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ABSTRACT 

Objective: The proneness of disease, as well as drug action and side effects, vary from person to person. This may be due to individual variations in 
the genome. The individual variation demands the need to design a population-specific 'predictive, preventive, participatory and personalized (p4)' 
pharmacogenomics drug molecule. The present work aims at designing a pharmacogenomic model for breast cancer to explain the individual 
variation in the proneness of the diseases and susceptibility towards drug action. 

Methods: The drug action and side effects of drugs were analyzed from clinical trial reports. The genes responsible for the drug action and the 
genes responsible for side effects have been identified and included in the variation analysis. The pharmacogenomic gene models have been 
designed by inducing population-specific genetic variations within the gene sequence. The 3D structures of the 'variation-specific' protein models 
have been generated by 'homology modelling.' These models have been used further for docking studies with the known drug molecules. The 
kinetic stability of the protein-ligand complexes obtained out of docking studies has been studied by the molecular dynamic simulation. 

Results: By the interaction studies and the computational analysis using the 'population-specific protein models,' the drug 
molecule, Capecitabine showed the highest binding affinity (–6.30kcal/mol) with the African population, Paclitaxel was found to be the most 
interacting with the European population with a binding affinity of–9.5603 kcal/mol, and Lapatinib is found to be the most suitable ligand for the 
American population with a binding affinity of–6.90 kcal/mol. These observations agree with the clinical trial data found in the 'ClinTrial database'. 

Conclusion: The designed models are found to be suitable for representing the respective population-specific target models. The interaction studies 
of known drug molecules with these population-specific target models correspond to the observations in the 'ClinTrial database.' 
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INTRODUCTION 

The recently introduced 'systems biology platforms' provide a new 
paradigm for integrating multiple omics approaches (e. g., genomics, 
transcriptomics, proteomics, and metabolomics) to create a more 
holistic understanding of basic biology to their adaptation, 
proneness, development, and progression towards disease [1-5]. 
The relevance of studying the molecular pathways of different 
diseases, especially degenerative diseases, has been introduced 
within the omics platforms [6]. The analysis was further extended to 
'pharmacogenomics' to include the population-wise variation in 
drug action and proneness of diseases [7]. Pharmacogenomics cover 
multi-omics factors such as genomics, epigenomics, metagenomics 
and environmental genomics, meeting the requirements of 
individual variations [8, 9]. At present, the need for the design and 
development of 'pharmacogenomics and personalized drugs' for 
terminal diseases such as cancer and neurodegenerative diseases 
have been initiated [10]. As per the reports, cancer is the second 
leading cause of death next to cardiovascular diseases [11].  

Breast cancer is reported as the most common type of cancer found 
among women [12]. Out of different drugs used for breast cancer, 
Capecitabine is found to be highly suitable for the South Asian 
population for controlling breast cancer. The project reports in 'the 
Clintrial database' identify 78.75% success and 18.33% adverse 
events while administering Capecitabine to Indian patients [13]. At 
the same time, for the USA population with the same drug, there 
were only 60.00% success and 40.00% adverse events [14]. Drug 
action and side effects vary among different ethnic groups. 
'Identification of the genetic markers corresponding to these 
variations is a significant step in Pharmacogenomics [15]. The 
'Single Nucleotide Variation (SNV)' has been identified as the most 
suitable variant for incorporating individual variation [16-18]. 
However, the significance of each SNV for any ethnic group depends 
upon its occurrence, leading to the need for a 'frequency-wise 

prioritization and classification' of the variants. The functional 
significance of these nucleotide variants corresponds to changes in 
the amino acids of their protein molecule [19]. The 3-dimensional 
structure of a target protein could be generated from its amino acid 
sequence through' homology modelling' [20]. Pre-dominant binding 
modes of the ligand molecule within the binding site of the target 
protein could be predicted through the molecular docking technique 
[21-23]. Among different platforms, AutoDock and Vina are two of 
the most widely used molecular docking tools [24]. The 
thermodynamic stability of the ligand within the target could be 
studied through molecular dynamic (MD) simulation. NAMD is one 
such molecular dynamic program designed to perform high-
performance simulations of macromolecular systems [25]. 

In this manuscript, an illustration of the population-wise variation in 
drug response and side effects of common anti-breast cancer drugs 
such as Lapatinib, Capecitabine and Paclitaxel has been carried out.  

