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ABSTRACT 

This review aimed to determine the potential of the combination of chitosan and alginate as a targeted drug carrier in cancer therapy. This article is 
based on the results of previous research journals collected from Google Scholar, Scopus, PubMed and Science Direct sites using the keywords chitosan, 
alginate, targeted drug delivery for cancer, nanoparticle chitosan alginate. With the inclusion criteria, only English-language journals, journals published 
in the last 10 y, related to chitosan and alginate-based formulations. Meanwhile, the exclusion criteria were journals on pharmacological properties and 
bioactivity, food and cosmetics. The combination of cationic chitosan and anionic alginate forming strong cross-links showed good mucoadhesive 
properties, higher resistance to low pH and high-efficiency encapsulation without showing any obvious cytotoxicity. Ch/Alg can overcome the 
shortcomings of the active substance, such as its rapid release process and the required active ingredient is lower than that required to enter the cancer 
target cells so as to minimize side effects of the drug by providing drug-induced release. in response to various stimuli that are well suited to the 
intended purpose, such as pH stimuli, redox gradients, light, temperature, and magnetism. It is shown that the combination of chitosan and alginate base 
has great potential in targeting cancer therapy by increasing its therapeutic effectiveness and selectivity.  
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INTRODUCTION 

Cancer cells arise from the transformation of normal cells so that 
anticancer drugs can usually damage normal cells so that a drug 
delivery system that is specifically targeted towards cancer cells is 
needed such as nanoparticles [1, 2]. Nanoparticles can be defined as 
nano-sized systems with diameters generally ranging from 10 to 1000 
nm [3], which has been recognized to have great potential in changing 
the pharmacokinetic profile, reducing side effects, and being able to 
increase therapeutic efficiency [4, 5]. In the development of this 
delivery system, there are three main aspects, namely the targeting 
group, the therapeutic agent, and the carrier system. Drugs can be 
conjugated into carrier molecules through passive and active 
absorption, in this case, the selection of a suitable carrier molecule that 
must be biodegradable is very important. Biodegradable polymers 
have proven to be the most promising potential for building anticancer 
drug delivery systems and can be classified based on the source 
consisting of synthetic polymers and natural polymers [1, 2, 6].  

One type of polymer being developed at this time is chitosan; chitosan 
is a polymer derived from the distillation process of chitin which is 
widely found in invertebrates, especially crustaceans, such as crabs, 
crabs, and shrimp, has mucoadhesive properties, biodegradable, 
biocompatible, low immunogenicity and Non-toxic makes this polymer 

widely used in biomedicine and pharmaceuticals, besides that it is also 
a strong nucleophile and has a lone pair of electrons from the amine 
group making chitosan cationic. Alginate is a polymer whose main 
components come from brown algae, such as sargassum, durvillaea, 
macrocystis, and ascophyllum. There are two types of monomers in 
alginic acid, namely β-D-mannopyranosyl uronic and α-D-
mannopyranosyl uronic acid-L-glucopyranosil uronate, which causes 
colloidal, hydrophilic and gel-forming properties, so it is widely used 
as a thickening agent, emulsifier, and stabilizer in pharmaceutical 
preparations [7-10]. Combination anionic chitosan and alginate will 
form cross-links that maximize targeting by regulating encapsulation 
and release rate as well as excellent and proven mucoadhesive 
properties. can be well received by the body, improve encapsulation 
efficiency [11-13] and is known to increase absorption and cellular 
uptake by widening the narrow film on the preparation [10, 14, 15].  

The nanoparticle formulation based on the combination of chitosan 
alginate can produce a significant difference in the healing process of 
cancer therapy compared to the single base. But in this combination 
the selection of the appropriate method is very important to achieve 
the formula results with the desired targeting location. The purpose of 
this review article is to provide a comprehensive view of the potential 
of nanoparticle targeted delivery systems from a combination of 
chitosan and alginate-based for cancer therapy. 

