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ABSTRACT 

Objective: Nicotine is an active compound in tobacco and has a rewarding effect in the central nervous system (CNS), which may lead to 
dependence. Although nicotine dependence is elucidated by brain mechanisms, synaptic molecular substrates underlying the dependence remain 
unclear. We hypothesized that reward signaling is mediated by dopamine and glutamate receptors, in where calcium/calmodulin-dependent kinase 
II (CaMKII) and extracellular signal-regulated kinase (ERK) may mediate the synaptic signaling of dependence.  

Methods: To investigate the roles of both CaMKII and ERK on nicotine dependence were assessed by conditioned place preference (CPP) me thods 
followed by dissection. One day after conditioning, preference scores were measured to evaluate nicotine dependence. Mice were sacrificed  and 
their striatum were dissected out for immunoblotting analyses of CaMKII and ERK phosphorylation.  

Results: Nicotine-induced conditioned place preference as a symptom of nicotine dependence. CaMKII and ERK phosphorylation in striatum 
significantly increased along with the development of nicotine dependence.  

Conclusion: We should next apply pharmacological strategies to manipulate CaMKII and ERK signaling. In particular, disruption of reconsolidation 
by disrupting CaMKII and ERK signaling may propose an attractive therapeutic approach to inhibit nicotine dependence.  
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INTRODUCTION 

Nicotine is an active compound and the main addictive material in 
tobacco products; nicotine dependence symptoms are characterized 
by compulsive use, craving, tolerance from continued use and 
withdrawal upon cessation [1]. Nicotine dependence is a chronic 
brain disorder and a worldwide primary public health issue [2].  
Nicotine binds by main receptor nicotinic acetylcholine receptors 
(nAChRs), which are pentamers consisted of α2, α4 α7, α10, and β2-
β4 subunits [3]. nAChRs are widely distributed in the central 
nervous system (CNS), including cortical and limbic regions. These 
receptors are critical for drug addiction through stimulation of 
synaptic activity in the hippocampus, amygdala, ventral tegmental 
area (VTA), and nucleus accumbens (NAc) and striatum region [4].  

nAChRs are ligand-gated ion channels that were activated by the 
endogenous neurotransmitter acetylcholine (ACh) and the 
exogenous tertiary alkaloid nicotine [5]. Activation of nAChRs by 
nicotine stimulates calcium influx Calcium through nAChRs, 
especially via the alpha-bungarotoxin-sensitive alpha7-containing 
nAChRs, which is a very effective subtype of nAChRs on enhancing 
cytoplasmic calcium level [6]. Calcium entry through voltage-gated 
Ca2+channels is critical in develop the Calcium/Calmodulin Protein 
Dependent Kinase (CaMKII) level [7]. On the other hand, Influx 
Ca2+intracellular to result in activation and phosphorylation of PYK2, 
turn on the RAS through tyrosine kinase receptor and upstream the 
activity of extracellular regulated kinase 1/2 (ERK1/2) [8]. 

CaMKII is the most important Ca2+sensors changing glutamatergic 
activation into synaptic plasticity during learning and memory 
formation, This cascade is pivotal for Long-Term Potentiation (LTP) as 
basis for morphological adaptations at the synapse during learning 
process [9]. ERK is a part of mitogen-activated protein kinases 
(MAPKs), affected in the modulation of many cellular processes, 
including cell proliferation, differentiation, growth, and death of cells. 
The previous study showed cocaine induces phosphorylation of ERK 
during dependence conditions [10]. Accumulating evidence supports 

ERK-dependency in molecular adaptation, morphological plasticity, 
and behavioral performance such as nicotine like behaviour [11]. 
Here, we performed the experiment to investigate the roles of CaMKII 
and ERK on nicotine dependence conditions. These observations led 
us to the discovery of the new mechanism of nicotine-induced 
conditioned place preference through CaMKII and ERK. Moreover, this 
research will provide a new approach to prevent nicotine dependence 
by inhibiting the phosphorylation of CaMKII and ERK.  