MATERIALS AND METHODS  

The clinical trial reports were studied from ClinicalTrials. gov [26]. 
The drug action and side effects among patients across the five 
populations, African, American, East Asian, South Asian, and 
European, have been studied. The drug targets have been identified 
from the 'DRUG BANK' [25]. Drug side effects have been studied 
through 'DRUG BANK', clinical trial reports, and 'Kyoto 
Encyclopaedia of Genes and Genomes (KEGG) pathway' [27, 28]. 
'Database of SNP (Single Nucleotide Polymorphisms) (dbSNP)' was 
used for retrieving gene-specific variations. Population analysis of 
genetic variations (Single Nucleotide Variants-SNVs) has been 
carried out based on the 1000 genome population analysis 
considering the continental population classes, namely 'American 
(AMR), African (AFR), European (EUR), South Asian (SAS) and East 
Asian (EAS)' populations using SNPNexus [29]. The SNVs were 
further classified into two based on their frequency of occurrence 
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within the population. Mutated gene models were generated by 
inducing the variations into the wild gene sequence available in 
'National Centre for Biotechnology Information (NCBI)' [30]. The 
mutated protein sequences were generated by incorporating the 
amino acid variants in the wild protein sequence present in Uniprot 
[31]. Homology modelling has been carried out using the 'SWISS 
Model' to generate 3D protein models [32]. The model structures 
were evaluated using primary analysis QMean, 'RMSD (root mean 
square deviation),' 'Ramachandran plot,' and 'ERRAT plot' using 
'SAVES server' [33-35]. The model structures were further evaluated 
by the 'molecular dynamic (MD)' simulation using NAMD [25] tool. 
Screened models were then subjected to interaction analysis using 
Autodock Vina [36, 37]. The ligand's retention within the target's 
active site has been studied through MD simulation of the ligand-
target complex [38]. The MD simulation was carried out using the 
ensemble where the 'number of molecules, volume, and temperature 
(NVT) ensemble' are fixed. The simulation temperature was set at 
310K, and the simulation time was 20 ns. 

RESULTS 

Study of clinical trial reports  

The pharmacogenomic projects related to breast cancer comprising 
variation in drug-likeness and common side effects and included in the 
Clintrial database have been taken for analysis. The ethnic groups 
included in these projects are the ‘United States (American),' France 
and Spain (European), South Korea and China (East Asian), India and 
Sri Lanka (South Asian) and Egypt and Nigeria (African) populations. 

The use of Lapatinib, Paclitaxel and Capecitabine among these 
populations has been included in these reports. Lapatinib is found to 
be suitable for the AMR population, followed by EAS and SAS 

population. Capecitabine is suitable for the SAS population, followed 
by AMR and EUR populations. These drugs impart various side effects 
such as gastrointestinal disorders, hepatic disorders, hemorrhage, and 
respiratory disorders. Most of these side effects result from the 
mutation of the genes SLC25a44, HTR3C, SERPINA14 and ABCA3 
(table 2). It has been found that erbb2 and EGFR are targeted by 
Lapatinib, BCL2 is targeted by Paclitaxel and TYMS by Capecitabine.  

Variation analysis 

The computational techniques used in pharmacogenomics have 
been used to explain the above observations. The 'Single Nucleotide 
Variations (SNVs) are the major fingerprints of individual variation. 
Hence, the SNVs of the drug target genes and the genes 
corresponding to the side effects have been collected. These variants 
were further subjected to '1000 genome population analysis' with 
American (AMR), African (AFR), East Asian (EAS), European (EUR) 
and South Asian (SAS) populations. It has been observed that for the 
ERBB2 gene, there were 458 variants specific to AFR, 294 variants to 
AMR, 239 variants to EAS, 314 variants to EUR and 257 variants to 
the SAS population. EGFR (epidermal growth factor receptor) gene 
has eight variants among AFR, 2066 variants among AMR, 1564 
variants among EAS, 1672 variants among EUR, 1783 variants 
among the SAS population. The gene BCL2 keeps 2809 variants 
among AFR, 1866 variants among AMR, 1599 variants among EAS, 
1535 variants among EUR and 1640 variants among SAS. Similarly, 
TYMS contains 291 variants among AFR, 167 variants among AMR, 
152 variants among EAS, 148 variants among EUR and 157 variants 
among the SAS population. Based on the frequency of occurrence, 
these variants were further classified into two classes, those with 
population frequency below 45% as class 1 and the rest (above 
45%) as class 2. 