 

 

Fig. 1: Distribution of nanoparticle chitosan alginate articles based on the year of publication (self-made) 
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METHODS 

This article is based on the results of previous research journals 
collected from the Google Scholar, Scopus, PubMed and 
ScienceDirect sites using the keywords chitosan, alginate, targeted 
drug delivery for cancer, nanoparticle chitosan alginate. With the 

inclusion criteria, only English-language journals, journals published 
in the last 10 y, relevant to based chitosan and alginate formulations. 
Meanwhile, the exclusion criteria were journals on pharmacological 
properties and bioactivity, food and cosmetics, the distribution of 
articles based on the year of publication can be seen in fig. 1, and for 
the flowchart of the methodology can be seen in fig. 2. 

 

 

Fig. 2: Flowchart of the literature search (self-made) 

 

Chemical structure and properties of chitosan and alginate 

Chitosan 

Chitosan is a biological polysaccharide with cationic properties, a 
compound having the chemical formula poly(1,4)-2-amino-2-dioxy-
D-glucose) which can be produced from the hydrolysis of chitin 
using a strong base (deacetylation process) [16] found in crustacean 
shells, exoskeletons of arthropods, insects, and fungal cell walls. The 
elements that make up chitosan are almost the same as the elements 
C, H, N, O and other elements, which are used as very promising 
nanomaterials with wide medical applications [11, 12, 16] and is an 
abundant biopolymer because it is obtained from From its structure, 
chitosan is a representative polysaccharide, positively charged amine 
group consisting of N-acetyl-D-glucosamine (GlcNAc) and D-
glucosamine (GlcN) which gives cationic character at physiological pH 
[17-19]. This nanomaterial has unique properties, namely resistance 
to mechanical stress, nontoxic, mucoadhesion, biocompatibility, 
biodegradability, and bioactivity [16, 20, 21]. Because of its nature that 
can be degraded by internal enzymes such as lysozyme and 
chitosanase so as to obtain oligosaccharides and monosaccharides 
which can then be easily absorbed by the body [22].  

However, chitosan has low solubility and poor mechanical 
properties [19, 25] but can form salts with inorganic acids and 
organic acids such as hydrochloric acid, glutamic acid, acetic acid 
and lactic acid. When chitosan dissolves, the amine group is 
protonated and the charge becomes positive [24]. To cover these 
deficiencies, modifications have been developed [27, 28], such as the 
use of amino and hydroxyl groups to produce derivatives that have a 
high degree of solubility [29, 30]. So now it has been widely used in 
biomedical and pharmaceutical applications such as tissue 
engineering, wound healing, drug delivery systems, and cosmetic 
products [29-33]. The active ingredients combined in the matrix 

must have good solubility in chitosan, because it greatly affects the 
speed of drug release. These polymers can be used alone or in 
combination with other polymers to obtain better drug release [34]. 

Alginate 

Alginate is an anionic copolymer obtained from the extraction of 
brown algae algynophyt, from Phaeophyceae that produce alginates, 
including macrocystis, Ecklonia, Fucus, lessonia and sargassum, 
which contain calcium, potassium, sodium ions [36,37] consists of 
1,4-linked units of-D-mannuronic acid (M) and-L-glucuronic acid (G) 
arranged in a clockwise direction [37]. To extract alginate from 
algae, mineral acid is used to remove contaminants and produce 
insoluble alginic acid, to dissolve it is neutralized with alkalis such as 
sodium hydroxide or sodium carbonate to form sodium alginate 
[38]. In the formation of sodium alginate gel, there is a replacement 
reaction of more than 35% Na+cations with Ca2+which stops the 
molecular shift. The active ingredients combined in the matrix must 
have good solubility in chitosan, because it greatly affects the speed 
of drug release. These polymers can be used alone or in combination 
with other polymers to obtain better drug release [34]. 

Methods for constructing nanoparticle-based chitosan/alginate 
targeted drug delivery 

The cationic nature of chitosan, which is able to increase adhesion 
through electrostatic interactions of the mucosal surface, which has 
a negative charge is one of the most prominent characteristics and 
has been proven to be an efficient drug carrier to target cells. 
However, the most significant drawback is that it is only able to 
dissolve in acidic media, so it is important to make modifications to 
cover this deficiency. Several modification methods can be carried 
out for the manufacture of nanoparticles based on a combination of 
chitosan and alginate. Methods for constructing nanoparticle Based 
chitosan and alginate can be seen in fig. 3. 

