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ABSTRACT 

Bone is considered the core unit that forms the human body’s skeleton, consisting primarily of hydroxyapatite (HA) and collagen (Col). The 
composites of hydroxyapatite/collagen had been prepared through different fabricated techniques and were used in many bone defects as 
biomaterials for bone tissue engineering. The incorporation of HA and collagen is possible due to the biocompatibility of collagen and the high 
mechanical properties of the HA. HA/Col composites have been used in many medical and biological fields. Current study have been discussed the 
synthesis and characterization techniques of HA/Col composites; the study have been included to study the cytotoxicity and cell attachment of the 
composites, along with their applications, as well as barriers that still remain to their successful development for clinical application. 
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INTRODUCTION 

Bone defects may occur for several reasons, such as injuries, illnesses, 
surgical interventions, and accidents, some of which may heal on their 
own. However, bone defects greater than 1/3 an inch ( ≈ 8 mm) cannot 
be healed on their own [1]. Therefore, bone substitutes were used to 
fill up and enhance bone defects to allow for the rapid healing process 
[2]. These substitutes provide structural and mechanical support to 
enhance bone tissue formation or fill gaps to facilitate the healing of 
bone tissue. Bone substitutes have been widely used in plastic surgery, 
oral, maxillofacial, dental, and orthopedic surgery, making it one of the 
most implanted tissues in the medical field [3]. 

The structure of natural bone is a composite material comprised of 
organic and inorganic elements [4]. The organic materials are 
mainly Col fibers containing tropocollagen, which make up most of 
the organic constituent of bone, and provide strength to the bone 
[5]. The inorganic materials are mainly calcium (Ca) and phosphorus 
(P) in the form of HA [6, 7]. However, both of HA and Col are formed 
the structure of the bone, naturally. 

The incorporation of HA and Col is possible due to the 
biocompatibility of Col and high mechanical properties of the HA, 
and it is widely utilized as the biomaterial to enhance the healing of 
bone defect, as well as a replacement material for bone defects. 
Nonetheless, despite its advantages, several issues of HA/Col 
composite concern the public. Tampieri et al. [3], reported the 
successful development of HA/Col composite that showed excellent 
bioactivity properties, which lead to its use as a bone filler for the 
defect bones. The composite of HA/Col had been prepared through 
different fabricated techniques and were used in many bone defects 
as biomaterials for bone tissue engineering. The research were 
focusing on the years from 2010 into 2021, but there is some old 
references because some of them as a books and important to add. 

Preparation methods of HA/Col composites 

The HA/Col composites have been fabricated and widely studied for 
bone engineering purposes. As have been mentioned, pure Col has 
weak mechanical properties; however, the use of col is limited and 
to enhance the mechanical properties of Col, the researchers have 
combined it with HA using different methods. 

Significant aim to synthesis HA/Col composites to produce materials 
that have identical properties of the natural composites. There are 

many techniques have been reported to produce HA/Col composites 
such as freezing-drying [8], 3D printing [9], situ precipitation [10], 
co-precipitation [11], electrospinning [12], and dehydrothermal 
[13], fig. 1 shows the most synthesis techniques which have been 
used to prepared composites of HA/Col. The previous studied have 
been focused on these two materials due to their mechanical 
properties and biocompatibility. The researchers were reported to 
modify the methods of the preparation for the composites of HA/Col. 
The study of Ficai et al., [14], has been reported to prepared 
composites of HA/Col by using self-assembled; briefly, 80:20 
(HA/Col) were mixed together, the pH of the mixture has been 
adjusted at 9 via using NaOH as a calibration solution and the 
temperature kept during the synthesis process of the composites at 
∼37 °C. The study was reported to new way to calculate the SD for 
the fibres of the 2D composites. Walsh et al., 2019, have been 
reported to synthesize composites of HA/Col via using lyophilisation 
method, the ratio of composites was 70:30 (HA: Col).1.8 g of Col has 
been dissolved in 0.05M acetic acid. Col mixture was centrifuged for 
90 min 15,000rpm. 3.6g of HA dissolved in 0.05M acetic acid, then 
added slowly to the Col mixture. 

