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ABSTRACT 

Objective: This study was designed to search for candidate drugs that act on IL-33 and ST2, which was carried out using a bioinformatics approach.  

Methods: We first analyzed Network Electronic Cigarette Smokes Predictions of therapeutic targets by Cytoscape. We collected from the Swiss 
TargetPrediction database [http://www. swisstargetprediction. ch/] by inputting each compound structure of the electronic cigarette smoke in SDF 
format. The target protein data is then supplemented with UniProt ID data to uniform protein identity. We then identified COPD Related Targets in 
Humans by Cytoscape. Subsequently, we identified key receptors in the pathogenesis of COPD. All target proteins that have a significant role in the 
pathogenesis of COPD exposed to cigarette smoke will be known from the combination of this network.  

Results: Based on the validation results of the protein receptor for ST2, a protein is used as a receptor with PDB ID: 1IRA. After analyzed by PyMol 
software, a protein with PDB ID 1IRA it has no missing residue in its sequenceDrug candidates analyzed by the structural similarity with the native 
ligand using PubChem and DRUGBANK analysis are follow: N-acetylmannosamine, Aceneuramic acid, Ceramide AP, Ceramide NP, Hg9a-9, 
Nonanoyl-N-hydroxyethylglucamide, N-Acetyl-2-deoxy-2-amino-galactose, N-Acetyllactosamine, MLi/2,6-dimethyl-4-[6-[5-[1-methylcyclopropyl] 
oxy-1H-indazol-3-yl] pyrimidin-4-yl] morpholine, Terazosin, BMS-911543, NAG Inhibitor, FGFR Inhibitor/sodium; 2-amino-5-[1-methoxy-2-
methylindolizine-3-carbonyl] benzoate. After docking, the smallest or more negative binding affinity values are obtained. The stronger the FGFR 
Inhibitor ligand showed the interaction with the Receptor with a binding affinity value of-9.0 kcal/mol with mode/position 0, and RMSD 0.0. The 
second smallest binding affinity value is the NAG ligand with a-8.5 kcal/mol with mode/position 0 and RMSD 0.0. 

Conclusion: The findings revealed that FGFR Inhibitor was a suitable repurposing medication for anti-COPD development via the IL-33/ST-2 
signaling pathway. 
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INTRODUCTION 

Electronic cigarettes or e-cigarettes are often advertised as a safe 
alternative way to help someone quit smoking. The number of 
electronic cigarette [vapers] users continues to increase in many 
countries. Many young people are now using these devices only for 
social aspects and only as a trend [1]. Although e-cigarettes are 
marketed as smoking cessation tools by some manufacturers, the 
reality is that many nonsmokers, including teenagers, use them [2]. 

A person with Chronic obstructive pulmonary disease or COPD 
struggling to quit smoking may consider using e-cigarettes as an 
alternative to smoking cessation. Some patients with COPD may 
have switched to dual-use or e-cigarette use only. The National 
Academies of Sciences, 2018 concluded that there are unclear 
results regarding whether the use of e-cigarettes in patients with 
COPD will be beneficial, neutral, or even harmful. Recent studies 
have not further explained whether switching to e-cigarettes from 
traditional tobacco cigarettes will reduce lung inflammation or 
disease progression in these patients. Traditional nicotine 
replacement therapy [NRT/Nicotine Replacement Therapy] is 
currently the safest choice for COPD patients because research has 
shown that e-cigarettes regulate inflammation and have adverse 
effects on the airways of e-cigarette users [3] and thus the negative 
impact on COPD patients cannot be avoided. 

The pathogenesis of COPD includes oxidative stress, protease-
antiprotease imbalance, and inflammation [4, 5]. 
Lipopolysaccharides [LPS] and cigarette smoke have been stimuli 
used in COPD research [6]. Cigarette smoke increases the production 
of reactive oxygen species [ROS]. It adds many pro-inflammatory 
cytokines such as IL-6 and IL-8 [7], and the lipid peroxidation 

product malondialdehyde [MDA] is the most frequently measured 
indicator of oxidative damage in membrane lipids [8]. It is believed 
that there is a need for new therapies for candidates that exhibit 
antioxidant and anti-inflammatory properties for COPD. 

The American Thoracic Society and other leading pulmonary disease 
organizations recommend that COPD patients quit smoking using 
one or more inhaled bronchodilators. Long-acting 2-adrenergic 
receptor agonists [LABA] and long-acting muscarinic acetylcholine 
receptor antagonists [LAMA] have additive effects on 
bronchodilation. At the same time, they produce effective 
bronchodilation but are less effective at treating the underlying 
inflammatory disease in patients with COPD [9]. Although 
glucocorticoids are the mainstay of therapy for COPD, it has been 
recognized that glucocorticoids do not work well in certain patient 
populations, which has been associated with decreased sensitivity 
[10]. Broad-spectrum anti-inflammatory drugs and pro-
inflammatory enzyme inhibitors such as PDE-4 may be more 
effective, but there are side effects after oral administration, which is 
a major drawback [11]. Selective phosphodiesterase 4 [PDE-4] 
inhibitors have been shown to reduce airway inflammation and 
bronchoconstriction associated with COPD [12–15]. 