 

 

Fig. 3: Methods for constructing nanoparticle based chitosan and alginate (self-made) 
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Ionic gelation 

There are two types of ionic crosslinking: first, the manufacturing 
process is simple, does not use organic solvents or high 
temperatures, and does not involve chemical interactions. These 
benefits make this procedure effective for thermolabile drugs. Ionic 
crosslinking is carried out due to the interaction between positively 
charged chitosan and negatively charged macromolecules or anionic 
crosslinking agents. An acid solution of chitosan was prepared, 
together with stirring and sonication, and the ionic crosslinker was 
applied dropwise. Second, through chemical interactions between 
crosslinking agents, primary amine groups, chitosan nanoparticles 
are formed. Glutaraldehyde, formaldehyde, vanillin, and genipine are 
common crosslinkers [39].  

Ionic gelation method in the process of making nanoparticles is 
widely used because the process is simple, does not need to use 
organic solvents and can be controlled easily [40]. Behind these 
advantages, this method also has disadvantages, namely poor 
stability under acidic conditions and difficult to trap drugs with high 
molecular weights [41]. 

LbL self-assembly 

Layer by Layer (LbL) with electrostatic assembly is often used in 
surface modification of some materials [41, 42]. This technique has 
seen the application of two-dimensional and three-dimensional self-
constructed structures that are nanostructured and easily adaptable 
[44]. Due to its compatibility with highly organized construction 
materials and its high versatility, the LbL deposition method is used 
to construct new biomaterials and has seen promising applications 
in the biological field [31, 43–45].  

The use of LbL assembly with different standard tools and 
procedures and different processing requirements related to 
substrates such as porous membranes, particles and biological 
materials used in its development, including dipping, dewetting, roll-
to-roll, centrifugation, creaming, calculated saturation, 
immobilization, rotating, high gravity, spraying, atomization, 
electrodeposition, magnetic assembly, electrical connection, 
filtration, fluidics, and fluidized bed fluid. Currently there is a 
growing realization that the assembly method not only determines 
the process properties (such as time, scalability, and manual 
intervention) but also directly affects the physicochemical 
properties of the film such as thickness, intralayer homogeneity. The 
advantages of this method are that the process is cheaper than other 
methods and the percentage of success is high. But behind these 
advantages, this method has a big challenge because the process 
occurs without human intervention, so it is important to know how 
to regulate and maintain the formation of directed supramolecules 
as desired [47-62]. 

Polyelectrolyte 

Polysaccharides are an interesting type of polymer found in 
nature. They often allow a high degree of hydration, are 
biocompatible, and are often biodegradable [48]. Complex 
Polyelectrolytes (PEC) are formed from solutions that carry two 
polyelectrolytes. The formation of PEC is caused by intense 
coulomb interactions between polyelectrolytes of opposite 
strength to each other. The formation of this complex results in the 
charge neutralization of the polymer. Generally, the complex 
obtained will precipitate or leave the solution to produce a rich 
and complex liquid process (coacervate). An important driving 
force for the formation of PEC is the increase in entropy caused by 
the release of these low molecular weight counterions into the 
medium. While PEC formation is responsible for electrostatic 
interactions between the complementary ionic groups of 
polyelectrolytes, hydrogen bonding and hydrophobic interactions 
also contribute to the complexity [62, 63]. 

This method is used to overcome the weakness of chitosan 
properties; materials that have a carboxyl group are used so that 
they can form polyanones, for example, pectin and alginate. 
However, obstacles. The amino group in N-glucosamine chitosan, 

which is positively charged in an acidic environment forms a basic 
polysaccharide or polycation. Ionic interactions that occur between 
polyanions (alginate) and polycations (chitosan) form the PEC 
complex. In addition, other interactions are formed between amino 
and carboxyl groups, such as hydrogen and covalent bonds formed 
using conjugation chemistry. The combination of chitosan and 
alginate is able to overcome the lack of polysaccharides and expand 
their benefits [65]. 

