 6] 
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Prevention and treatment of ocular complications 

Prevention and treatment of diabetic cataracts 

The following categories of dietary phytochemicals and synthetic 
compounds are generally used to obtain the desired therapeutic 

effect against diabetic cataracts. These compounds are used as low-
cost, non-surgical cataract preventive measures, which are the need 
of the day (fig. 4) [47]. The conventional and novel drugs available 
for ocular complications have been depicted in tables 1 and 2, 
respectively.

 

 

Fig. 4: Treatment available for diabetic cataracts [7, 49, 51] 

 

Aldose reductase inhibitors (ARIs) 

Some promising ARIs with significant potential for the treatment of 
diabetic cataracts have been discovered in recent decades [48, 49]. The 
ongoing researches in the field of natural products have revealed 
evidence confirming that certain bioactive compounds can help to 
slow or stop diabetic problems from getting worse. These compounds 
also have significant in vitro as well as in vivo inhibitory effects on 
aldose reductase, the enzyme responsible for the conversion of glucose 
to sorbitol, resulting in the deposition of diabetic cataracts. 

The ARIs derived from natural sources include a range of 
structurally distinct compounds mostly belonging to the flavonoid 
category [50, 51]. Quercetin and genistein are two examples of such 
flavonoid compounds that slow the progression of the development 
of diabetic cataracts [51, 52]. Extracts from various indigenous 
herbs, often known as Indian Herbal Diabecona, such as Ocimum 
sanctum, Withania somnifera, Curcuma longa, and Azadirachta 
indica, have shown to support the ARI's role in preventing and 
delaying the progression of cataracts [53, 54]. Moreover, some 
synthetic ARIs, viz., alrestatin, imprestat, ponalrestat, epalrestat, 
zenarestat, and lidorestat have also been reported for their positive 
effects on the prevention of diabetic cataracts [55]. Amongst these, 
only epalrestsat has been introduced into the market for the 
treatment of diabetic neuropathy [56]. These findings offer the basis 
for the possible potential prophylactic as well as therapeutic use of 
ARIs against diabetic cataracts [57]. 

Antioxidants and ROS scavengers 

Antioxidant drugs and ROS scavengers may be useful since oxidative 
damage occurs indirectly as a result of polyol accumulation during 
the formation of diabetic cataracts. A variety of antioxidants have 
been found to delay cataracts formation in diabetic mice [58]. These 
include alpha-lipoic acid, ascorbic acid, vitamin E, and carotenoids, 
all of which have been evaluated, and confirmed to protect against 
diabetic cataracts [58, 59]. The most commonly used antioxidant 
enzymes include superoxide dismutase (SOD), and glutathione 
peroxidase to be used in the ophthalmic lens. These enzymes break 
down the superoxide radicals into H2O2, and oxygen (O2) [61]. In 
several in vitro, and in vivo studies, SOD has been shown to protect 
against cataracts formation during DM [62]. 

Inhibitors of lens epithelial cell apoptosis 

Apoptosis is a normal process of cell death that provides a 
physiological foundation for cataracts initiation and progression 

[63]. Depending on the nature of many apoptotic stimuli, the 
mechanisms involved in cell apoptosis are classified as intrinsic or 
extrinsic pathways. Oxidative stress, and mitochondrial damage, and 
dysfunction have been identified as important mediators of 
apoptosis in the epithelial cells of an ophthalmic lens, and they play a 
key role in the pathogenesis of cataracts [63, 64]. Grape seed 
extracts, resveratrol, and coenzyme Q10 (ubiquinone) are few 
examples of the reported inhibitors of epithelial cell apoptosis, all of 
which being operating as free radical scavengers, thereby reducing 
the development of ROS, increasing the defense against oxidative 
stress, and avoiding light-induced apoptosis of the epithelial cells 
[59,65-68]. 

Antiglycation agents 

Advanced glycation occurs in diabetic patients, but to a larger extent 
than that in normal aging, leading to the development of lens opacity 
[69]. The clinically used antiglycation agents also serve as potential 
anticataract agents, such as the naturally bioactive molecules like 
the polyphenols, phenolics, flavonoids, terpenes, carotenoids, 
polyunsaturated fatty acids, and synthetic compounds like aspirin, 
ibuprofen, aminoguanidine, and pyruvate [70-72]. The most 
prevalent component of green tea (Camella Sinensis) is 
epigallocatechin gallate (EGCG), which has strong antioxidant 
capabilities and also reduces the generation of H2O2 [7]. 