New molecularly targeted medications are being developed. Many 
new molecular targeted medications have been developed in recent 
years based on the molecular mechanism of COPD. Antioxidants 
minimize cellular damage and inflammation by scavenging ROS and 
inhibiting oxidative stress in the lungs. By inhibiting proteases, 
protease inhibitors restore the balance between protease and anti-
protease. Inhibitors of cytokines and chemokines are important in 
lowering the inflammatory response. Adhesion molecule inhibitors 
can stop inflammatory cells that move from blood arteries to tissue. 
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PDE4 inhibitors work by preventing PDE4 from being produced and 
so increasing cAMP activity in cells. Signaling molecules like NF-B, 
MAPK, PI3K, and VIP regulate inflammation and airway remodelings 
during the onset and progression of COPD, and they could be used to 
develop treatment possibilities. Inhibitors of p38MAPK, NF-B, and 
PI3K, as well as a vasoactive intestinal peptide, are among the 
candidates [VIP]. The EGFR inhibitor lowers EGFR internalization 
but does not reduce mucin storage. Endothelin inhibitors limit the 
evolution of pulmonary hypertension in COPD patients by reducing 
fibrotic airway remodeling and downregulating MMP expression. 
Neutrophil superoxide generation, phagocytosis, adhesion, and 
cytokine release are all inhibited by the adenosine A2a receptor. 
Macrolides diminish COPD inflammation by inhibiting the 
generation of inflammatory cytokines via regulating the PI3K/Akt-
Nrf2 pathway and controlling transcription factors such as NF-B and 
AP-1. By inhibiting NF-B and other pro-inflammatory transcription 
factors, PPAR agonists have antioxidant and anti-inflammatory 
effects [16]. 

Interleukin-33 is abundant in lung tissue and has a critical function 
in respiratory illness, which can induce airway inflammation, airway 
hyperresponsiveness, and goblet cell metaplasia in allergen-induced 
mice, and may exacerbate asthma-like responses in allergen-
exposed mice. However, whether cigarette smoke can induce IL-
33/ST2 expression in the airways and whether the IL-33 system 
contributes to the pathogenesis of cigarette smoke-mediated COPD 
is not known with certainty [17]. 

Several investigators reported that IL-33 and ST-2 could be induced 
in rats exposed to e-cigarette smoke; IL-33/ST-2 binding can trigger 
airway inflammation and mucin expression in the airways. 
Therefore, IL-33/ST-2 may be a new therapeutic target for 
respiratory disease mediated. CS includes COPD [18]. 

This study was designed to search for candidate drugs that act on IL-
33/ST-2, which was carried out using a bioinformatics approach. 

MATERIALS AND METHODS 

Methods 

The hardware used is a notebook with 11th Gen Intel[R] Core[TM] 
i7-1165G7 @ 2.80GHz 2.80 GHz Installed RAM 16,0 GB, 
EditionWindows 11 Home Single Language 

Version, 64-bit operating system, x64-based processor. The software 
used is PyRx [Vina and AutoDock], MarvinBean Suite, PyMOL, PLIP, 
Chimera, and Discovery Studio 2021. 

Molecular targeting 

Collecting a chemical structure database of e-cigarette content 
compounds 

At this stage, information on the chemical content of e-cigarettes will 
be collected both from the results of previous publications and from 
available databases. Furthermore, the chemical structure was obtained 
from PubChem [https://pubchem.ncbi.nlm.nih.gov/] and then saved in 
SDF format for further prediction phase therapeutic targets. 

Prediction of therapeutic targets of electronic cigarette content 
on receptors that play a role in COPD pathogenesis 

Predictions of therapeutic targets were collected from the Swiss 
Target Prediction database [http://www.swisstargetprediction.ch/] 
by inputting each compound's Structure in SDF format. The target 
protein data is then supplemented with UniProt ID data to uniform 
protein identity. Then the target protein data for the compounds 
contained in the electronic cigarette was then compiled in excel 
format and analyzed using Cytoscape. 

Creation of a database of receptors involved in COPD 
pathogenesis 

The Database was created based on the Disgenet, Uniprot, Therapeutic 
Target Database [TTD], and DrugBank websites. Data was completed 
with Uniprot ID to uniform protein identity. All protein targets obtained 
were compiled in excel format. The data were then analyzed using 
Cytoscape software to identify proteins that have a significant role in the 

pathogenesis of COPD. Network analysis was performed to determine 
the degree and betweenness centrality of each protein node using 
Cytoscape software. The significance level of protein on the pathogenesis 
of COPD was measured based on the degree value. The higher the degree 
value indicates, the greater the significance of a node in the network, or 
at this stage, it means the greater the protein significance in COPD 
pathogenesis. 