Conjugation 

In the chitosan molecule there are C6-OH and C2-NH2 groups which 
can be used to add other groups with different molecular designs. 
This modification is able to improve physical and chemical 
properties and expand its benefits and applications in various fields 
[66]. The functional groups C3-OH, C2-NH2, C6-OH, amines and 
glycosides exist in chitosan. Acetyl-amino bonds and glycosidic 
bonds are not easily broken, making them stable [63]. Examples of 
other molecular groups that can be added to chitosan are alginate, 
alginate having an OH-group (anion) capable of being conjugated 
with chitosan which has a cationic group to form a complex bond 
[65]. 

Functionalization strategies of nanoparticle based chitosan and 
alginate for cancer targeting 

Cancer targeting therapy is able to increase therapeutic efficacy with 
low side effects, because active compounds can accumulate at the 
tumor site and are able to recognize differences between normal 
cells and cancer cells [65–69]. This strategy can be divided into two 
mechanisms: passive targeting and active targeting. 

Passive targeting 

Passive targeting or so-called Enhanced Permeability and 
Retention (EPR) has the effect of increasing permeability and 
retention allowing nano-sized carriers to be explicitly distributed 
penetrate cancer cells through endocytosis and increase the 
number of drugs acting on cells [67] which is certainly one way to 
make therapy more efficient [68]. diameter of<100 nm with a 
hydrophilic surface to avoid increased drug targeting and improve 
drug circulation in the body, this measure affects the amount and 
kinetics of accumulation of nanomaterials in tumor cells which is 
expected to be smaller than the cutoff proportion in 
neovascularization [67]. In addition, under the microenvironment 
the pH of tumor tissue is lower than normal tissue, so it is possible 
to combine chitosan with alginate which is responsive to low pH, a 
hydrophobic substrate at a physiological pH of 7.4 becomes 
hydrophilic at a pH below 6.3 due to protonation during the drug 
release process triggered by pH [69]. 

Active targeting 

Active targeting used for tumor accuracy and delivery efficiency, 
requiring affinity-based identification, retention, and facilitated 
uptake of target cells [70]. This targeting is also known as ligand-
receptor conjugation, antigen-antibody, and other forms of 
molecular recognition to DDS to obtain targeted delivery to specific 
cells, tissues, or organs [71]. The interaction between the ligand and 
the receptor will increase the absorption of the drug-containing 
nanoparticles and increase the therapeutic efficacy [67]. Wicaksono 
et al. reported that the combination of chitosan and alginate 
together Ribosome-inactivating protein (RIP)It has been used 
successfully in the treatment of breast cancer by oral administration. 
And it has also been proven that the Ch/Alg folic acid conjugate is 
able to perform a better antitumor therapeutic effect than the free 
drug because of the selective affinity of Ch/Alg to intestinal cells [77, 
78]. Gascon et al. developed modified CXCL12-conjugated Ch/Alg 
nanoparticles for the treatment of brain and spinal cancer because 
the IL-13RA2 receptor (also known as cluster of differentiation 
213A2, is a membrane-bound protein is highly expressed in 
glioblastoma cancer tissue and is not present in normal brain tissue 
[74]. CXCL12 conjugated into nanoparticles was able to significantly 
increase drug accumulation at the cancer site, thereby enhancing the 
therapeutic effect. 
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Table 1: Strategy targeting nanoparticle based chitosan and alginate cancer active 

Active Ligand type Ligand Receptor/Targeting site Ref. 
Protein Ribosome-inactivating protein rRNA N-glycosidase [64] 

CXCL12 IL-13RA2 [74] 
Vitamin Folic acid Folic Acid Receptors [68-71] 

Passive Conditions Function Molecule Ref. 
pH Responsive The drug delivery system remains stable in the 

circulation and releases the drug in response to pH 
at certain tissue locations 

5-Aminolevulinic acid [9] 
 

Boric Acid [66] 
temperature Release the drug to its temperature responsive TiO2 and Fe3O4 [72,73] 
Magneto 
Responsive 

Targeted delivery to a specific site via an external 
magnetic field. 