 

 

Fig. 1: Synthesis techniques of HA/Col composites (Source: 
author) 

 

The HA/Col composites were synthesis by using the self-assembling 
method, the method includes two steps. The first step include to 
treated Col with the solution of Ca(OH)2, then stirred for 24 h. The 
second step the solution of H3PO4 was added to the mixture. The 
base of Ca(OH)2 have been added to adjusted the pH [17, 18]. The 
freeze-drying method has been used to preparation HA/Col. The 
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study of Siswanto et al., [19], has been reported to synthesis the 
composites from natural sources. HA (marine) has been dissolved in 
phosphoric acid and the Col (bone chicken) have also been dissolved 
in acetic acid. The solution of HA and Col have been mixed together 
and stirring them to make a homogeneous solution. The mixture of 
HA-Col were frozen under −80 °C, for 6 h.  

Recently the applications of HA/Col as a Nano sizes have been gotten 
bulk of attention in materials engineering due to the properties of 
Nano-materials which could be used in many applications. The 
ability of the composites can be investigated via analysis of their 
chemical, physical and biological properties during using many 
measurements.

  

Table 1: Synthesis methods of HA/Col composites 

No Method Composites Application Ref 
1 Freezing-drying  Chitosan/Col/HA Cartilage tissue engineering [8] 
2 3D printing HA/Col Osteochondral regeneration [9] 
3 3D printing Zinc Silicate/Nano HA/Col Bone regeneration [10] 
4 Situ precipitation HA/Col Bone tissue engineering [11] 
5 Co-precipitation method HA/Col-magnetite Bone cancer treatment [12] 
6 Electrospinning HA/Col Bone regeneration engineering [13] 
7 Electric field orientation HA/Col Cortical bone defect [14] 
8 Dehydrothermal  HA/Col Bone repair [16] 
9 Self-assembled HA/Col Bone regeneration engineering [15] 
10 Sol–gel HA/Col Injectable bone substitute [16] 
11 Lyophilisation HA/Col Bone defect [17] 
 

The composites of HA/Col incorporate with materials  

The HA/Col composites had been prepared through different fabricated 
techniques and were used in many bone defects as biomaterials for bone 
tissue engineering. The composite have been incorporated by different 
sizes (Nano-size and micro-size) with many other materials such as 
calcium phosphate (CaP) [20], poly(L-lactide) (PLLA) [21], Poly(vinyl 
alcohol) (PVA) [22], chitosan [23], and metals such as iron (Fe) [24], to 
develop the properties of the composites, which will possess high 
compatibility and bio-degradable properties for bone repair.  

The composites of HA/Col/natural polymers  

The composites of HA/Col have to be incorporated with many 
natural polymer to improve the properties. The previous studies 
have been reported to prepared the composites of HA/Col with 
natural polymers such as gelatine [25], cellulose [26], chitosan [27], 
chitin [28] and starch [29] as it shown in the table 2. Kaviani et al., 

[22], was reported to incorporate HA/Col with chitosan by using 
freezing method. The application of the composites was for cartilage 
tissue engineering. This study included a cheaper way and 
environmentally friendly for the preparation of the composite. 

The properties of the HA/Col have been improved by incorporated 
with gelatine. The unidirectional freeze-casting method has been 
used to synthesize the composites. The results of the availability 
study against human bone-derived osteoblast, which have been 
compared with the control cell, showed improved in proliferation, 
differentiation and adhesion [26, 30]. Study of He et al., [27], 
reported to prepared HA/Col/cellulose by using in-situ precipitation 
method for bone tissue engineering. The results showed improved in 
the swelling ratio of the composites. The mechanical properties and 
biodegradation have been investigated; the compression strength 
was increased to 20-40 MPa, which is almost nearby the 
compression for the natural bone. 

