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ABSTRACT 

Objective: The aim of this work was to study the pharmacophore model of omega-3 derivatives with the PPAR-γ receptor using LigandScout 4.4.3 
to investigate the important chemical interactions of complex structure. 

Methods: The methods consisted of structure preparation of nine chemical compounds derived from omega-3 fatty acids, database preparation, 
creating 3D Pharmacophore modelling, validation pharmacophore, and screening test compounds.  

Results: The result of the research showed that the omega-3 derivatives docosahexaenoic acid (DHA), when eicosapentaenoic acid (HPA), and 
docosapentaenoic acid (DPA) have the best pharmacophore fit values of 36.59; 36.56; and 36.56, respectively. According to the results of the 
pharmacophore study, the carbonyl and hydroxyl of the carboxylate functional groups become the active functional groups that exhibit hydrogen 
bonding interactions. While the alkyl chain (Ethyl and methyl groups) was the portion that can be modified to increase its activity. 

Conclusion: Omega-3 derivatives could be used as a lead drug for the powerful PPAR-γ receptor in the prevention and treatment of obesity. 
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INTRODUCTION 

Obesity is one of the most common diseases, defined by a considerable 
expansion and alteration of adipose tissue in the body. Obesity has 
also been linked to the pathogenesis of the metabolic syndrome-
related cardiovascular disease, which is the leading cause of mortality 
worldwide [1, 2]. Nowadays, the treatment and prevention of obesity 
disease have been done by behavioral therapy, pharmacological 
treatment, and surgical intervention. Although, there are many side 
effects which can reduce the quality of life. In light of this, the usage of 
natural substances is the most viable alternative [3]. 

Omega-3 is an essential nutrient that has been shown to assist lose 
weight by lowering the accumulation of body fat. Omega-3 fatty 
acids play an important role in controlling lipid metabolism and 
acting as anti-inflammatory sensors. Although the method for 
preventing obesity comorbidity is unknown, it has been found to 
reduce insulin resistance, which is linked to obesity-related 
metabolic diseases, by binding to the protein peroxisome 
proliferator-activated receptor PPAR-γ [4]. 

The Peroxisome Proliferator-Activated Receptors (PPARs) family 
regulates adipocyte differentiation, lipids, insulin sensitivity, and 
glucose homeostasis. PPAR-γ, which actively acts on adipose tissue 
and macrophages, triggers the differentiation of fat cells and 
regulates fatty acid storage and glucose metabolism by influencing 
related genes. Some anti-obesity medications that target PPAR-γ 
have full agonist activity, which is associated with a high risk of 
cardiovascular adverse effects [5, 6]. 

We had conducted a molecular docking study of Omega-3 
derivatives compounds with Peroxisome Proliferator-Activated 
Receptor Gamma (PPAR-γ) in a prior project. Based on the lowest 
binding energy, type of amino acid residue, and inhibition constant, 
we discovered that Docosahexaenoic acid has the best activity [7]. 
Also, because docosahexaenoic acid has only partial agonist action, it 
is assumed that it has no adverse effects on the cardiovascular 
system [7]. Although due to the lack of a detailed explanation of the 
molecular interaction between the drug and the receptor, this 
discovery remains uncertain. In addition, the functional groups that 
interact with the receptor are not determined in detail. 

Therefore, the aim of this work was to performed the ligand-based 
drug design study of the pharmacophore model of omega-3 
derivatives with the Proliferator-Activated Receptor Gamma (PPAR-γ) 
using LigandScout 4.4.3 to investigate the important chemical 
interactions of complex structure. 

MATERIALS AND METHODS 

Structure preparation 

Nine chemical compounds derived from omega-3 fatty acids were 
chosen based on previous research concerning their bioactivity and 
pharmacological characteristics. The omega-3 derivatives that were 
chosen are as follows: hexadecatrienoic acid (HTA), alpha-linolenic acid 
(ALA), stearidonic acid (SDA), eicosatrienoic acid (ETE), eicosatetraenoic 
acid (ETA), eicosapentaenoic acid (EPA), heneicosapentaenoic acid 
(HPA), docosapentaenoic acid (DPA), and docosahexaenoic (DHA). The 
2D structures were generated with the ChemDraw 2D Ultra 12.0 
program, and the energy was minimized using MM2 by ChemDraw 3D 
software, then all of the structure was saved with (. pdb) format [8]. The 
2D Molecular Structure of Omega-3 Derivatives can be seen in fig. 1 

Database preparation 

Several databases are required for pharmacophore modeling, 
including the Active compound database, Decoy database, and test 
compound database. The test compounds were obtained through the 
previous preparation process, whereas the active and decoy 
compounds were downloaded from http://dude.docking.org/. Then, 
using LigandScout 4.4.3, each one was opened with the type of 
“training” compound for Active and Decoy, and the type of “test” for 
the test compound. The databases are then saved in. ldb format [9]. 