Prevention and treatment of glaucoma 

Adrenergic agonists 

Adrenergic agonists (norepinephrine), the primary 
neurotransmitters of the adrenergic system, produced by activation 
of the alpha, and/or beta receptors, have the potential for the 
treatment of glaucoma [73]. At the moment, the most well-known 
example is brimonidine, a selective alpha-2 receptor agonist that has 
been reported for its use in the treatment of glaucoma [74-76]. 

β-receptor antagonists 

By lowering intracellular cAMP levels, antagonists of β-receptors, 
which are found in the eye, inhibit the production of aqueous humor 
in the ciliary body [77]. Timolol has been the first anti-glaucoma 
drug to receive FDA approval, and it has been the most popular drug 
treating glaucoma for many years. Betaxolol, carteolol, metipranolol, 
and levobetaxolol have been amongst the first beta-receptor 
antagonists to hit the market, each with slightly distinct 
pharmacological features [78]. 
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Carbonic anhydrase inhibitors 

Topical carbonic anhydrase inhibitors prevent the formation of 
aqueous humor, thereby preventing the increase in IOP [79]. 
Brinzolamide and dorzolamide are two such drugs that have been 
used for lowering IOP. Acetazolamide, a systemic carbonic 
anhydrase inhibitor, is one of the most effective IOP-lowering 
medications now available on the market [80]. 

Parasympathomimetics 

By extending the trabecular meshwork, and Schlemm's canal, the 
parasympathomimetics cause smooth muscle cells in the ciliary 
body to contract, enhancing the outflow of aqueous humor [78]. The 
most well-known member of this class of antiglaucoma medications 
that can lower IOP is pilocarpine [81]. 

Prostaglandin analogs 

Prostaglandin analogs connect to the prostaglandin F (FP) receptors, 
thereby increasing the uveoscleral outflow. As a result, the ciliary 
muscle expands and the tissue-filled spaces along the ciliary muscle 
bundles are decompressed, releasing the IOP. Bimatoprost, 
latanoprost, tafluprost, and travoprost are some of the currently 
available prostaglandin analog drugs considered for first-line 
treatment of glaucoma [82]. 

Prevention and treatment of diabetic retinopathy and diabetic 
macular edema 

Corticosteroids have been shown to have anti-inflammatory and 
anti-angiogenetic properties via modulating pro-inflammatory 
mediators, such as tumor necrosis factor-alpha (TNF-α), interleukin-
1 (IL-1), and VEGF [83]. The levels of these mediators increase, as 
the disease progresses. For DME and DR, corticosteroid medication 
is a popular treatment option [84]. In the treatment of DME, and DR 
systemic corticosteroid therapy may be an effective adjunct to laser 
photocoagulation. Intravitreal triamcinolone acetonide (IVTA) has 
been shown to have anti-inflammatory properties and can aid in the 
treatment of DME. Because of its potent antiangiogenic effects, IVTA 
can also help to reduce PDR [84, 85]. 

Corticosteroid therapy with the sustained delivery system 

Triamcinolone acetonide (TA) implant is one of these delivery 
mechanisms for DME [85]. Fluocinolone acetonide 
nonbiodegradable intravitreal insert is another sustained drug 
delivery mechanism that attempts to release fluocinolone over three 
years. This approach is usually thin and allows for direct injection 
into the back of the eye through a self-sealing opening, which is 
under processing of FDA approval for future commercialization [83]. 
Ozurdex (allergen), a sustained-release biodegradable, intravitreal 
implant, and used for the treatment of macular edema, has also been 
authorized by the FDA. In phase I clinical trial with several open-
label and dose-escalation scenarios, NOVA63035 (intravitreal 
injection of dexamethasone palmitate) is now being examined in 
patients with DME to determine its safety, and tolerability [86]. 
Clinical experiments for the sustained-release delivery of TA, are 
presently using Verisome technology (IBI-20089) [83, 87]. 