 

Table 2: The HA/Col composites incorporated with the natural polymers 

Natural polymer Techniques Ref 
Gelatine Unidirectional freeze-casting [26] 
Cellulose In-situ precipitation [27] 
 Simple mixing method [28] 
Chitosan The freeze-gelation process [22] 
 Simple mixing method [31,32] 
Chitin The freeze-thawing process [33] 
Starch  Simple mixing method [29] 
 

The composites of HA/Col/synthetic polymers  

The composites of HA/Col/synthetic polymers were synthesis and has 
shown unique properties that enable it to be used in many fields. Many 
synthetic polymers have been incorporated with the composites of 
HA/Col, such as Poly (L-lactide) (PLLA) [34], Polylactide-co-glycolide 
(PLGA) [35], Polyvinyl alcohol (PVA) [36], Poly (methyl methacrylate) 
(PMMA) [28] and Polycaprolactone [37], as shows in table 3. The 
previous studies were reported to study the ability of the composites 
of HA/Col for bone tissue engineering through determined the 
chemical, physical and biological properties of the composites. 

Zhou et al., [35], incorporated PLLA with the HA/Col composites by 
using electrospinning method. The composites were characterized 
for their biocompatibility against mouse osteoblasts MC3T3-E1. The 
results have been shown to enhance the spreading, proliferation and 
adhesion for the cell. The biodegradation study was determined 
during 80 d, and the composites showed high stable composition 
and didn’t change in the morphology of the composites. Ariesanti et 
al., [38], were reported to prepared HA/Col/PVA by using a simple 
mixing method. The cytotoxicity of the composite of HA/Col/PVA 
showed high cell availability in the MTT assay. 

 

Table 3: The HA/Col composites incorporated with the synthetic polymers 

Synthetic polymer Techniques Ref 
Poly (L-lactide) (PLLA) Optimized sol-gel method. [34] 
Polylactide-co-glycolide (PLGA) Electrospinning [35] 
Polyvinyl alcohol (PVA) Stimulate method [36] 
Polycaprolactone freeze-dried method [37] 
Poly(methyl methacrylate) (PMMA) Simple mixing method  [28] 
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The composites of HA/Col/metals  

The parameters of metallic materials have significant properties, 
which have been shown to have properties higher than ceramics, 
which gives it a priority to be used in the field of tissue engineering. 
The biocompatibility of the metallic is lower than ceramics, which 
leads to allergic reactions in the blood clots [39]. The metallic 
nanomaterials have unique properties such as anti-microbial 
activity, high ratio of surface area, and biological, mechanical and 
physical properties [40, 41]. The composites of HA/Col were 
incorporated with metals and metals oxide for example, gold (Au) 
[42], silver (Ag) [43, 44], magnetite (Fe3O4) [45], graphene oxide 
(GO) [46] and Iron oxide (Fe2O3) [11] as it shown in table 4. 
Characterization of the composites has been shown high ability to be 
used to inhibition the growth of bacteria [47, 48], in addition, to use 
in the regeneration of bone tissue engineering [49, 50]. The HA/Col 
composites don’t have ability to inhibition the growth of bacteria; 
however, recent studies have been focused to incorporated 
composites of the HA/Col with nanomaterials to use as an 
antibacterial [51, 52]. The compatibility of the composites HA/Col 
with metals was investigated and show high compatibility in vitro 
study [54]. 

Ciobanu et al., [45], reported to synthesis HA/Col with Ti for 
antibacterial activity. The composite was determined its ability to 
use as an antibacterial against staphylococcus aureus (S. aureus) and 
Escherichia coli (E. coli), the coated composites showed significant 

function against both of these bacterial. HA/Col composite was 
incorporated with Au nanoparticles by using the microwave-
assisted green method and investigated for the biocompatibility 
study against MG-63 cells. The results show high availability of the 
MG-63 cell after 24 h, and interaction was observed clearly in the 
SEM image [42]. Song et al., [9], reported to synthesis of composites 
of HA/Col with zinc silicate by using the hydrothermal method for 
bone regeneration. Biocompatibility study have been determined for 
the ZS/HA/Col composites against bone marrow stromal cells 
(BMSCs) and the availability of the BMSCs after 24 h was very high. 
Accoutring to previous studies the composites of HA/Col with the 
metals have been shown high biocompatibility which can be used 
safely in the implants.  