  

Table 1: Evaluation of drug action models 

Model  Template  Z-Score  RMSD (A)  
Qmean  C beta  All atom  Solvation  Torsion  

Capacitabine 
TYMS_AFR_C1  1HW3 -2.63 -5.14 1.16 -1.28 -1.37 2.14 
TYMS_AFR_C2  1HW3 -2.83 -0.37 -2.67 -1.52 -2.17 2.37 
TYMS_AMR_C1  1HW3 -1.69 -0.39 0.29 -2.35 -0.71 2.09 
TYMS_EAS_C1  1HW3 -2.82 -0.31 -2.64 -1.54 -2.17 1.43 
TYMS_EAS_C2  1HW3 0.21 0.34 -1.14 -0.98 0.89 1.33 
TYMS_EUR_C1  1HW3 -0.70 -1.57 -1.10 -1.02 0.21 2.86 
TYMS_EUR_C1  1HW3 -1.54 -2.25 0.87 -1.32 -0.78 1.29 
TYMS_SAS_C1  1HW3 -6.81 -1.03 -4.02 -3.24 -5.00 2.33 
TYMS_SAS_C2  1HW3 -0.84  -0.05  -0.49  -2.81  0.28  2.86 
Lapatinib 
ERBB2_AFR-C1  3MZW -3.26 -2.07 -1.21 -2.68 -1.65 2.33 
ERBB2_AFR-C2  3MZW -4.47 -2.29 -2.79 -2.11 -3.23 1.39 
ERBB2_AMR-C1  3MZW -3.63 -1.88 -0.87 -2.72 -2.15 3.29 
ERBB2_AMR-C2  3MZW -2.76 -2.06 -0.99 -2.30 -1.20 1.37 
ERBB2_EAS-C1  3MZW -2.78 -1.23 -0.91 -2.42 -1.51 2.02 
ERBB2_EUR-C2  3MZW -4.27 -3.36 -3.17 -2.55 -2.96 2.73 
ERBB2_SAS-C1  3MZW -2.35 -0.47 -0.97 -3.12 -1.06 2.49 
ERBB2_SAS-C2  3MZW -0.59 -0.63 -0.70 -0.92 -0.03 1.19 
EGFR_AFR_C1  1XKK -1.68 -2.92 -0.80 -0.54 -0.98 2.56 
EGFR_AFR_C2  1XKK -1.17 0.96 0.16 -1.24 -1.31 1.62 
EGFR_AMR_C1  1XKK -0.71 -1.13 -0.01 -0.54 -0.31 1.09 
EGFR_AMR_C2  1XKK -3.89 -2.11 -2.06 -1.10 -3.01 2.89 
EGFR_EUR_C1  1XKK -1.18 0.64 0.20 -1.08 -1.30 1.33 
EGFR_EUR_C2  1XKK -2.98 -2.53 -0.91 -2.03 -2.11 2.86 
EGFR_SAS_C1  1XKK -2.59 -2.56 -0.71 -2.56 -1.28 1.29 
EGFR_SAS_C2  1XKK -3.02 -0.33 -1.55 -2.41 -2.68 3.09 
EGFR_EAS_C1  1XKK -1.81 -2.14 -1.27 -1.58 -0.72 2.89 
EGFR_EAS_C2  1XKK -2.60 -2.07 -0.96 -1.34 -2.10 1.43 
Paclitaxel 
BCL2_AFR_C1  2WL3 -2.41 -1.08 -2.51 -1.00 -2.28 2.06 
BCL2_AFR_C2  2WL3 -1.74 -2.45 -2.14 0.28 -1.70 1.25 
BCL2_AMR_C1  2WL3 -2.23 -3.19 -2.34 0.40 -2.26 1.01 
BCL2_AMR_C2  2WL3 -2.19 -3.10 -2.25 0.17 -2.06 2.53 
BCL2_EUR_C1  2WL3 -2.46 -2.99 -1.17 -1.19 -1.65 2.03 
BCL2_EUR_C2  2WL3 -2.40 -3.02 -2.05 0.34 -2.55 1.34 
BCL2_SAS_C1  2WL3 -3.12 -2.42 -0.91 -1.17 -2.80 2.09 
BCL2_SAS_C2  2WL3 -2.61 -1.63 -1.46 -3.96 -0.81 2.09 
BCL2_EAS_C1  2WL3 -2.51 -1.56 -1.25 -3.61 -0.90 2.49 
BCL2_EAS_C2  2WL3 -2.72 -2.32 -1.28 -2.33 -1.61 1.15 
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Table 2: Evaluation of side effect models 