Identification of key receptors for COPD pathogenesis targeted 
by compounds contained in e-cigarettes 

At this stage, merging is carried out between two networks, namely the 
COPD pathogenesis network and the protein target network of 
compounds contained in electronic cigarettes. From the combination of 
this network, all target proteins that have a significant role in the 
pathogenesis of COPD will be known. These proteins were then collected 
for their three-dimensional protein structure on the PDB website 
[https://www.rcsb.org/]. The three-dimensional protein structure is 
stored in PDB format for use in the molecular docking stage. 

Selection of drug compounds based on pharmacophore 
mapping 

Structure and ligand-based pharmacophore modeling 

ST2 antagonists are obtained by collecting all available target 
annotations from ChEMBL. To generate a structure and ligand-based 
pharmacophore model, ST2 antagonists were obtained from 
ChEMBL [https://www.ebi.ac.uk/chembl/]. A literature search was 
carried out with ST2 annotations [PDB ID: 1IRA] then docking 
analysis was performed to determine binding affinity value. The best 
compound with the lowest binding affinity [kcal/mol] was selected 
for structure and ligand-based pharmacophore modeling. 
LigandScout 4.3 software was used to generate a structure and 
ligand-based pharmacophore model in the next process. 

Pharmacophore model validation 

At this stage, an evaluation of the potential description of the active 
and inactive compounds obtained from certain protein-ligand 
interactions is carried out. The pharmacophore model generated 
from the protein-ligand complex was validated for its performance 
to discriminate the active compound by screening some known 
active compounds in the first step and decoy obtained from the 
DUD-E database. The Database of DUD-E was converted in. ldb 
format before being filtered using the "create screening database" 
menu of LigandScout 4.3. then see the value of the quality of the 
structure-based model based on the ROC curve with the AUC score 
and enrichment factor [EF]. 

Generalized dataset for basic pharmacophore screening 

At this stage, new and active molecules were identified by performing 
virtual screening in the previously generated pharmacophore model. 
The ZINC database [https://zinc.docking.org/] was used to identify 
compounds that have potential against protein targets. In selecting 
candidate compounds, it is preferred to choose compounds that have the 
most similar features to the required pharmacophore features so that 
they can easily interact with the target protein. Then the possible hit 
compound, which has its maximum features matched the 
pharmacophore, is selected. 

Pharmacophore based virtual screening 

At this stage, the Database generated from ZINC was filtered against 
the validated structural-based pharmacophore features. LigandScout 
4.3 was used to create and obtain 3D models of protein-ligand 
interactions and convert compounds into a file format [IDB]. These 
compounds are passed directly to the list database for rapid virtual 
screening based on pharmacophore features. The hit compound 
used was compiled based on the pharmacophore fit score and used 
for further validation. 

Screening of substance protein targets in E-cigarettes related to 
conditions that cause COPD 

Electronic cigarette compound collection 

Information on the content of each puff of e-cigarettes is obtained 
from the research conducted by Cunnigham et al., 2020 [19].  
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Each of the above compounds collected target protein data both 
from databases such as PubChem, SwissADME and SwissPrediction, 
PharmMapper, can also be retrieved from GeneCards V4.12 
[https://www.genecards.org/] and OMIM [https://omim.org/] [20–
23]. 

COPD related targets in humans 

Cytoscape installed using STRING databases can be used to create 
COPD target networks. Using the keyword "chronic obstructive 
pulmonary disease," we got networking in the form of nodes related 
to COPD in humans [24]. 

Target screening 

The target set in point [a] is networked using Cytoscape, and then a 
target slice is made using COPD networking [b].  

Using cytoNCA installed in Cytoscape, the network containing the 
above targets will be analyzed: degree, eigenvector centrality, LAC 
centrality, closeness centrality, network centrality of all nodes. The 
average value of the analysis results is used as a standard 
for target selection. The Protein-protein Interaction [PPI] Network 
is obtained from considering the existing nodes as the main node 
[25].  

Protein-protein interaction analysis 

Using the STRING database, the results are more likely to point to 
protease inhibitors-neutrophils, but if the http://www.interactome-
atlas.org/search# gene analysis shows the best value when set to the 
confidence level, to identify gene that plays an essential role in the 
main target of compounds against COPD [26, 27].  

Search and evaluate ST2 or IL1RL1 protein from the database 
as a target receptor 

Proteins for analysis in this study were obtained from the RCSB 
database with IL33 or ST2 or the synonym IL1RL1. To determine 
whether the protein can be used well in docking, it is evaluated 
first in 3 ways. The first is by directly analyzing the protein data in 
the RCSB database [such as resolution values<3, wwPDB 
Validation percentile ranks, and ligand structure quality 
assessment] [28, 29]. The second is to access PDBSUM using the 
Ramachandran plot to evaluate the most favored value of at least 
90% and the G factor [30], And the third is to analyze the missing 
residue using PyMol [31]. 

Collection of ligands/ drug candidates from the PubChem database 

The initial stage is to search for drug candidates by looking at the 
native ligand on the ST2 protein receptor in the RCSB Database as a 
control. The native ligand for the ST2 Receptor is NAG [2-acetamido-
2-deoxy-beta-D-glucopyranose] [32]. Using PubChem and drug bank, 
the molecular structure of the similarity with the native ligand is 
seen [33]. Drug candidate database was also collected using ChemBL 
with the keyword "ST2 inhibitor" [34]. After that, structural analysis 
was carried out using pharmacophore and obtained pharmacophore 
fit value. Then the 12 compounds in the docking process [35]. 