The composites of HA/Col/Drugs  

The present studies have been taken to trend to the drug-delivery 
system. The systems of the drug delivery has the ability to use in the 
bone pathologies such as osteosarcoma, osteomyelitis, and 
osteoporosis. The composites of HA/Col were incorporated with 
wide range of drugs such as paclitaxel [23], cisplatin [55], 
vancomycin [56], tetracycline [57] and alendronate [58]. The most 
studies have been focused to incorporate the composites with the 
drugs to design new antibiotic for inhibition of bacteria growth [59]. 
The other applications of using drugs in the drug delivery system are 
anti-cancer [23], biocompatibility [60], and anti-osteoporosis [61]. 

  

Table 4: The HA/Col composites incorporated with metals and metal oxides 

No Metals and metal oxide  Methods  Applications  Ref  
1 Gold (Au) Microwave-assisted Tissue engineering and drug delivery  [47] 
2 Silver (Ag) Simulated body fluid (SBF) Orthopedic [43] 
3 AgNPs  Co-precipitation Antimicrobial  [44] 
4 Titanium (Ti) Biomimetic method Bone implants [42] 
5 Zinc (Zn)  Freeze-dryer Bone regeneration [9] 
6 Magnetite (Fe3O4) Co-precipitation Bone cancer treatment [11] 
7 Graphene oxide (GO) Electrodeposition Antibacterial effect [53] 
8 Iron oxide (Fe2O3)  Co-precipitation Bone fractures [23] 
9 Titanium (Ti) Electrochemical deposition Biocompatibility [55] 
 

Table 5: The HA/Col composites incorporated with drugs 

No Drugs  Methods  Applications  Ref  
1 Paclitaxel Hydrothermal Anticancer [23] 
2 Cisplatin Bone Cancer  In situ treatment [55] 
3 Vancomycin Electrospinning Antimicrobial Activity [56] 
4 Vancomycin gentamicin Electrospinning Antimicrobial Activity [57] 
5 Vancomycin Freeze-dryer Biocompatibility [58] 
6 Vancomycin 3D printing  Enhance Osseo integration and antimicrobial activity [62] 
7 Tetracycline Mineralization Antimicrobial Activity [60] 
8 Gentamicin Hydrothermal Antibacterial  [61] 
9 Alendronate Freeze-dryer Bone regeneration as a anti-osteoporosis [62] 
10 Alendronate Freeze-drying Bone regeneration [63] 
 

Many studies have been reported to incorporate HA/Col with wide 
range of antibiotics. The vancomycin has been used widely with 
composites. The study of suchý et al., [60], reported to loaded of 
vancomycin with the HA/Col via using the electrospinning method 
for antimicrobial activity against Staphylococcus aureus and 
Staphylococcus epidermidis, the results showed a significant effect 
against both of the bacterial compared with the HA/Col composites 
which did not show any inhibition for the growth of the bacteria. 
The vancomycin/HA/Col composites were modified by incorporated 
with gentamicin to enhance the ability of the composites against 
both of the bacteria [65].  

These composites have been investigated for the biocompatibility 
study through tested in vivo against wide range of the cells such as 
human osteoblast-like cell line (SAOS-2 cells) [56, 57], stromal cells 
(MSCs) [58], MG-63 cells [59], and MC3T3-E1 osteoblastic cells [62]. 
The composites show high availability for the cells after 24 h; 
however, the composites are very safely to be used in bone tissue 
engineering.  