 Model Template Z-Score RMSD (A) 
Qmean CB all atom solvation torsion 

Gastrointestinal disorder 
ABCA3_AFR_C1  AF-Q99758-F1 -0.68 -1.74 0.92 -0.49 -0.21 2.33 
ABCA3_AFR_C2  AF-Q99758-F1 -3.58 -1.21 -3.16 -2.3 -2.38 1.39 
ABCA3_AMR_C1  AF-Q99758-F1 -3.93 -2.58 -0.03 -0.88 -3.11 2.29 
ABCA3_AMR_C2  AF-Q99758-F1 -325 -2.99 -1.52 -1.7 -2.43 2.36 
ABCA3_EAS_C1  AF-Q99758-F1 -3.79 -0.94 -1.16 -2.11 -3.69 2.74 
ABCA3_EAS_C2  AF-Q99758-F1 -2.45 -2.53 -1.48 -2 -1.41 1.79 
ABCA3_EUR_C1  AF-Q99758-F1 -1.83 -2.33 -1.13 0.02 -1.63 1.40 
ABCA3_EUR_C2  AF-Q99758-F1 -2.88 -1.68 -1.11 -2.89 -1.63 1.37 
ABCA3_SAS_C1  AF-Q99758-F1 -2.92 -2.32 -1.4 -0.67 -1.954 2.02 
ABCA3_SAS_C2  AF-Q99758-F1 -2.23 -2.99 -2.05 -1.47 -1.08 2.73 
Respiratory disorder 
HTR3C_AFR_C2  AF-Q8WXA8-F1 -3.28 -0.79 -1.91 -6.24 -0.69 2.49 
HTR3C_AMR_C1  AF-Q8WXA8-F1 -0.96 -0.44 1.21 -1.03 -0.77 1.19 
HTR3C_AMR_C2  AF-Q8WXA8-F1 -3.32 -0.95 -0.72 -4.14 -1.45 7.95 
HTR3C_EAS_C1  AF-Q8WXA8-F1 -2.93 -0.13 -0.87 -4.22 -1.22 2.90 
HTR3C_EAS_C2  AF-Q8WXA8-F1 -2.39 -1.39 0.57 -1.22 -2.35 1.04 
HTR3C_EUR_C1  AF-Q8WXA8-F1 -3.62 -0.98 -2.07 -5.18 -1.47 2.96 
HTR3C_EUR_C2  AF-Q8WXA8-F1 -3.37 -1.62 0.9 -1.69 -2.92 2.48 
HTR3C_SAS_C1  AF-Q8WXA8-F1 -3.71 -1.29 -1.73 -3.32 -2.14 2.49 
HTR3C_SAS_C2  AF-Q8WXA8-F1 -2.53 -2.2 1.08 -1.05 -2.43 1.29 
Hepatic disorder 
SERPINA1_AFR_C1  2QUG -1.94 -0.66 -1.58 -2.51 -0.87 2.13 
SERPINA1_AFR_C2  2QUG -2.9 -2.19 -1.12 -2.46 -1.37 2.27 
SERPINA1_AMR_C1  2QUG -2.74 -0.04 -1.66 -2.8 -2.07 2.44 
SERPINA1_AMR_C2  2QUG -3.27 -2.07 1.17 -0.82 -2.66 3.14 
SERPINA1_EAS_C1  2QUG -2.26 -1.89 0.34 -0.61 -1.68 2.08 
SERPINA1_EAS_C2  2QUG -1.89 -1.35 1.1 -1.12 -1.6 1.71 
SERPINA1_EUR_C2  2QUG -2.2 -1.96 0.45 -0.47 -1.66 1.95 
SERPINA1_SAS_C1  2QUG -3.72 -3.28 -2.41 -1.08 -2.87 2.20 
SERPINA1_SAS_C2  2QUG -3.16 -3.73 1.16 -1.68 -1.66 2.13 
Hemorrhage 
SLC25A44_AFR_C1  AF-Q96H78-F1 -2.31 -1.51 -2.01 -1.34 -1.8 2.55 
SLC25A44_AFR_C2  AF-Q96H78-F1 -0.82 -1.72 -1.31 -1.33 0.29 2.58 
SLC25A44_AMR_C1  AF-Q96H78-F1 -3.71 -2.75 -1.02 -1.67 -3.22 2.58 
SLC25A44_AMR_C2  AF-Q96H78-F1 -4 -1.82 -1.94 -2.07 -2.68 1.39 
SLC25A44_EAS_C1  AF-Q96H78-F1 -3.15 -1.79 -0.74 -1.35 -2.96 3.57 
SLC25A44_EAS_C2  AF-Q96H78-F1 -3.83 -1.62 -3.37 -3.07 -2.23 1.22 
SLC25A44_EUR_C1  AF-Q96H78-F1 -3.17 -2.99 -1.74 -2.48 -1.88 1.02 
SLC25A44_EUR_C2  AF-Q96H78-F1 -2.17 -1.3 -1.58 -1.84 -1.43 1.72 
SLC25A44_SAS_C1  AF-Q96H78-F1 -3.03 -2.69 -2.01 -2.07 -1.95 2.76 
SLC25A44_SAS_C2  AF-Q96H78-F1 -3.44 -1.14 -1.88 -1.89 -2.37 1.47 