Other non-steroidal anti-inflammatory agents 

Other nonsteroidal anti-inflammatory drugs (NSAIDs) have been 
licensed by the FDA for the treatment of DR, and DME. Nepafenac, a 
topical nonsteroidal medication that is beneficial in the treatment of 
DME, is one of them [88]. Clinical studies for nepafenac are presently 
underway. Anatomic and functional improvements were seen after 
systemic treatment of DME with intravitreal infliximab injection [89]. 

Antiangiogenic agents 

In addition to corticosteroids, antiangiogenic drugs are beneficial in 
the treatment of PDR, and DME. The vascular endothelial growth 
factor (VEGF) subfamily protein, which has been linked to the 
development of DR, and age-related macular edema degeneration 
(AMD) [83], is the primary target of these antiangiogenic agents. 
Bevacizumab is a humanized full-length antibody that targets all 
kinds of VEGF [90]. Exudative AMD is treated with ranibizumab, the 
FDA approved a recombinant humanized antibody fragment that 

targets VEGF-A in 2006 [91, 92]. JSM6427 (α5β1-fibronectin), a 
German biopharmaceutical company's developed antiangiogenic 
compound, has shown promising results in reducing DR. JSM6427 is 
now undergoing a phase I clinical trial [93]. GlaxoSmithKline 
developed Pazopanib, an antiangiogenic drug that is taken orally. 
VEGF receptor (VEGFR), platelet-derived growth factor receptor 
(PDGFR), and tyrosine-protein kinase KIT (c-kit) are all targets for 
this drug. It is now being investigated for safety, efficacy, and 
tolerability in phase III clinical trials [94]. 

Vitreous agents 

Vitrase is the first, and only ovine hyaluronidase that is free of 
preservatives and thimerosal. Its application as a spreading agent 
has been authorized by the FDA. A phase III clinical trial is underway 
to see if it can treat PDR-induced ocular hemorrhage [95]. 
Microplasmin is another vitreous agent that is injected intravitreally. 
It has been suggested that generating posterior vitreous detachment 
can be employed to treat DME, and PDR. for example, 
ThromboGenics NV [96]. 

The potential use of systemic agents to treat diabetic 
retinopathy 

Many drugs used to treat dyslipidemia, and hypertension in diabetic 
individuals have been shown to decrease the advancement of DR 
[88]. 

Hypoglycemic agent–Insulin therapy, Thiazolidine 

Hypolipidemic agent-Fibrates (fenofibrate) 

Statin–Atorvastatin 

Antiplatelets–Dipyridamole, Aspirin 

Potential plant-based drugs 

Plant-based therapies have also been shown to be useful in the 
treatment of DR. Because of their efficacy, ability to generate 
hypoglycemic effects, and renoprotective qualities, plant-based 
medicines are utilized to treat DR illness. One of the metabolic 
processes that contribute to DR development is the activation of the 
polyol pathway [97, 98]. 

This route is responsible for metabolizing excess glucose in 
diabetics. Ocimum sanctum, Tinospora cordifolia, Azadirachta indica, 
Ganoderma lucidum, and other plants contain AR inhibitors. Ocimum 
sanctum protects against DR when combined with vitamin E [97]. 
Tinospora cordifolia protects against DR by reducing oxidative stress 
in the retina caused by increased levels of proangiogenic, and 
proinflammatory mediators [98]. The fungus Ganoderma lucidum 
protects the retina against oxidative damage [99]. Curcumin is a 
plant-derived medication that has been shown to diminish DR 
progression in a rat model by suppressing retinal VEGF 
overexpression [100]. Curcumin, through antioxidant, and anti-
inflammatory mechanisms, reduced the thickness of the basement 
membrane in the retina of treated rats [101]. Hesperetin has also 
been shown to aid in the prevention of DR transmission [102]. Other 
antioxidant-rich compounds, including quercetin, and rosmarinic 
acid, have been shown to decrease angiogenesis and so diminish DR 
[103, 104]. 