MATERIALS AND METHODS 

Materials 

Male BALB/c mice aged 8 w (20–30 g) were purchased from SLC 
(Hamamatsu, Japan), Mice were housed in a room with a 12/12-hour 
light/dark cycle (lights on at 09:00). Room conditions were 
temperature controlled at 22.0±2 °C with a relative humidity of 
55%±5%. Mice had free access to food and water. All experimental 
animal procedures were approved by the Committee on Animal 
Experiments at Tohoku University, and studies were conducted 
following committee guidelines. Every effort was designated to 
minimize suffering and limit the number of animals used. Nicotine 
Hydrogen Tartrate was obtained from Sigma Aldrich. Phosphorylation 
of CaMKII antibody gift from Professor Kohji Fukunaga. 
Phosphorylation of ERK1/2 was purchased from cell signaling. Rabbit 
Secondary antibody was buyed from Abcam company. 

The testing apparatus for the conditioned place preference consisted of 
three compartments measuring 12.7 cmx46.5 cmx12.7 cm (width x 
length x height) in size. The middle compartment was grey, called the 
neutral compartment. Two conditioning compartments differed in color 
and floor texture. Compartment A was white with a quadrangular sieve 
(mesh). The other compartment (B) was black with stainless steel floors. 
Each compartment was separated by two doors (fig. 1). 

The immunoblotting analyses performed used Bio-rad apparatus, 
Protein separation by gel electrophoresis 1. Load equal amounts of 
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protein (20 μg) into the wells of a mini (8.6 x 6.7 cm) or midi (13.3 x 
8.7 cm) format SDS-PAGE gel, along with molecular weight markers. 
2. Run the gel for 5 min at 50 V. 3. Increase the voltage to 100–150 V 
to finish the run in about 1 h. 
 

 

Fig. 1: Conditioned place preference box 

 

Nicotine-induced conditioned place preference 

Mice were divided into two groups, nicotine treatment group n=6 
and vehicle treatment group n=6. Mice were first habituated to the 
CPP apparatus for five days; Acclimatization was performed for five 
days prior to pre-conditioning. It is designed to remove any 
environmental stress, including the weighing and testing rooms, CPP 
apparatus, and drug administration. Followed by a pre-conditioning 
test to determine the nicotine-paired compartment. Mice entered 
conditioning training for one month in which 0.5 mg/kg nicotine 
was administered intraperitoneally, followed by confinement in the 
designated compartment of CPP apparatus for 30 minute [12]. Four 
hours later, the same procedure was repeated, only this time saline 
was given instead of nicotine and the mouse was confined in the 
opposite of nicotine compartment. One day after conditioning, 
preference scores were measured three times to evaluate the 
nicotine dependence on preconditioning, 2 w conditioning and 4 w 
conditioning. Preference scores were calculated using this formula:  

Preference Score =  
Sojourn time in nicotine compartment (s)

Total time spent in all compartments (s)
  

Preference ratio observed by counting the time spent in nicotine 
compartment and total time in all compartment using stopwatch 

Immunoblot analysis 

Mice were sacrificed immediately after preference score 
conditioning calculation, Striatum were dissected out form the brain 
mice. The tissues were stored in liquid nitrogen for temporary and 
then stored at-80 °C until use. Western blot analysis was started as 
described. Striatum region samples were homogenized in 200 μl 
homogenizing buffer containing 4 µm ethylene glycol tetraacetic acid 
(EGTA), 50 µm Tris–HCl (pH 7.4), 1 µm Na3VO4, 0.5% Triton X-100,, 
10 µm EDTA,, 40 µm sodium pyrophosphate, 50 µm NaF, leupeptin 
25 μg ml−1, pepstatin A 50 μg ml−1, trypsin inhibitor and 1 mm 
dithiothreitol (DTT), 100 µm calyculin A 50 μgml-1. 10 minutes 
centrifugation at 15 000 r. p. m 4 °C was used to delete insoluble 
particle. After determining protein concentration in supernatants 
using Bradford’s solution using a spectrophotometer, samples were 
boiled in 100 °C incubator for 3 minutes in Laemmli buffer [13].  