Creating pharmacophore 

Ligand Scout 4.4.3 was used to perform pharmacophore modeling. The 
active compound database file that was previously prepared was opened 
and then sorted by cluster on the ligand-based menu. Each cluster is 
made up of one or more compounds, one of which must be converted 
into a training compound for each cluster, while the others are changed 
to the type "ignored." The pharmacophore model was then created, and 
the top ten pharmacophore models were validated [9]. 
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Fig. 1: The 2D molecular structure of omega-3 derivates 

 

Validation pharmacophore 

The ten pharmacophore models that were obtained were tested one 
by one to determine which one was the best. In the screening 
column, each pharmacophore model is entered, as well as the 
database for active and decoy compounds. Then click the “screening 
perspective” to perform screening pharmacophores. The Receiver 
Operating Characteristic (ROC) curve was used to assess the validity 
of the pharmacophores [9]. 

Screening test compounds 

The test compound database that was previously generated is 
loaded in the screening column. In the ligand-based section, the best 
pharmacophore model was then sent to the screening column for 
further processing to determine the best compound based on the 
highest pharmacophore fit score [9]. 

RESULTS  

The ROC curve was used to assess the validity of the 
pharmacophore. The trade-off between sensitivity (or TPR) and 
specificity (1–FPR) is depicted by the ROC curve. Classifiers with 
curves that are closer to the top-left corner perform better. The test 
becomes less accurate when the curve approaches the ROC space's 

45-degree diagonal [10]. From the study, we had founded that 
pharmacophore model 4 has best ROC curve value. 
 

 

Fig. 2: The 3D structure-based pharmacophore model was 
validated using a Receiver  Operating Character istic (ROC) curve, 

with a set of 100 PPAR-γ  active and 400 decoy compounds
 

Table 1: LigandScout pharmacophore fit score of Omega-3 derivatives retrieved using the 3D-structure-based pharmacophore derived 
from propionic acid bound to the peroxisome Proliferator-activated receptor gamma 

Compound Pharmacophore-fit score Binding energy (kcal/mol) 
Docosahexaenoic 36.59 -11.31 
Docosapentaenoic 36.56 -11,01 
Eicosapentaenoic 36.56 -10.82 
Hexadecatrienoic 35.45 -9.56 
Heneicosapentaenoic 35.28 -10.98 
Stearidonic 35.27 -10.09 
Alpha Linolenic  35.08 -10.07 
Eicosatetraenoic 35.02 -10.50 
Eicosatrienoic 34.46 -10.70 

 

The nine compounds of Omega-3 derivatives were screened for 
pharmacophore similarity to the best pharmacophore model (model 
4), which is a pharmacophore composed of compounds that have 
been shown to have activity targeting PPAR-γ receptors. The activity 

was evaluated based on the pharmacophore fit value. A higher fit 
score indicates a better fit to the model. From this study, 
docosahexaenoic (DHA), docosapentaenoic (DPA), and 
eicosapentaenoic (EPA) have the highest pharmacophore fit value. 
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3A      3B 

Fig. 3: 3A, 2D-Pharmacophore model of propionic acid (Parent Compound) as a lead compound with the peroxisome proliferator-
activated receptor gamma (PPAR-γ); 3B: 2D-pharmacophore model of docosahexaenoic acid with the peroxisome proliferator-activated 

receptor gamma (PPAR-γ) 

 

 

Fig. 4: 3D-Pharmacophore model of docosahexaenoic acid with 
the peroxisome proliferator -activated receptor  gamma (PPAR-γ) 

 

In a molecular interaction study, the arrangement of functional 
groups that act as active sites of a structure was studied and 
assessed against their role in interacting with receptors. The angle 
and distance to the confirmation of the functional groups that make 
up a molecule have a significant effect on the ability to interact with 
receptors [11-13]. By comparing the results of pattern interaction 
between docosahexaenoic acid and propionic acid, we found that 
both have a similar amino acid residue on the carboxylic acid 
functional group, which can be seen on fig. 3A and 3B; these 
compounds interact with TYR473A and SER289A amino acid 
residue. 