 

Table 3: The binding free energy of ligand-target complexes 

Population Drug action 
(kcal/mol) 

Respiratory disorders 
(kcal/mol) 

Gastrointestinal 
disorder (kcal/mol) 

Hemorrhage 
(kcal/mol) 

Hepatic disorder 
(kcal/mol) 

Lapatinib 
AFR C1 -5.20 -7.10 -3.20 -8.60 -6.60 
AFR C2 -5.80 -9.80 -7.90 -10.40 -7.80 
AMR C1 -10. 40 -6.70 -8.20 -7.80 -7.20 
AMR C2 -11.10 -7.60 -9.80 -10.30 -8.700 
EAS C1 -8.30 -7.30 -7.30 -7.70 -9.60 
EAS C2 -8.60 -7.90 -8.00 -8.10 -7.60 
EUR C1 -9.10 -7.90 -7.90 -7.70 -2.10 
EUR C2 -8.60 -9.50 -9.50 -8.50 -9.90 
SAS C1 -6.20 -8.80 -8.80 -7.30 -9.10 
SAS C2 -6.50 -8.60 -8.60 -8.60 -8.70 
Capecitabine 
AFR C1 -5.20 -7.10 -2.30 -8.60 -6.60 
AFR C2 -5.80 -9.80 -7.90 -10.40 -7.80 
AMR C1 -10. 40 -6.70 -8.20 -7.80 -7.20 
AMR C2 -11.10 -7.60 -9.80 -10.30 -8.70 
EAS C1 -8.30 -7.30 -7.30 -7.70 -9.60 
EAS C2 -8.60 -7.90 -8.00 -8.10 -7.60 
EUR C1 -9.10 -7.90 -7.90 -7.70 -2.36 
EUR C2 -8.60 -9.50 -9.50 -8.50 -9.90 
SAS C1 -6.20 -8.80 -8.80 -7.30 -9.10 
SAS C2 -6.50 -8.60 -8.60 -8.60 -8.70 
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Population Drug action 
(kcal/mol) 

Respiratory disorders 
(kcal/mol) 

Gastrointestinal 
disorder (kcal/mol) 

Hemorrhage 
(kcal/mol) 

Hepatic disorder 
(kcal/mol) 

Paclitaxel 
AFR C1 -7.50 -9.10 -1.23 -9.10 -7.00 
AFR C2 -7.80 -10.40 -9.20 -11.30 -8.20 
AMR C1 -6.50 -7.40 -8.30 -8.10 -7.30 
AMR C2 -7.30 -7.90 -12.80 -10.50 -9.70 
EAS C1 -7.20 -7.60 -7.60 -8.00 -10.80 
EAS C2 -8.30 -8.10 -8.50 -9.50 -7.90 
EUR C1 -9.10 -8.30 -8.30 -8.00 -2.45 
EUR C2 -10.02 -11.30 -11.30 -9.90 -10.40 
SAS C1 -8.70 -10.10 -10.90 -11.10 -10.40 
SAS C2 -9.10 -9.00 -9.40 -9.30 -9.50 
 

Generating mutated sequence model  

The variants belonging to different population classes have been 
included in the wild gene sequence to generate the mutated gene 
sequence. The amino acid variants corresponding to the 'SNVs' have 
been incorporated into the wild protein sequence. The 3D structures 
of the mutated protein molecules have been designed by 'homology 
modelling'. 