Docking process using PyRx 

Docking of native ligands is carried out to find the 3D conformation of 
the native ligand to the Receptor by taking into account the 
coordinates of the center of mass of the structure and the grid box size 
of the binding site pocket angstroms [Vina] or several points 
[AutoDock]. The confirmation of the docking results obtained is 
aligned with the confirmation of the native ligand from the 
crystallographic measurements expressed in the root mean square 
deviation [RMSD] value [36]. The results of previous studies, the RMSD 
value for acceptable structural conformational alignment is less than 5; 
the closer the value to 0 is, the better the alignment value. 

The AutoDock Vina tool, written in PyRx, was used to perform 
structure-based virtual screening utilizing docking simulations. 
Finally, the docked postures with FGFR Inhibitor were visually 
evaluated using PyMOL Molecular Graphics System. 

RESULTS AND DISCUSSION 

Cytoscape network electronic cigarette smokes 

The results of the analysis of the content of e-Cigarette smokes 
are Nicotine, propylene glycol, glycerol, several Polycyclic Aromatic 
Hydrocarbons, carbonyl, and metals. 

Predictions of e-Cigarette smoke targets on the body were collected 
from the Swiss Target Prediction database 
[http://www.swisstargetprediction.ch/] by inputting each 
molecular structure of the e-cigarette smoke in SDF format. The 
target protein data is then supplemented with UniProt ID data to 
uniform protein identity. Then the target protein data for the 
compounds contained in electronic cigarettes was then compiled in 
excel format and analyzed using Cytoscape. The higher the degree 
value indicates, the greater the significance of a node in the network. 
The greater the protein significance in cigarette smoke exposure at 
this stage, as shown in table 1. 

  

Table 1: e-Cigarette smoke-related protein analyses using cytoscape 3.9.0 

Gene name Uniprot ID Degree Gene name Uniprot ID Degree 
ALB P02768 135 SLC6A4 P31645 42 
STAT3 P40763 97 MMP2 P08253 42 
HSP90AA1 P07900 97 PGR P06401 42 
CASP3 P42574 97 MAPK8 P45983 40 
MAPK3 P27361 86 GSK3B P49841 39 
PTGS2 P35354 77 ACE P12821 39 
TLR4 O00206 68 HMOX1 P09601 39 
MMP9 P14780 67 CDK2 P24941 38 
EP300 Q09472 66 MPO P05164 38 
MAPK1 P28482 59 CASP9 P55211 38 
NOS3 P29474 56 ABCB1 P08183 38 
CCL2 P13500 55 TNFRSF1A P19438 38 
JAK2 O60674 55 PARP1 P09874 37 
MAPK14 Q16539 55 MAOB P27338 37 
RELA Q04206 54 MAOA P21397 36 
COMT P21964 53 XIAP P98170 36 
PTPRC P08575 51 DRD2 P14416 36 
CXCR4 P61073 48 CDK1 P06493 36 
KDR P35968 46 SLC6A3 Q01959 35 
VCAM1 P19320 45 ENSP00000459962 Q8NER1 35 
HDAC1 Q13547 44 ACHE P22303 35 
MCL1 Q07820 43 GRM5 P41594 34 
PIK3CA P42336 43 CHRNA4 P43681 34 
CNR1 P21554 43 NOS2 P35228 33 
   CYP1A1 P04798 33 
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Using Cytoscape 3.9.0., we search protein-related e-cigarette smoke 
using the keyword e-Cigarette smoke on the STRING-Pubmed query. 
In the Cytoscape analysis, by identifying 366 nodes and 3256 edges 
[fig. above]. The top 49 proteins were selected, namely ALB, 
HSP90AA1, CASP3, STAT3, and so on, as shown in table 1. The higher 
the degree value indicates, the greater the significance of a node in 
the network, or at this stage, the greater the protein significance on 
exposure to electronic cigarettes. 

COPD related targets in humans 

STRING-diseases databases on Cytoscape can be used to create 
COPD target protein networks. By using the keyword "chronic 
obstructive pulmonary disease," we identified. 

The data were then analyzed using Cytoscape software to identify 
proteins that have a significant role in the pathogenesis of COPD. 
Protein significance ratings for COPD pathogenesis are also used in 

the COPD network, measured based on the degree value. The higher 
the degree value indicates, the greater the significance of a node in 
the network, or at this stage, it means the greater the protein 
significance in COPD pathogenesis. 

Table 2 showed a COPD-related protein network; we evaluated and 
identified 1285 nodes and 32649 edges using Cytoscape analysis. 
The top 49 were selected, namely Tumor necrosis factor [TNF], 
interleukin 6 [IL6], and so on, as shown in table 2. 