DISCUSSION 

At the beginning with pharmacophore validation, the ROC curve 
values were derived based on the validation findings of the 10 best 
pharmacophore models (0.65, 0.61, 0.78, 0.66, 0.54, 0.75, 0.75, 0.66, 
and 0.62), where these results demonstrated that 3 out of 10 
pharmacophores met the requirements. Models 4, 7, and 8 were 
validated (≥0.7). Model 4 was chosen because it had the greatest 
ROC curve value (AUC: 0.78), indicating that the pharmacophore 
model was able to properly distinguish actual active from decoy 
PPAR-γ molecules in accordance with Kirchmair's methods [14]. The 
ROC curve value can be seen in fig. 2.  

In addition, as a result of pharmacophore fit value, compounds that 
fit the pharmacophore model should likewise have PPAR-γ activity. 
Because not all of the model's features could be matched, 
throughout the virtual screening process, two features could be 
excluded. In this instance, pharmacophore fit scores would be lower 

if features could not be matched. Interestingly, all of the derivatives 
had higher pharmacophore fit scores (34.46 to 36.59) than the 
parent compound, with docosahexaenoic (36.59) and 
docosapentaenoic (36.56) having the best pharmacophore fit scores 
with the lowest of binding energy (-11.31 and-11.01 kcal/mol, 
respectively), indicating that their chemical features aligned best 
with the features of the pharmacophore model [15]. A higher 
geometric alignment of the compound's characteristics to the 3D-
pharmacophore model is indicated by a higher fit score. Each 
compound's binding energy is presented for comparison (table 1). 
The suitability of the pharmacophore features on the ligands makes 
it easy for these to interact, which is correlated with lower bonding 
energy values. Binding energy value describes how spontaneous an 
interaction will occur. The lower the binding energy, the lower the 
activation energy, implying that it does not need a lot of energy to 
create the contact system between the ligand and the receptor, 
resulting in a spontaneous reaction. In addition, the best four 
compounds based on the fit-pharmacophore value have a 
correlation with the binding energy value, with the highest fit-
pharmacophore value having the best binding energy.  

Furthermore, pharmacophore Modelling and Molecular Interaction 
Propionic acid (the parent compound) was employed as a lead 
compound or a comparative for Omega-3 derivatives in this 
investigation. Propionic acid was chosen as the lead compound since 
it has been shown to interact with Peroxisome Proliferator-
Activated Receptors in prior investigations. Furthermore, the N-
methylene-substituted indole 5-propionic acid provides a suitable 
bio-isosteric replacement for the known tyrosine-based scaffold in 
PPAR-γ. The carboxylate and nitrogen groups in oxazole from 
Propionic Acid become acceptors of hydrogen bonding interactions, 
which interact with amino acids SER289A, TYR473A, and 
HOH1073A, as shown by pharmacophore modeling studies (fig. 3-4) 
[16]. 

This result is analogous to the hydrogen bonding interactions 
formed in Omega-3 derivative compounds (docosahexaenoic acid), 
where the carboxylic groups' hydroxy (OH) and carbonyl (C=O) 
interactions function as donors and acceptors of hydrogen bonding 
interaction. And because of amino acids bound in TYR473A and 
SER289A are similar with the hydrogen bonding interactions that 
are presence in propionic acid-PPAR-γ interaction and also same of 
functional group (Hydroxy carbonyl from carboxylic acid), this 
indicates that Docosahexaenoic Acid has the same mechanism of 
action [17]. Based on these results that the lead compound 
(Propionic Acid) has one sort of hydrogen bonding contact, namely 
the nitrogen atom in oxazole with the amino acid HCH1073A, which 
Docosahexaenoic Acid does not, but by considering two types of 
amino acid residues in the hydrogen bonding interactions. As well 
as, docosahexaenoic acid can be considered to have the same action 
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as other identical amino acids due to have a comparable with 
hydrophobic interaction (LEU330A, MET38A, ILE341A, ILE281A, 
ILE362A, MET364A, PHE282A, LEU453A, and PHE363A). The fact 
that these two drugs have a comparable dominant interaction 
implies that they are positioned at the same active site. The 
carboxylate group is a pharmacophore structure that plays a key 
role in interacting with the PPAR-γ receptor, as seen in the two 
structures. 

CONCLUSION 

The carbonyl and hydroxyl of the carboxylate functional groups 
from docosahexaenoic acid become the active functional groups that 
exhibit hydrogen bonding interactions, according to the results of 
the pharmacophore study. The alkyl chain (the ethyl and methyl 
groups) in docosahexaenoic Acid is the part that can be modified to 
boost activity. The fact that docosahexaenoic acid type of interaction 
is identical that occurs in the carboxylate group, both on the parent 
compound and on docosahexaenoic Acid with the same amino acid 
residues on TYR473A and SER289A. It suggests that 
docosahexaenoic acid could be used as a potential drug for the 
powerful PPAR-γ receptor in the prevention and treatment of 
obesity. 
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