Antioxidants as a potential therapeutic agent 

It has been discovered that N-acetylcysteine (NAC), vitamin C, and 
lipoic acid are involved in reducing diabetic complications [105, 
106]. Calcium dobesilate has been demonstrated to lower retinal 
permeability and VEGF expression. Caffeic acid is an antiangiogenic 
medication that inhibits the development of reactive oxygen species 
(RAS), and the production of VEGF in retinal cells [107]. Lipoic acid 
suppresses apoptosis while also reducing nitrotyrosine buildup and 
NF-B activation [108]. Rosmarinic acid, Benfotiamine, Pycnogenol, 
Curcumin, Taurine, and green tea have all been shown to have free 
radical scavenging properties and have all been used to treat DR 
[109-111]. 

The medications tested in clinical trials to treat an eye problem 
associated with diabetes have been enlisted in tables 3.
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Formulation approaches 

Table 1: Conventional drugs available for diabetic ocular complications 

Disease Formulation Plant/Drug Reference(s) 
Cataracts Eye drop Boerhaavia diffusa root [112] 
Cataracts Eye drop Calcium dobesilate [113] 
Cataracts Eye drop Polyherbal formulations (Tinospora cardifolia, 

Cinnamomum zeylanicum, Curcuma longa, Trigonella 
foenum graecum, Azadirachta indica, Piper nigrum) 

[114] 

Cataracts In situ gel Boerhaavia diffusa root [112] 
Macular edema Eye drop Dexamethasone [115] 
Macular edema Tablet Curcumin [116] 
Cataracts Eye drop Naproxen [116] 
Diabetic retinopathy (DR), diabetic macular 
edema (DME) and diabetic cataracts (DC) 

Injection Ranibizumab [117] 

Cataracts Eye drop Abrus precatorius [118] 
Cataracts Eye drop Aloe vera [119] 
Cataracts Paste Byttneria herbacea [120] 
Cataracts Eye drop Microglossa pyrifolia [121] 
Glaucoma Eye drop suspension Acetazolamide [122] 
Macular edema Injection Ranibizumab [123] 
Macular edema Eye drop Epafenac [124] 
Macular edema Eye drop Ketorolac [125] 
Glaucoma In-situ gel Dorzolamide [126] 
Glaucoma Mini-tablet Timolol maleate [127] 

  

Table 2: Novel formulations available for the treatment of diabetic ocular complications 

Disease Drug Novel approach Description Reference(s) 
Glaucoma Brimonidine Cubosomes Ex-vivo corneal permeation tests revealed that the improved formulation 

had higher corneal permeability than the consumer product. 
[128] 

Glaucoma Timolol 
maleate, 
Brimonidine 

Hydrogel Because they may localize, and sustain pharmacological activity at the site 
of action for prolonged periods, they have an additive effect on (IOP) 
reduction. As a result, long-term activity is possible. 

[129] 

Glaucoma Brimonidine Cubosomes By preparing or extending the mean residence time of BRT-loaded 
cubosomes, improves the ocular bioavailability of BRT, and prolongs its 
intraocular pressure-lowering action. 

[128] 

Cataracts Epalrestat Hydrogel This promises the aggregation, and diffusion of drugs across the cornea [130] 
Glaucoma Ketorolac 

Tromethamine 
Cubosomes High transcorneal permeation, and corneal retention were observed with 

cubosomal formulation corresponding to ketorolac solution and high 
transcorneal permeation, and retention, showing a biphasic release profile. 

[121] 

Glaucoma Timolol maleate Cubosomes For traditional eye drops, Cubogel may be a successful option, since it 
maintained the release of the medication for a longer time, and could also 
minimize the number of drug applications. 

[132] 

Macular 
edema 

Triamcinolone- 
acetonide 

Liposomes Patients with refractory macular edema were able to tolerate the 
treatment and see an improvement in their best-corrected visual acuity, 
and central foveal thickness. 

[133] 

Glaucoma Latanoprost Liposomes Best-corrected visual acuity is well-tolerated, enhanced, and sustained in 
vitro release of central foveal A (60%) was achieved over 14 d. For 90 d, a 
subconjunctival liposome injection reduced IOP in rabbit eyes (4.8 1.5 mm 
Hg) compared to topical daily latanoprost treatment (2.5 0.9 mm Hg) 
without causing ocular discomfort. 

[134] 

Glaucoma Brinzolamide Liposomes With a lipid/cholesterol ratio of 7:4, and a lipid/drug ratio of 10:1, optimal 
liposomes had an EE of 98.32 1.61% and a diameter of 84.33 2.02 nm. 
Liposomes (1 mg/ml) demonstrated a 6.2 fold increase in the coefficient of 
corneal permeability and a more continuous and effective decrease of IOP 
in rabbits' eyes (5-10 mm Hg). 