Homology modelling  

The 3D structure of proteins with an identity score>50 % with the 
mutated protein sequences has been identified and considered a 
template for the study. There were 50 templates for mutated BCL2 
protein sequences, 15 templates for mutated TYMS protein sequences, 
60 templates for mutated ERBB2 protein sequences and 30 templates 
for mutated EGFR protein sequences within drug action models. There 
were 12 templates for a respiratory disorder, 30 templates for 
gastrointestinal disorders, and 15 templates for hepatic disorder 
mutated protein sequences among side effect models. Models have 
been evaluated using the parameters GQME (Global Model Quality 
Estimation), QMean (the degree of nativeness), Cbeta, All-atom, 
Solvation, Torsion angle potential, RMSD, Ramachandran plot and 
ERRAT plot. The evaluation results of the drug action model are shown 
in table 1, and the side effect model is shown in table 2. 

Interaction study  

The binding site of the targets have been identified as; 3MZW-
Ser783, Gln799, Thr798, Thr862, Lys753, Arg784, Asp863, Val734, 
Ala751, Ile752, Met774, Leu796, Val797, Leu852, Leu785, Leu800, 
Met801, Pro802, Tyr803, and Phe864; for 1xkk-Thr790, Gln791, 
Thr854, Lys45, Arg776, Asp855, Ala743, Ile744, Met766, Cys775, 
Leu777, Leu788, Ile789, Leu792, Met793, Leu844, Phe856, 
Leu858, Leu718, Val726, Cys797, Gly719, Ser720, Thr790, and 
Met766; 1HW3-Arg78, Val79, Phe80, Ile108, Leu221, Gly222, 
Phe225 and Met309; and for BCL2-TYR7, ASP8, ANN9, ARG10, 
GLU11, ILE12, VAL13, MET14, LYS15, TYR16, ILE17, HIS18, 
TYR19, LYS20, LEU21, SER22, GLN23, ARG24. The docking score 
values of the model target protein molecules with the drug 
molecules and the target genes corresponding to the selected side 
effects have been included in table 3. The interacting residues are 
shown in Supplementary materials 1 and 2. The binding affinity of 
the ligand-target complexes and their interaction are included in 
Supplementary material 3. 

The ligand-target complex of Paclitaxel drug action and its side 
effects among SAS has been included in fig. 1. The ligand-target 
complexes of Lapatinib and Capecitabine for SAS have been included 
in Supplementary material 4. 

 

 

Fig. 1: Ligand-target complex of paclitaxel 
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Fig. 2: The plots of MD simulation 
 

 

Fig. 3: The RMSD value of the ligand-target complex of different mutant gene models across the population class 
 

Molecular dynamic simulation  

The molecular dynamic simulations of the ligand-target complex 
have been carried out, and plots of MD simulation carried out for the 
Paclitaxel-SAS drug action model is shown in fig. 2. The RMSD plots 
have been generated in fig. 3. 

The interacting residues after MD simulation are shown in 
Supplementary material 5. 

DISCUSSION 

The clinical trial study has been made based on the reports obtained 
in the clinical trial database with different ethnic groups. Based on 
the clinical trial analysis, the variation of drug action and the side 
effect of these drugs have been made. The anti-breast cancer drug 
molecules, Lapatinib, Capecitabine, and Paclitaxel, have been 
considered for the illustrative study based on the trials with 
reported results across the maximum number of populations. It has 
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been observed that there is the highest success rate, minimum death 
rate and minimal side effects for Lapatinib in the AMR population, 
followed by EAS and SAS populations. Even though the success rate of 
Capecitabine is high within SAS, there was a 2.91% death rate, and 
18.33 % reported adverse events. The drug was successful among 
60.00% of the patient group within AMR and with no death rate. But 
about40.00% of patients showed adverse events. This was followed by 
the EUR population with a success rate of 50.53%; 40.92% of patients 
were shown side effects and 0.54 % of death during the study.  