Cytoscape is a free, open-source software project that combines 
biomolecular interaction networks, high-throughput expression 
data, and other molecular states into a single conceptual framework. 
Although Cytoscape can be applied to any system with molecular 
components and interactions, it is most effective when combined 
with vast databases of protein-protein, protein-DNA, and genetic 
interactions, which are becoming more widely available for humans 
and models organisms [37]. 

 

Table 2: COPD-related protein analyses using cytoscape 3.9.0 

Gene name Uniprot ID Degree Gene name Uniprot ID Degree 
TNF P01375 510 IL4 P05112 270 
IL6 P05231 499 ITGAM P11215 267 
AKT1 P31749 480 HIF1A Q16665 254 
ACTB P60709 467 IL2 P60568 248 
IL1B P01584 444 ICAM1 P05362 244 
ALB Q8IUK7 432 TLR2 O60603 243 
TP53 Q8J016 390 CSF2 P04141 242 
VEGFA Q9H1W9 363 PPARG Q15180 234 
STAT3 P40763 359 PTEN P60484 233 
EGFR Q9H2C9 352 IFNG P01579 233 
IL10 P22301 342 IL17A Q16552 231 
CXCL8 Q9UCS0 340 NOTCH1 P46531 229 
FN1 H0Y4K8 325 IGF1 P05019 227 
TLR4 Q5VZI9 321 STAT1 P42224 224 
CTNNB1 P35222 321 PTGS2 P35354 223 
MYC P01106 320 FGF2 Q9UCS5 218 
JUN P05412 315 FOS P01100 212 
SRC P12931 311 IL13 P24385 211 
MAPK3 P27361 306 CCND1 P35225 211 
CCL2 P13500 295 KRAS P13501 202 
MMP9 P14780 290 CCL5 P01116 202 
EGF P01133 286 CTLA4 Q96P43 201 
CASP3 P42574 285 IL18 Q14116 196 
PTPRC P08575 276 HSPA4 P34932 195 
CD8A P01732 275    

 

Table 3: COPD-related protein network induced by the e-Cigarettes smokes analyses using cytoscape 3.9.0 

Gene name Uniprot ID Degree Gene name Uniprot ID Degree 
ALB Q8IUK7 67 MAPK1 P28482 28 
STAT3 P40763 51 MPO P05164 28 
CASP3 P42574 51 TNFRSF1A P19438 27 
TLR4 Q5VZI9 48 MMP2 P08253 27 
MAPK3 P27361 45 KDR P35968 25 
PTGS2 P35354 45 MAPK8 P45983 24 
MMP9 P14780 41 ACE P12821 23 
CCL2 P13500 36 MMP3 P08254 22 
PTPRC P08575 34 TLR9 Q9NR96 21 
MAPK14 Q16539 30 JAK1 P23458 21 
RELA Q04206 30 GSK3B P49841 21 
HMOX1 P09601 29 PIK3CA P42336 21 
NOS3 Q548C1 29    
 

Identification of key receptors in the pathogenesis of COPD 
targeted by compounds contained in e-cigarettes smokes 

This step is done by merging between two networks, namely the 
COPD-related protein network and the e-Cigarette smoke-related 
protein network. All target proteins that have a significant role in the 
pathogenesis of COPD exposed by e-cigarette smokers are identified 
from the combination of this network, as shown in table 3. 

The Cytoscape analysis identified 114 nodes and 811 edges, and the 
receptors [proteins, genes, enzymes] were selected, namely ALB, 
STAT3, CASP3, and so on, as shown in table 3. The higher the degree 
value indicates, the greater the significance of a node in the network, 
or this stage, the greater the protein significance in the network. The 
pathogenesis of COPD exposed to cigarette smoke. 

STAT3 is a signal transducer and transcriptional activator 3 that 
mediates cellular responses to interleukins, KITLG/SCF, LEP, and 
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other growth factors. STAT 3 binds to the interleukin-6 [IL-6] 
responsive element identified in the promoter of various acute-
phase protein genes. STAT 3 is also activated by IL31 via IL31RA. 
Acts as a regulator of the inflammatory response by regulating the 
differentiation of naive CD4[+] T cells into Th17 T-helper or 
regulatory T cells [Treg]. 

Then, a cytocluster was performed using Cytoscape for cluster 
analysis and visualization of the network using the website string 
and interactome for taking the highest degree of protein. 

Based on the analysis using interactome on the network pharmacology 
and its visualization in lung tissue, the protein with a red circle indicates 
that the protein has a high specificity and significant expression in lung 
tissue is STAT3, MAPK1, MMP2, RELA, NOS3. 

This is in line with several steps previously carried out in the 
Cytoscape, where STAT3 ranks in the top 5 proteins with a higher 
value than other proteins. Then, when proceeded to analyze and 
visualize by interactomes, STAT3 still consistently affects the 
signaling, as seen from the picture above. 