The samples containing equivalent amounts of protein were subjected 
to SDS–polyacrylamide gel electrophoresis (PAGE) at 500 V and 40 
mA. Proteins were transferred to an Immobilon polyvinylidene 
difluoride (PVDF) membrane (pore = 0.45 µm) (Millipore) for 2- h at 
70 V. After blocking with TTBS solution (50 mm Tris–HCl, pH 7.5, 
150 mm NaCl and 0.1% Tween 20) containing 5% of fat-free milk 
powder for 1-h at room temperature, membranes were incubated 
overnight at 4 °C with Anti-phospho-CaMKII (1:5000) [14]. Anti-
phospho-ERK (1:2000; Cell signaling lot number 9101) [15].  

Pictures of the band were developed using an ECL immunoblotting 
detection system (Amersham Biosciences, Piscataway, NJ, USA) and 
were visualized on X-ray film (Fuji Film, Tokyo, Japan). 
Autoradiographic films were scanned for densitometry analysis 
(Lasergraphics, Irvine, CA, USA) and quantitative analyses were used 
Image Gauge version 3.41 (Fuji Film, Tokyo, Japan). 

RESULTS 

Nicotine administration generates nicotine-induced conditioned 
place preference as a symptom of nicotine dependence (fig. 2) which 
is characterized by elevation of the value of preference ratio. 

 

 

A      B 

 

C 
Fig. 2: Nicotine-induced conditioned place preference. A. Preference score of Nicotine dependence in 4 w nicotine administration (n=6). B. Time in 

Nicotine paired compartment after nicotine administration in 28 consecutive days (n=6). C. Δ Time in Nicotine paired compartment (n=6). Data 
were presented as average±SEM and analyzed using one-way ANOVA followed by multiple comparisons between baseline condition and the 

results obtained 2 w and 4 w after nicotine administration post hoc Tukey tests. Significantly different was considered *p<0.05 were compared by 
preconditioning or baseline condition 
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Nicotine administration induced nicotine dependence (fig. 2) which is 
characterized by increase of the value of preference ratio as a symptom 
nicotine dependence, preference ratio elevate 0.59 and 0.73 on 14 d and 
28 d nicotine injection respectively compared to nicotine pre-
administration condition on normal mice 0.44 (fig. 2A) [16]. According 
to the preference ratio, the time spent on nicotine compartment 

significantly enhanced on 28 d of administration of nicotine even though 
the enhancement of time in nicotine compartment after 14 
administration was not differently significant compared by 
preconditioning condition (fig. 2B). Moreover, our research shows if the 
change of time in nicotine compartment dramatically elevated more 
than 100 seconds in 28 d after nicotine administration (fig. 2C). 

  

 

 

Fig. 3: The expression of phosphorylation CaMKII and ERK nicotine dependence on striatum brain region. A. Nicotine Induces Enhancement of 
CaMKII autophosphorylation in striatum (n=5). B. Enhancement of ERK1/2 phosphorylation in striatum stimulated by nicotine 

administration (n=5). Data were presented as average±SEM and analyzed using one-way ANOVA followed by multiple comparisons between 
vehicle condition and the results 4 w after nicotine administration post hoc Tukey tests. Significantly different was considered *p<0.05 were 

compared by vehicle group 

 

Since two important mediators in memory formation, particularly in 
long-term potentiation of neurons, were recognized and mediated by 
CaMKII and ERK 1/2, we analyzed the concentration of phosphorylation 
of both protein using western blot methods. The nicotine dependence 
was associated with elevation of activity of phosphorylation CaMKII and 
ERK1/2 auto-phosphorylation on striatum of mice brains (fig. 3. A and 3. 
B). The level of CaMKII phosphorylation markedly increased more than 
2.5 fold compared to the level of CaMKII Phosphorylation on vehicle 
group 1 fold. In line with phosphorylation of CaMKII, 
Autophosphorylation of ERK 1/2 expression on striatum region also 
enhanced around 175%, comparable to vehicle treatment group 100%. 
ERK1/2 phosphorylation dramatically increases almost 75% if we 
compare to the vehicle group as an effect of nicotine administration for 
28 consecutive days. 