Paclitaxel was found to be the most suitable drug for SAS, with 85.38 
% of success, 14.61 % of adverse events and 0.00 % of death among 
the patient group followed by AFR. 60.80 % of patients showed 
positive drug action, 36.65 % developed side effects, and 2.54 % of 
them died during the trial period among the African population and 
could be considered least suitable for the EUR population. 44.68% of 
people responded positively to Paclitaxel, 25.53% of them had side 
effects, and 29.78 % of the patients died during the analysis. The 
reported targets of Capecitabine, Lapatinib and Paclitaxel have been 
selected for the' pharmacogenomic computational prediction 
strategy'. The gene TYSM has been identified as the targeted 
mutation for Capecitabine, and the respective protein 1HW3 has 
been considered as the target protein. Similarly, for Lapatinib, EGFR 
and ERBB2 have been identified as the mutations and 1XKK, and 
3MZW have been included as the protein targets. For Paclitaxel, the 
identified mutation is BCL2, and the target protein is 2WL3. 
Regarding the side effects, gastrointestinal disorder (GID), 
respiratory disorder (RD), hepatic failure (HF) and haemorrhage 
have been selected for the study. Their respective mutations are 
ABCA3, HTR3C, SERPINA1, and SLC25A44 [39-42] and the 
corresponding protein targets are found to be AF-Q99758-F1, AF-
Q8WXA8-F1, 2QUG, and AF-Q96H78-F1. The population-wise 
variants for the genes have been incorporated, and the respective 3D 
protein target models have been designed by homology modelling. 
The models with an alignment score greater than 50 %, RMSD of the 
template and the model<3A, Qmean value<-6.00, models with>80% 
of residues in most favoured regions, models>10 %<20 % of 
residues in additional allowed regions, models<10 % of residues in 
the generously allowed region and 0.00 % of residues in disallowed 
regions and models with<10 % of residues showing error have been 
screened. The evaluations parameters and the model properties 
have been included in table 1 and table 2. 

The interaction study showed that Lapatinib interacted with the 
entire population model but was found to be more effective for 
ERBB2 models of AMR and EUR populations followed by EAS, SAS 
and AFR populations. Capecitabine showed good interaction with 
AFR and AMR followed by EAS and SAS populations and was least 
effective for the EUR population. Though Paclitaxel had a strong 
interaction with all populations, there was a slight variation in the 
binding affinity due to a difference in interaction type and bond 
length. The drug was found to be most interacting with EUR and SAS, 
followed by EAS, AFR and AMR populations.  

Lapatinib had less interaction with the model for a respiratory 
disorder (RD) within the EUR population, whereas it showed good 
interaction with other population models. For the EUR population 
model, Lapatinib showed electrostatic interaction. Paclitaxel was 
found to be interacting with all the population models. The complex 
had 'electrostatic interaction,' 'hydrogen bonds interaction', as well 
as 'hydrophobic interactions with all the models.' While comparing 
the drug action with different population models, Paclitaxel had the 
least interaction for the EAS population. It had only a hydrogen bond 
interaction with the LEU1578 and S atom of the drug. The 
Capecitabine was found to be interacting with all the models. The 
drug is found to be the least interacting with AMR and EUR 
population models. Thus, it has been found that Lapatinib will have 
respiratory side effects for the European population due to the 
absence of sufficient hydrogen bond interaction within the ligand-
target complex and the presence of weak interactions. Even though 
Paclitaxel and Capecitabine showed good interaction with all the 
population models, there are chances for the patients to develop 
respiratory disorders within the East Asian population for Paclitaxel, 
within the American and European population for Capecitabine.  

All the three-drug molecules had good interaction with GID targets 
of African and American population models. In contrast, it was not 

found to be interacting with East Asian, South Asian, and European 
models, suggesting that patients from EAS, SAS and AFR populations 
develop gastrointestinal side effects on the administration of 
Capecitabine, Lapatinib, and Paclitaxel.  

Lapatinib and Capecitabine showed good interaction with Hepatic 
Failure (HF) models across the population. Paclitaxel was not found to be 
interacting with models of EUR and AMR population, whereas it 
interacts well with other population models. This suggests that Lapatinib 
and Capecitabine do not have hepatic side effects. Though Paclitaxel does 
not have hepatic side effects among AFR, EAS and AMR populations, 
breast cancer patients from SAS and EUR populations subjected to 
Paclitaxel treatment show hepatic disorders as a side effect.  