 

 

Fig. 1: COPD-related protein network induced by the e-cigarettes smoke 

 

Table 4: Genes that play a role in COPD caused by exposure to e-cigarette smoke are analyzed by interactome 

No Gene name Uniprot ID Degree 
1 STAT3 P40763-1 51 
2 RELA  A0A087WVP0 30 
3 NOS3 P29474 29 
4 MAPK1 P28482-1 28 
5 MMP2 P08253-1 27 

 

Based on the network pharmacology analysis, 5 genes in COPD are 
caused by exposure to cigarette smoke, namely STAT3, RELA, NOS3, 
MAPK1, MMP2. Based on previous studies regarding these genes, 
they are activated after IL33 is bound to ST2. 

Interleukin-33 [IL-33] is a non-hematopoietic cytokine primarily 
expressed in endothelial cells, epithelial cells, fibroblast-like cells, 
and myofibroblasts during homeostasis and in reaction to 
inflammation [38]. On target cells, IL-33 works by attaching to a 
heterodimeric receptor. Consisting of tumor suppressor 
tumorigenicity 2 [ST2, also known as IL-1RL1] and its co-receptor, 
the IL-1 receptor accessory protein [IL-1RAcP]. The presence of the 
ST2/IL-1RAcP binding process by IL-33 will activate the 
intracellular signaling pathway, which is mediated by the interaction 
of homotypic proteins with the MyD88 adapter molecule which then 
the next process occurs recruitment of IRAK and TRAF6, which leads 
to the expression of several inflammatory mediators through the 
activation of factors. nuclear-kB [NF-kB] and mitogen-activated 
protein kinase [MAPK] pathways. IL-33 activates various ST2-
expressing tissue immune cells, ILC2s, mast cells, Th2 cells, 
regulatory T cells [Tregs], natural killer [NK] cells, eosinophils, 
basophils, dendritic cells, and alternatively activated macrophages 
are all examples of innate lymphoid cells [39]. 

The reaction induced by the binding of IL-33 with ST2, which will 
activate STAT3 in the cytoplasm, will then translocate in the nucleus 
previously in the upstream pathway mediated by the JAK2 signaling 
pathway. Then, on the other hand, the RELA gene will be activated 
after binding IL-33 with ST2 mediated by the MAPK signaling 
pathway and NF-kB. At the same time, the MAPK1 gene will be 
activated after binding of IL-33 with ST2 mediated by the MAP3K8 
signaling pathway by phosphorylation to produce MAP2K1 and 
MAP2K2. All these processes are depicted by dotted arrows, which 
indicate that the reactions through these mechanisms are currently 
not known with certainty [39]. 

Selection of candidate drug based on pharmacophore mapping 

ST2 receptor validation 

ST2 Receptor/Interleukin-1 receptor-like 1 [IL1RL1] for docking 
step was obtained from the RCSB database with the keywords "ST2" 
or with the synonym "IL1RL1". ST2 Receptor/Interleukin-1 
receptor-like 1 on RCSB obtained 3 proteins with RCSB ID: 4KC3, 
1IRA, and IG0Y. To find out whether these proteins can be used in 
the docking process, evaluation was carried out in 3 ways. Firstly by 
analyzing the data on the RCSB database, such as the resolution 
condition where a good resolution is less than 3Å, wwPDB 
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Validation percentile ranks, and ligand structure quality assessment. 
The second evaluation method is to access PDBSUM using the 
Ramachandran plot and evaluate the most favored value of at least 
90% and the G factor. The third method is analyzing a missing 
residue by PyMol. 

4KC3 

4KC3 is a cytokine/receptor binary complex with a resolution of 
3.27Å, and the structural validation of 4KC3 is not good. Evaluation 
of wwPDB validation percentile ranks showed the data is more 
towards red, not blue, as shown in fig. 2. 

 

 

Fig. 2: RCSB data for 4KC3 
 

In the Ramachandran plot analysis, as shown in fig. 3, a good 
structure's most favored structure is at least 90%, while in 4KC3, the 
most favored value is 86.1%. This data indicated that the structure 

of 4KC3 is not good. Similarly, the G factor analysis results resulted 
in-0.30, categorized as highly unusual, and showed a less good 
structure, as shown in fig. 3. 

 

 

Fig. 3: Ramachandran plot analysis of 4KC3 
 

. 

Fig. 4: RCSB data for 1IRA 
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1IRA 

1IRA is an interleukin-1 receptor complex with an interleukin-1 
receptor antagonist [IL1RA] with a resolution of 2.70 Å, and the 
structural validation is categorized as quite good compared to 4KC3. 
Evaluation of wwPDB validation percentile ranks showed red and 
blue colors, as shown in fig. 4. 

In the analysis using the Ramachandran plot as shown in fig. 5, a good 
structure's most favored structure is at least 90%, while in 1IRA, the 
most favored value is 86.7%, categorized as not good structure. 
Similarly, the G factor analysis results resulted in 0.26, categorized as 
highly unusual, and showed good structure, as shown in fig. 5. 

1G0Y 

1G0Y is an IL-1 receptor type 1 complexed with antagonist 
peptide AF10847 with a resolution of 3.00 Å], and the structural 
validation is categorized as not good structure. Evaluation of 
wwPDB validation percentile ranks is more towards red, not 
blue. 