Fe3O4 [77] 

  

Humans have a body built with interconnected signals between organs 
and cells so great effort is needed in studying the deep mysteries 
associated with the signals of the human body [81, 82]. It has 
previously been determined that various receptors in the body can be 
developed in an effort to target drugs [83, 84]. There are various kinds 
of compounds used in the delivery of targeted drugs, including 
glucose, peptides and other types of biological molecules [83].  

Cancer targeting therapy is able to increase therapeutic efficacy with 
low side effects, because the active compounds can accumulate at 
the tumor site and are able to recognize differences between normal 
cells and cancer cells [84-88]. Some other examples of nanoparticle 
combinations based of Chitosan and Alginate (Ch/Alg) nanoparticles 
designed in dosage formulations for targeted cancer therapy are 
presented in table 1. 

 

Table 2: Targeted drug delivery of nanoparticle based Ch/Alg for cancer therapy 

Agents of drug Size 
(nm) 

Methode Strategies of 
cancer-targeting 

Effect Cell line Cancer 
type 

Ref. 

M. Jalapa L 130.7 Active 
 

Conjugated with 
anti Ep-CAM 
antibody 

Enhance Cytotoxicities, less selectivity T47D Breast 
Cancer 

[64] 
 

Iron saturated 
bovine lactferrin 

322 Passive Polyelectrolyte Improved antitumor by internalizing and 
regulating micro-RNA expression  

MDA-MB-231 Breast 
Cancer 

[89] 

Curcumin 
diglutaric acid 

212-
552 

Passive Enhanced cellular 
uptake  

The superior inhibitory effects on the 
viability of cancer cells and higher 
cytotoxicity 

MDA-MB-23, 
HepG2 and 
Caco-2 

Breast 
Cancer 

[90] 

Doxorubicin ~80 Passive Enhanced cellular 
uptake 

Have high concentration to induce a 
therapeutic effect breast cancer cell line 

4T1 murine  Breast 
Cancer 

[91] 

Curcumin ~200 Passive Magneto-
responsive 

Eenhanced the biocompatibility and can be 
controlled to specified targeting 

 MCF-7  Breast 
Cancer 

[77] 

5-
Aminolevulinic 
acid 

115 Passive Depending on the 
pH of the 
environment 

Improved the efficacy of the 5-ALA for 
photosensitizer. 

HeLa Cell  Cervical 
Cancer 

[9] 

Methyl oxide 21 Passive Enhanced cellular 
uptake 

Exhibit better protein absorption capability 
suitable for cell attachment and growth 

UC6 (Bladder 
tumor cell line), 
MG-63 

Bladder 
Cancer 

[78] 

Temozolomide 
anddoxorubicin 

70-
120 

Active 
 

Folic acid receptor-
based endocytosis 

Decrease tumor cell line, increase its 
absorption and selectivity 

HeLa and 
NIH/3T3 Cell 

Cervical 
Cancer 

[75] 

5-Fluorouracil 130 Active 
 

Folic acid Improved antiproliferative activity of 
cancer cells 

HCT116 Colon 
Cancer 

[76] 

CXCL12 133-
297 

Active Conjugated ligand Control GBM cell invasion without 
enhancing their proliferation 

 GBM cells  Brain 
Cancer 

[74] 

 α-mangostin 192 Active Folic acid receptor-
based endocytosis 

Improved antiproliferative activity of 
cancer cells 

HCT116 Colon 
Cancer 

[73] 

 α-mangostin 100 Active Folic acid  Improved antiproliferative activity of 
cancer cells 

HCT116 Colon 
Cancer 

[72] 

Boric acid 136 Passive Depending on the 
pH of the 
environment 

Significantly reduce the cytotoxicity by 12-
fold and increase the killing efficacy of 
tumor cells  

SAS Cell Oral 
Cancer 

[66] 
 

 