The ligand-target complexes were further evaluated for the 
retention of the ligand molecule within the active site of the target 
(kinetic stability) [43, 44]. The RMSD, bond energy, van der Waals 
energy, and total energy plots of the 'Paclitaxel-SAS drug action 
model complex' tend to converge after 1.5ns. The RMSD limit for all 
the experiments was found to be below 3.5 A. The hydrogen bonds 
tend to break after 5ns. It was found that RMSD of drug action 
models and Lapatinib converge between 0.2 to 0.3 ns. The RMSD of 
drug action models and Capecitabine are converged during 0.2 to 
0.35 ns. Paclitaxel-drug action complexes converged at 0.30 to 0.45 
ns. The RD-Lapatinib complex was found to converge at 0. 5 to 0.7 
ns, the RD-Capecitabine complex started converging at 0.3 to 0.5 ns, 
and the RD-Paclitaxel complex converged at 0.4 to 0.55 ns. GID-
Lapatinib complex was found to converge at 0.25 to 0.4 ns, GID-
Capecitabine complex started converging at 0.20 to 0.25 ns, and GID-
Paclitaxel complex converged at 0.30 to 0.40 ns. HF-Lapatinib 
complex was found to converge at 0. 5 to 0.7 ns, HF-Capecitabine 
complex started converging at 0.3 to 0.5 ns, and HF-Paclitaxel 
complex converged at 0.4 to 0.55 ns. When the interaction of the 
ligand-target complex was studied after the simulation, it was found 
that there were slight variations in hydrogen bonds whose bond 
length exceeded 2.8 A. Few interactions were lost, whereas there are 
complexes where a hydrogen bond interaction was added within 
2.5A. Certain complexes retained their interaction throughout the 
simulation process.  

Lapatinib is most suitable for the American population and least 
suitable for the South Asian population. There are chances for 
patients from the EUR population to develop gastrointestinal 
disorders when administered with Lapatinib. Capecitabine showed 
good interaction with the African population and was least useful for 
the European population. There are chances for the patients to 
develop respiratory disorders within American and European 
population’s with gastrointestinal side effects for EAS, SAS and AFR 
when administered with Capecitabine. Paclitaxel was found to be 
most interacting with the European population. It was found that 
respiratory disorders within the East Asian population, EAS, SAS and 
AFR populations develop gastrointestinal side effects and SAS and 
hepatic disorders among SAS and EUR population. 

CONCLUSION 

According to the clinical trial reports of anti-breast cancer drugs, 
Lapatinib and Capecitabine are more suitable for the AMR 
population and least ideal for SAS populations, whereas Paclitaxel is 
most suitable for SAS and least suitable for the EUR population. The 
rate of side effects also varied among the populations. The 
importance of the pharmacogenomic model in drug action and the 
side effects of drugs have been illustrated in this manuscript. The 
designed models represented population-specific mutant models of 
the protein targets. The interaction studies of these target models 
with the drug molecules agree with the observations in the 'ClinTrial 
database.' The study emphasizes the requirement of the 
pharmacogenomic suitability of each drug before being suggested 
for any population. The requirement of the customized and 
population-specific design of drugs is highly recommended to meet 
the 'personalized, preventive, participatory and preventive (P4)' 
strategy of pharmacogenomics.  

ABBREVIATIONS 

AFR–African, AMR–American, BCL2-BCL2 apoptosis regulator, EAS-
East Asian, EGFR-Epidermal Growth Factor Receptor, ERB2-Erb-B2 
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Receptor Tyrosine Kinase 2, EUR–European, FDA-Food and Drug 
Administration, GID-Gastrointestinal Disorder, GQME-Global Model 
Quality Estimation, HF-Hepatic Failure, KEGG-Kyoto Encyclopedia of 
Genes and Genomes, MD-Molecular Dynamics, NAMD-Nanoscale 
Molecular Dynamics, NCBI-National Centre for Biotechnology 
Information, NVT-Number Volume Temperature, RD-Respiratory 
Disorder, RMSD-Root Mean Square Deviation, SAS-South Asian, SNP-
Single Nucleotide Polymorphism, SNV-Single Nucleotide Variation, 
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