[135] 

Glaucoma Dorzolamide 
hydrochloride 

In situ gelling  
polymeric 
nanoparticles 

Optimized nanoparticles (164 nm, 98.1 percent entrapment efficacy) 
showed sustained in vitro release and slower corneal penetration (35.5%) 
as compared to commercial eye drops (86.34%). Nanoparticles were 
mucoadhesive, non-irritating, and remained in rabbit eyes for a long time. 

[136] 

Glaucoma Dorzolamide 
hydrochloride 

Polymeric 
nanoparticles 

When compared to Trusopt®, nanoparticles showed a 1.8-2.5 fold 
improvement in corneal penetration and a greater drug concentration in 
the aqueous humor (1.5-2.3 fold). Vitamin E TPGS was found to be a safer 
and more efficient emulsifier than PVA. It functions as an inhibitor of P-
glycoprotein (prominent eye tissue efflux transporters) and has induced a 
substantial increase in the efficacy of trapping and corneal permeation. 

[137] 

Glaucoma Betaxolol 
hydrochloride  

Polymeric 
nanoparticle 

A biphasic release pattern was found in optimized (1:2) polymer: drug 
ratio nanoparticles, with an early burst followed by a persistent release 
lasting up to 12 h. Nanoparticles demonstrated excellent ocular tolerability 
and a considerable decline in IOP, with a high of 9.90.5 mm Hg compared to 
control after 5 h. 

[138] 
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Disease Drug Novel approach Description Reference(s) 
Glaucoma Brimonidine Polymeric 

nanoparticles 
 in preformed gel 

Due to adhesion to the negatively charged cornea, and conjunctiva, 
optimized chitosan nanoparticles combined in prepared gel showed 
greater sustained release over SA nanoparticles. Compared to eye drops, 
cytotoxicity tests reported non-toxic formulations with a sustained 
reduction of IOP (>25 h) 

[139] 

Glaucoma Methazolamide SLNs The Box-Behnken model was used to optimize SLNs with a size of 197.8 4.9 
nm, 68.39 percent drug trapped, continuous-release following the Peppas 
model, and a considerable extended reduction in IOP compared to 
AZOPT® without any signs of ocular discomfort. 

[140] 

Glaucoma Brimonidine SLNs; NLCs After autoclaving at 121 °C for 15 min, both SLNs, and NLCs were 
physically stable, yielding particles below 500 nm that were non-irritant to 
the ocular mucosa, and had higher ZP, and brimonidine concentrations 
collected than non-autoclaved ones. 

[141] 

Glaucoma Melatonin Cationic SLNs As a positive charge imparter, didecyldimethylammonium bromide was 
employed to create cationic SLNs that demonstrated high mucoadhesion, 
extended ocular retention time, good tolerability, and was very successful 
for 24 hour IOP reduction (maximum IOP reduction of 7 mm Hg) 

[142] 

Glaucoma Methazolamide Surface modified  
SLNs by chitosan 

In terms of particle stability (4 mo at 4 ° C), size (199.4 2.8 nm), in vitro 
release, and ocular penetration, chitosan-modified SLNs beat non-modified 
SLNs. The peak reduction in IOP was better than both unmodified SLNs and 
AZOPT® eye drops without any signs of ocular discomfort. 

[143] 

Glaucoma Latanoprost Liposomal gels The best liposomes had a 7:3 lipid: cholesterol ratio and a 1:1 drug: lipid 
ratio, with a trap performance of 98 percent. Latanoprost's interaction 
with liposome excipients improved drug encapsulation. Vesicles are 
incorporated into the Pluronic® F127 gel's continuous medication release 
system (45 percent discharged in 2 d). Liposomal gels did not irritate the 
eyes of rabbits. 

[144] 

Glaucoma Brinzolamide Liposomes With a lipid/cholesterol ratio of 7:4, and a lipid/drug ratio of 10:1, optimal 
liposomes had an EE of 98.32% and 84.33%, respectively, and a diameter 
of 1.61 and 2.02 nm, respectively. In comparison to the commercial 
solution (10 mg/ml), liposomes (1 mg/ml) showed a 6.2 fold improvement 
in corneal permeability and a more consistent, and stable lowering of IOP 
in rabbit eyes (5-10 mm Hg). 