Based on the data shown in table 2. Nanoparticles can enter cells 
through direct diffusion mechanisms or adhesive interactions, 
phagocytosis, and micropinocytosis. Chemical properties, such as 
shape, particle size, surface charge, and composition. In previous 
studies, smaller nanoparticles were easier to enter into cells through 
endocytosis or diffusion mechanisms, while larger nanoparticles 
were more likely to penetrate into cells through phagocytosis 
mechanisms [92]. Cells incubated in the presence of Ch/Alg complex 
and Ch/Alg filled with 5-ALA showed higher emissions compared to 
positive controls. As reported in previous studies, the higher 
emission of Ch/Alg is predicted to come from the surface properties 
of the nanoparticles which can increase the interaction with cell 
membranes accompanied by higher absorption and accumulation of 

5-ALA [9, 92]. This value could be attributed to the decreased 
capacity of cells to degrade Chi/Alg carriers resulting in lower 
conversion rates and poor accumulation of Protoporphyrin IX in 
cells [9, 93].  

Ch/Alg in the form of nanoparticles is very effective as a carrier for 
cancer drugs can be seen in table 2. However, there are several 
things that need to be considered in therapy, namely the increase in 
cytotoxicity, cell uptake, circulation time, and the level of selectivity 
to normal cells. This is associated with an increase in cytotoxicity in 
the form of effectiveness and efficiency of nanoparticles which can 
be done by optimizing their targeting strategies both actively and 
passively. Nanoparticles can bind to the physiological pH of the body 
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as short peptides that are both hydrophilic and hydrophobic, this 
increase in cellular uptake causes large membrane damage, which 
can penetrate cell membranes at low micromolar concentrations by 
increasing drug concentrations in cells. Drug concentration in cancer 
cells will increase cytotoxicity. The value of this effective diffusion 
coefficient is associated with the electrostatic interaction between 
positively charged protein/peptide, and negatively charged alginate 
core that composes Ch/Alg nanoparticles. 

Ch/Alg nanoparticle technology has various modifications in drug 
development efforts to increase drug accumulation in cancer cells 
[72, 94-98], mobile uptake [99, 100], cytotoxicity [101] and 
selectivity to normal cells [102-104]. Taking into account the EPR 
effect and the active targeting portion, Ch/Alg-based nanoparticles 
will achieve all of these goals. Ch/Alg nanoparticles can work by 
delivering anticancer drugs to all cancer cells, which are widely used 
representing all types of cancer. Our objective research shows that 
chitosan-based nanoparticle technology synergizes the overall impact 
of the effects of EPR and active targeting components in delivering 
anticancer drugs to cancer cells. Decrease in nanoparticle size 
increases drug solubility and stability [105-108] and surface charge of 
nanoparticles, enhances drug protection in blood circulation [33, 109] 
and increases drug absorption in cancer cells [33, 66, 100] (table 2). 
This modification of the Ch/Alg combination will maximize other 
cancer cell-specific characteristics such as the pH gradient [110-112], 
temperature and the redox [30]. Therefore, the formulation of a 
nanoparticle based combination of chitosan and alginate is an option 
in overcoming the disadvantages of poor solubility in water and low 
selectivity for drug delivery to target cells. 

CONCLUSION 

Therapy using nanoparticles based combination of chitosan and 
alginate (Ch/Alg) can be applied to anticancer drugs to any cancer 
cells, such as for breast cancer, cervical cancer, bladder cancer, colon 
cancer, brain cancer, and oral cancer, working by increasing 
cytotoxicity and increasing drug accumulation, selectivity, and 
efficacy. The combination of cationic chitosan and anionic alginate 
forming strong cross-links showed good mucoadhesive properties, 
higher resistance to low pH and high-efficiency encapsulation 
without showing any obvious cytotoxicity. Ch/Alg can overcome the 
shortcomings of the active substance such as its rapid release 
process and the required active ingredient is lower than that 
required to enter the cancer target cells so as to minimize side 
effects of the drug, by providing drug-induced release. in response to 
various stimuli that are well suited to the intended purpose such as 
pH stimuli, redox gradients, light, temperature, and magnetism. 
Cancer therapy with nanocarrier combinations of chitosan and 
alginate offer great opportunities in the treatment of various types 
of cancer. 
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