The characterization techniques of HA/Col composites  

The prepared HA/Col composites were characterized for their 
chemical, physical and biological properties. The characterized 
techniques for the implant composites include two important things 
biocompatibility and morphology of the composites. Previous 
studied focused on the in vivo study [63]. The biocompatibility test 
include two parts; firstly, the cytotoxicity study, which give the 
viability of the cultured cells with the composites after cultured for 
kwon time. The cytotoxicity studied of HA/Col composites was 
determined by different techniques such as MTT assay [64], alamar 
blue assay [66], and flow cytometry analysis [49]. 

The hydroxyapatite and collagen don’t have any toxic itself; 
moreover, the composites of HA/Col aren’t toxic [45], but, there will 
be cause for concern when combined with other potentially toxic 
substances, which will lead to the toxicity of the final product. 
Previous studies have dealt with the study of the toxicity of 
composites when combined with other materials, as shows in table 
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5. The study of Popa et al., [49], reported to combined Zn with the 
composites of HA//Col, the results have been shown viability for the 
HeLa cell lines more that 95%. The composites of HA/Col were 
modified for the osteoblast via incorporated with chitosan. The 
results did not show any toxic against MC3T3-E1 cells for the 7days. 

In the conclusion according to the previous studies, the composites 
of the HA/Col did not show any toxicity against human cells line; 
moreover, the composites have been combined with many materials, 
and the results did not show any toxicity; however, the composites 
are safe and can be used in the bone tissue engineering. 

The cell attachment study of the HA/Col composites was 
demonstrated in wide range of the previous studies. The composites 
showed promising attached with the vivo cells. The HA/Col/chitosan 
was prepared for the restoration of maxillofacial mandible bone. Cell 
attachment was investigated against mesenchymal stem cells; the 
results have been shown more than 90% of cells were attached to 
the composites after 24h of the cultured [67]. The study of Cao et al., 
[68], reported to prepared HA/Col for the application of bone graft. 
Study of cell attachment was determined during cultured with 
murine L929 cells, 75% of the cells attached with the composites 
after 24h. Table 6 shows summaries for the previous studies which 
have been mentioned to the study of cell attachment for the 
composites of HA/Col. 

In the conclusion of this part, the composites of HA/Col have been 
cultured with the human cell line for the known duration time, and 
the results were demonstrated to high biocompatibility with the 
human cells line. According to the previous study, the composites of 
HA/Col is suitable to use in bone tissue engineering due to its high 
biocompatibility.  

The second part of the characterization techniques are chemical, 
physical and biological scan for the composites. Many techniques 
have been used to confirm this part, such as SEM, EDX, XRD, XPS, 
FTIR, AFM, antibacterial, anticancer and swelling ratio, etc., as shows 
in fig. 2. The chemical composition of the HA/Col composites has 

been confirmed by using XRD, EDX, XPS, and FTIR.  
 

 

Fig. 2: Characterization techniques of HA/Col composites 
(Source: author) 

 

The characterization techniques of HA/Col composites aimed to 
identify the chemical composition, surface morphology, mechanical 
properties, and biological ability for the prepared composites. The 
chemical composition was conformed by using XRD [69, 70], FTIR 
[39], EDS [71] and XPS. The XRD was used to determine crystal, size 
of the particle and shape. The XPS and EDS aimed to confirm the 
elements that possible to be present. The FTIR analysis has been 
used to investigate the chemical groups which is constituted the 
structure of the composites [74, 75], as shows in table 7.  

The morphology of the HA/Col composites was determined by using 
TEM, AFM and SEM. These instruments were used to identify the 
homogeneous of the surface sizes and shapes of the particles. The 
biological properties of the composites were determined by using 
many assays such as antibacterial, anticancer, degradation, swelling 
ratio and cell attachment. The results of the previous studies showed 
good ability for the composites to be used as osteoconductivity and 
biocompatibility [69, 72]; table 7 shows more details about them. 