DISCUSSION 

Nicotine is the neuroactive compound and addictive agent in tobacco, 
in the present study the administration of nicotine 0.5 mg/kg for 14 
and 28 d is sufficient to induce dependence in mice. Nicotine 
successfully increases the preference ratio as a symptom of nicotine 

dependence on CPP methods, CPP is a familiar method to evaluate the 
rewarding effect of nicotine [17–20]. This protocol involves passive 
administration of the drug on one side of a conditioning apparatus, 
this method is substantially different from the drug self-
administration method [21]. In the drug self-administration method, 
repeated self-infusions are required to establish substance addiction 
behaviors. It is likely that repeated exposure affects receptor 
transduction mechanisms associated with tolerance and sensitization 
[21]. Moreover, CPP is the preferred method for rapid screening and 
can be used with many mouse strains with high sensitivity [22]. 

The prolonged nicotine exposure for 28 d results in neural 
adaptation following receptor desensitization and upregulation of 
nAChR [23, 24]. chronic nicotine exposure selectively up-regulates 
the density of α4β2 to stimulates nicotine addiction in rats induction 
by nicotine [25]. Not different with α4β2 the α7 as homo-oligomer 
nAChRs also involved in nicotine dependence, approved by the high 
expression of α7nAChR on striatum in a nicotine dependence rat 
model [26], on striatum nAChR bind with the nicotine and induce 
dependence. nAChRs is abundant in the family of ligand-gated ion 
channels that is expressed broadly throughout the central nervous 
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system and peripheral nervous system, and in non-neuronal cells 
[27]. Calcium intracellular influx through nAChRs, particularly via 
the α-bungarotoxin-sensitive α7-containing nAChRs, is a very 
effective way to raise cytoplasmic calcium concentration [6]. 
Calcium ions are one of the most important intracellular messengers 
known, and impacts almost every aspect of cellular life, including 
generating the proteins and their downstream effectors such as 
CaMKII and ERK1/2 [28].  

Nicotine increases activity of CaMKII in the striatum region (fig. 3A) 
[29]. CaMKII in striatum may correlate by long-term potentiation on 
memory formation by nicotine and strengthen the memory 
concerned with convenient feeling during nicotine administration 
[13]. In addition, lack of CaMKII generates memory deterioration, 
the deficiency of CaMKII mice proposed to abolish the memory 
formation on remembering the nicotine-paired compartment and 
failed to evoke CPP [30, 31]. Moreover, the ERK1/2 phosphorylation 
has been increased in striatum region nicotine dependence 
condition (fig. 3B)) due to calcium influx that was enhanced by 
stimulation of nAChR [32]. Influx Ca2+intracellular to result in 
activation and phosphorylation of PYK2, in turn the RAS is activated 
through the tyrosine kinase receptor and upstream the activity of 
ERK1/2 [8]. Besides that, ERK1/2 activation through β-
adrenoceptors plays a dual role in cell proliferation; it 
phosphorylates Stat 3 at Ser727 and regulates cell proliferation [33]. 
Accumulation of ERK1/2 autophosphorylation influences molecular 
adaptation, morphological plasticity, and behavioral performance 
such as nicotine like behaviour [11].  

CONCLUSION 

CaMKII and ERK phosphorylation significantly increased along with 
the development of nicotine dependence. We should next apply 
pharmacological strategies to manipulate CaMKII and ERK signaling. 
In particular, disruption of reconsolidation by disrupting CaMKII 
and ERK signaling may propose an attractive therapeutic approach 
to inhibit nicotine dependence. 
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