[135] 

Glaucoma Diltiazem HCl Unilamellar 
vesicles 

The vesicles rigidified with cholesterol were the most stable at a 1:1 molar 
ratio. The addition of cholesterol improved the efficacy of the percent trap 
while reducing the rate of drug release. Compared to the solution, an 
improved IOP lowering operation was obtained in rabbit eyes. 

[145] 

Glaucoma Timolol maleate Liposome in 
ion-sensitive in-
situ gel 

Liposomes having a diameter of 136 nm, a trapping efficiency of 47 
percent, and a corneal penetration augmentation of 1.93 times were found 
to be the most effective. When compared to eye drops, in situ gel liposomes 
beat commercial eye drops, and liposomes in terms of corneal retention 
time were non-irritant to ocular tissues and show a rapid reduction in IOP. 

[146] 

Glaucoma Timolol 
maleate,  
Dorzolamide 
hydrochloride 

Nano-fiber 
patches 

The formulation produced has very high mucoadhesive strength, so it can 
be kept in the eyes for a longer time. 
Besides, the formulation was able to sustain the IOP for up to 72 h. 

[147] 

Glaucoma Brimonidine Inserts Ocular implants containing 7% PVP, and 1.5% SA with or without an 
ethylcellulose layer were used to maintain brimonidine release in vitro 
(99% at 6 h). When injected into the eyes of albino rabbits, their 
therapeutic efficiency in lowering IOP was found to be more long-lasting 
than that of the brimonidine solution. There was a larger IOP lowering 
effect with the two-sided coated ocular insert than with the one-sided 
coated ocular insert. 

[148] 

Glaucoma Timolol maleate Film The drug was ready in four weeks (85% released over the first 2 w). 
During 10 w, the film's drug release, on the other hand, reduced in vivo IOP 
levels. Between rabbits given a 0.5 percent commercial ophthalmic 
solution, and those treated with films, there was no significant difference in 
IOP reduction (P<0.05). There was no sign of anxiety or ocular problems. 

[144] 

Glaucoma Latanoprost Nanosheet  Nanosheets containing latanoprost (2.5 mg/cm) were given to rats for 7 d 
with no evidence of local side effects, and a 20 percent reduction in IOP. 

[150] 

Glaucoma Latanoprost Contact Lenses According to the in vivo animal study, contact lenses with 40-45 mm thick 
polymer-drug films (latanoprost) produced an initial burst of latanoprost 
in aqueous humor, followed by a steady-state concentration comparable to 
the average hourly concentration of latanoprost induced by a decrease in 
commercially available latanoprost. 

[133] 

Glaucoma Acetazolamide, 
Ethoxzolamide 

Contact Lenses Biomimetic networks can load more drugs than conventionally synthesized 
pHEMA hydrogels, and monitor better drug release. 
The biomimetic hydrogels were incredibly cytocompatible, making them 
excellent for application as medicated soft contact lenses or oxygen-
permeable inserts. 

[151] 

Cataracts Naproxen 
sodium 

Eye drop Due to poor AR inhibitory activity, naproxen has been reported to 
postpone cataracts in diabetic rats 

[152] 
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Table 3: Medication tested in clinical trials to treat an eye problem associated with diabetes 

Disease Drug Approach Reference(s) 
Cataract Ketorolac Ophthalmic solution 0.4% [153] 
Diabetic Retinopathy Nevanac, ilevro Suspension [154] 
Diabetic Retinopathy Somatostatin Eye drop [155] 
Glaucoma Citicoline Eye drop [156] 

  

CONCLUSION 

Diabetes mellitus and associated ocular consequences continue to be a 
leading cause of blindness. As a result, our understanding of these ocular 
issues has improved, as has our ability to detect effective treatment. With 
early diagnosis and treatment, all diabetic ocular complications can be 
avoided. The pathophysiological aspect, treatment, and formulation 
strategy to diabetic cataracts, glaucoma, diabetic retinopathy, and 
macular edema are all addressed in this analysis. 
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