 

Table 6: Cytotoxicity and cell attachment of HA/Col composites 

No  Composites  Test  Cells type  Results  Application Ref.  
1 HA/Col/Zn Flow cytometry 

analysis 
HeLa cell lines More than 95%. Bone 

regeneration 
[49] 

2 Nano-HA/Col Cytotoxicity (MTT) Fibroblast 
L929 cell line 

85-100 % Cytocompatibility [66] 

3 HA/Col Cell attachment,  
In vitro cytotoxicity 

Murine L929 
cells 

75% of the cells attached with the 
composites.  

Bone graft [67] 

4 Nano-HA/Col Cell Counting Kit-8 
(CCK8), flow cytometry,  
Cell adhesion 

MC3T3-E1 80-100 % cell viability after 3 d.  Osteogenesis [68] 

5 HA/Col/chitosan Cytotoxicity tests, 
attachment cells  
 

Mesenchymal 
stem cells 
 

The concentration less than 1 mg doesn’t 
has any toxic. 
More than 90% of cells were attached to the 
composites.  

Restoration of 
maxillofacial 
mandible bone 

[69] 

6 Nano-
HA/Col/chitosan 

Cytotoxicity (CCK-8 
assay) 

MC3T3-E1 The MC3T3-E1 cells were grow normally 
during the 7 d that gave advantage to be 
non-toxic materials.  

Biocompatibility 
and Osteoblast 

[70] 

7 HA/Col/calcium 
phosphate (CaP) 
 

MTT 
 

hMSCs 
 

The MTT assay for the composites didn’t 
show any toxic. However, the present of 
CaP did not effect on the final products.  

Tissue 
engineering 

[71] 

8 HA/col/pectin 
 

MTT assay 
 

MEF-WT cells The viability of the MEF-WT cells after 7 d 
were from 83-93%, the results have been 
shown there is not any toxic for the 
prepared composites  

Bone 
replacement 
 

[72] 

9 HA/Col Cell attachment  MG-63 cells  The attachment study for the HA/Col 
composites was investigated for duration 
time from 1-7 d, the results have been 
shown good attached to the cell in the SEM 
image.  

Bone tissue 
engineering 

[73] 

10 HA/Col Cell attachment Mesenchymal 
stem cells 

SEM image shown excellent attachment for 
the cells with the components of the 
composite 

Bone 
regeneration 

[74] 
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Table 7: Characterization techniques of HA/Col composites 

No  Composites  Chemical composition  Morphology  Biological/Medical/Application  Ref.  
1 HA/Col  EDS and XRD were used to determine 

the chemical composition of the 
composites. The EDS shows to 
present of an element, Ca, P, O, Cu, 
and Al. The ratio of Ca/P was 1.5. XRD 
analysis conform to present all 
standard peaks of functional groups 
for HA and Col.  

Study of the morphology 
has been done by using 
FESEM, the SEM image 
showed a homogeneous 
surface with a rod-like 
shape for the composites.  

Bone tissue engineering  [75] 

2 HA/Col XRD and FTIR were used to 
investigate the chemical composition 
of HA/Col composites.  
XRD was conformed to present of 
functional groups of HA and col. The 
FTIR shows major peaks at 3000 cm-1 
belong to Amide I group. The Po3 and 
OH were conformed to present as 
well.  

This study did not 
mentioned for the 
morphology tests.  

MTT assay have been used to 
determine the cytotoxicity of the 
prepared composites; results 
showed 100% percentage of the 
cell to present after 24h cultured.  
Osteoconductivity 
And Biocompatibility have been 
confirmed.  

[42] 

3 HA/Col XRD and FTIR were used to conform 
all functional groups of HA and Col. 
The results showed to present for all 
major groups that was correspond to 
HA and Col.  

SEM has used to determine 
the morphology. The SEM 
image showed very well 
distributing for HA in the 
matrix of Col. The shape of 
composites have been 
confirmed as a plate-like 
shape.  

In the biology part the author 
mentioned to study of swelling 
and degradation ratios. The 
results show swilling ratios were 
from 250% to 650%, and the 
stability of the composites after 7 
d was 80%, while it’s degraded to 
50% after 28 d.  