In the analysis using the Ramachandran plot as shown in fig. 7, a 
good structure's most favored structure is at least 90%, while in 
1G0Y, the most favored value is 77.5%, categorized as not good 
structure. Similarly, the results of the G factor analysis resulted in 
0.05, indicating a good structure. 

 

 

Fig. 5: Ramachandran plot analysis of 1IRA 

 

 

Fig. 6: RCSB data for 1G0Y 

 

 

Fig. 7: Ramachandran plot analysis of 1G0Y 
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Based on the validation results of the protein receptor for ST2, a 
protein is used as a receptor with PDB ID: 1IRA. Because it has a 
better evaluation result compared to 4KC3 and IG0Y according to a 
resolution of 2.70 Å, wwPDB Validation percentile ranks and ligand 
structure quality assessment, and the results PDBSUM uses the 
Ramachandran plot and shows the most favored value, which is 
better compared to other proteins, and after analyzed by PyMol 
software, a protein with PDB ID 1IRA it has no missing residue in its 
sequence. Then the PDB format is downloaded, and the receptor 
preparation is carried out using a CHIMERA. 

Analysis of ligands and drug candidates from the database in 
pubchem 

The discovery of drug candidates begins with analyzing the native 
ligand as a control on the ST2 protein receptor in the RCSB 
database[40], namely the NAG ligand [2-acetamido-2-deoxy-beta-D-
glucopyranose]. Then, the structural similarity with the native ligand 
was analyzed using PubChem and drug bank. Database collection 
was also carried out on them with the keyword "ST2 inhibitor". Then 
after that, a structure-based analysis was performed using 
pharmacophore and obtained pharmacophore fit values and 12 drug 
candidates. Then the 12 drug candidates were docked using PyRx. 

In the analysis of NAG ligands with three chains, namely C, D, E, it can be 
concluded that in its structure, there are active sites in the group, namely 
hydrogen bond acceptors 5 and hydrogen bond donors 4, where the red 
color represents a hydrogen bond acceptor. In contrast, the green color 
represents a hydrogen bond acceptor. Hydrogen bond donors. 
 

 

Fig. 8: Structure of NAG, the native ST2 ligand analyzed by 
Ligandscout 4.4.7 

 

Table 5: Drug candidates were analyzed by the structural similarity with the native ligand using PubChem and drug bank 

Compound name PUBCHEM ID 
N acetylmannosamine 11096158 
Aceneuramic acid 14017587 
Ceramide AP/N-[2-Hydroxyoctadecanoyl]-hydroxysphinganine 44625889 
Ceramide NP/N-oleoylphytosphingosine 57378373 
Hg9a-9, Nonanoyl-N-hydroxyethylglucamide 46936271 
N-Acetyl-2-deoxy-2-amino-galactose 84265 
N-Acetyllactosamine 9800166 
MLi/2,6-dimethyl-4-[6-[5-[1-methylcyclopropyl] oxy-1H-indazol-3-yl] pyrimidin-4-yl] morpholine 78319901 
Terazosin 5401 
BMS-911543 50922691 
NAG Inhibitor 657356 
FGFR Inhibitor/Debio-1347/sodium; 2-amino-5-[1-methoxy-2-methylindolizine-3-carbonyl] benzoate 68853159 
 

Data on the physicochemical properties of the candidate drug based 
on Lipinski's rule of five 

Condition:  

1. BM<500 mg/mol 

2. Log P<5 

3. Hydrogen Donor<5 

4. Hydrogen Acceptor<10 

Then, after all the ligands and receptors have been prepared using a 
CHIMERA, docking is done using PyRx, and then a visualization 
analysis is performed using Discovery Studio. 

From the docking results, the smallest or more negative binding 
affinity values are obtained. The stronger the FGFR Inhibitor ligand 
showed the interaction with the Receptor with a binding affinity 
value of-9.0 kcal/mol with mode/position 0, and RMSD 0.0. The 
second smallest binding affinity value is the NAG ligand with a-8.5 
kcal/mol with mode/position 0 and RMSD 0.0. 

 

Table 6: Virtual docking result using PyRx 

Ligand Binding affinity (kcal/mol)  Mode RMSD lower bound Rmsd upper bound 
1ira_sudah_pymol_FGFR_sudah_chim -9.0 0 0.0 0.0 
1ira_sudah_pymol_FGFR_sudah_chim -8.7 1 2.613 -4.877 
1ira_sudah_pymol_DAG_sudah_chim -8.5 0 0.0 0.0 
1ira_sudah_pymol_FGFR_sudah_chim -8.5 2 1.308 2.153 
1ira_sudah_pymol_FGFR_sudah_chim -8.4 3 2.662 4.972 
1ira_sudah_pymol_FGFR_sudah_chim -8.4 4 34.334 35.803 
1ira_sudah_pymol_DAG_sudah_chim -8.3 1 4.113 6.771 
1ira_sudah_pymol_DAG_sudah_chim -8.2 2 42.947 44.754 
1ira_sudah_pymol_FGFR_sudah_chim -8.2 5 33.673 35.101 
1ira_sudah_pymol_FGFR_sudah_chim -8.2 6 45.012 47.238 
1ira_sudah_pymol_DAG_sudah_chim -8.1 3 42.569 45.078 
1ira_sudah_pymol_FGFR_sudah_chim -8.1 7 47.032 49.28 
1ira_sudah_pymol_DAG_sudah_chim -8.0 4 43.847 46.753 
1ira_sudah_pymol_DAG_sudah_chim -7.9 5 42.803 45.273 
1ira_sudah_pymol_DAG_sudah_chim -7.9 6 41.674 44.734 
1ira_sudah_pymol_FGFR_sudah_chim -7.9 8 45.612 47.83 
1ira_sudah_pymol_DAG_sudah_chim -7.7 7 31.699 35.315 
1ira_sudah_pymol_DAG_sudah_chim -7.7 8 42.306 44.532 
1ira_sudah_pymol_MLi_sudah_chim -7.5 0 0.0 0.0 
1ira_sudah_pymol_HG9a_sudah_chim -7.0 0 0.0 0.0 
1ira_sudah_pymol_MLi_sudah_chim -7.0 1 49.437 51.73 
1ira_sudah_pymol_MLi_sudah_chim -6.9 2 17.969 19.942 
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Then using PyMol, the FGFR and NAG ligands from the docking 
results were visualized together with their receptors to visualize the 
location of their binding. 

The following results were obtained: green is the NAG ligand, while 
blue is the FGFR Inhibitor ligand. 

Then after knowing the binding position of the ligand to its Receptor, 
further visualization was carried out using the Discovery Studio to 
determine the interaction of amino acids in the binding. 

The results of the interaction of amino acids on the NAG ligand are 
shown in the image below: 

 

 

Fig. 9: Visualization of the binding of ST2 Receptor with native ligand NAG and FGFR inhibitor ligand. The purple is the ST2 Receptor, the 
green is the NAG ligand, and the blue is the FGFR Inhibitor ligand 

 

 

 

Fig. 10: The interaction of amino acids of the ST2 receptor on the NAG as a native ligand 

 

The NAG ligand interacts with the amino acid glutamate at the 
number 126 chain X with an electrostatic interaction type with a 
bond distance of 4.73 Å. The NAG ligand interacts with the glu amino 
acid at the number 126 chain Y with an electrostatic interaction type 
with a bond distance of 5.58 Å. The NAG ligand interacts with the 
amino acid alanine on the number 127 chain X with a halogen bond 
interaction type with a bond distance of 3.25 Å. The NAG ligand 
interacts with the amino acid aspartate at number 128 chain X with 
the type of interaction of the halogen bond with a bond distance of 
3.35 Å. The NAG ligand interacts with the amino acid glutamate at 

the number 59 chain Y with a halogen bond interaction type with a 
bond distance of 3.08 Å. The NAG ligand interacts with the amino 
acid lysine at the number 129 chain Y with a hydrogen bond 
interaction type with a bond distance of 3.83 Å. 

The NAG ligand interacts with the proline amino acid at number 23 
chain Y with a hydrophobic bond interaction type with a bond 
distance of 4.19 Å and 4.7 Å. The NAG ligand interacts with the 
amino acid lysine at number 60 chain Y with a hydrophobic bond 
interaction type with a bond distance of 5.31 Å. 
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Fig. 11: The interaction of amino acids of the ST2 Receptor on the FGFR inhibitor as a ligand 

 

The FGFR ligand interacts with hydrogen and oxygen atoms by hydrogen 
bonding interaction with a bond distance of 2.45 Å. The FGFR ligand 
interacts with the amino acid tyrosine at number 236 chain Y with a 
hydrophobic interaction type with a bond distance of 4.58 Å. The FGFR 
ligand interacts with the amino acid tyrosine on the number 239 chain Y 
with a hydrophobic interaction type with a bond distance of 3.79 Å. The 
FGFR ligand interacts with the amino acid lysine at number 9 chain X 
with a hydrophobic bond interaction type with a bond distance of 4.40 Å. 
The FGFR ligand interacts with the amino acid leucine at number 234 
chain Y with a hydrophobic bond interaction type with a bond distance 
of 4.59 Å. The FGFR ligand interacts with the amino acid lysine at 
number 9 chain X with a hydrophobic bond interaction type with a bond 
distance of 5.11 Å. The FGFR ligand interacts with the amino acid valine 
at number 246 chain Y with a hydrophobic bond interaction type with a 
bond distance of 5.48 Å. 

CONCLUSION 

Our research provides functional evidence to reveal the prediction of 
their potential targets and FGFR Inhibitor mechanism pathways. The 
findings revealed that FGFR Inhibitor was a suitable repurposing 
medication for anti-COPD development via the IL-33/ST-2 signaling 
pathway. 

To verify this in silico study, more research on the IL-33/ST-2 
signaling inhibitor of FGFR Inhibitor and the underlying mechanism 
is needed in other approaches such as in vitro, in vivo, and clinical 
study evaluation. 
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