[76] 

4 HA/Col XRD showed crystal structure for the 
composite according to sharp peaks 
of XRD spectrum.  
FTIR showed all functional groups of 
HA and Col.  

TEM and SEM were used to 
conform the morphology of 
the composites. Results 
shows nano size from 200-
400 nm with the a 
homogeneous surface 

Degradation study of the 
prepared composites showed 
slow degraded.  

[77] 

5 HA/Col FTIR, EDS, and XRD were used to 
analysis the chemical structure of the 
composites. The results have been 
shown the chemical groups of the HA 
and Col in the FTIR, while the XRD 
showed the major peaks 
corresponding for both of them.  

The SEM image showed 
spherical shape for the HA 
particles and very well 
distribution in the matrix of 
Col.  

The cell attachment with MC3T3-
E1 cells, the SEM images showed 
very well attached to the cell with 
composites.  

[78] 

6 HA/Col/chitosan/carbon  XRD, FTIR, and EDS aimed to analysis 
the chemical structure of the 
composites.  

SEM image showed good 
pore size with high porosity 
(98 ± 0.15 to 95.7 ± 0.1%).  

The MTT assay used to analysis 
the cytotoxicity of prepared 
composites. The results showed 
non-toxic for the composites.  

[79] 

 

The applications of HA/Col composites  

The micro and Nano HA/col scaffold developed for the applications of 
bone tissue engineering due to the pure Col showed unwanted foreign 
body reactions [79, 80, 81]. HA has been developed from tri-calcium 
phosphate (TCP) cement by modifying the particle size of the starting 
cement powder, which is then precipitated in the solution of Col. The 
emulsification technique has been used to fabricate the micro-carriers 

of the ceramic slurry. The material has shown a synergistic effect that 
leads to enhanced differentiation and proliferation of cells. The 
scaffold of HA/Col that has been developed to be used is coated with 
titanium (Ti), then implants to improve the osseointegration [82]. The 
group that was coated had been created (Ti–6Al–4V) using plasma 
technique spraying with HA, and was dropped into the collagen 
solution. The Co/HA scaffold has been implanted in the muscles of 
rabbits and has shown high improved osteogenesis [83, 84]. 

  

 

Fig. 3: Applications of HA/Col composites (Source: author) 
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Fig. 3 shows examples for the applications which have been 
mentioned in the previous studies. Among them, there were many 
applications that have been mentioned, such as bone regeneration 
[49], bone graft [67], osteogenesis [70] and biocompatibility [58], 
etc. in conclusion, the HA/Col composites possesses unique 
properties that enable it to be used in wide fields such as medical, 
biological and industrial fields. 

Sources of HA/Col composites 

The composites of HA/Col were fabricated for the defects of bone, 
and Col was obtained from different sources such as porcine dermal 
[85], bovine serosa [86], calf hide [87], rat tails [89], bovine skin, 
horse tendon [88, 90], while the most of HA was from natural [65] 
and synthetic [91] sources. 

  

Table 8: Shows the sources of Col and HA from different composite formulation 

The scaffolds HA sources Collagen sources Form of scaffolds Ref 
HA/Col nanocomposite Synthetics porcine dermal Paste [92] 
HA/Col Synthetics bovine serosa Solid [93] 
HA/Col Synthetics bovine femur Spongy [94] 
HA/Col Synthetics calf hide Fiber [95] 
HA/Col Synthetics bovine skin Solid [96] 
HA/Col Synthetics calf skin Solid [97] 
HA/Col Synthetics mineralized blend cylindrical shape [98] 
HA/Col Synthetics bovine tendon Solid [99] 
HA/Col Synthetics Bovine Solid [100] 
Col/HA/pectin Synthetics Rabbit skin cylindrical [101] 
Col/HA Nano composites Synthetics calf skin Fiber [102] 
Col/HA Synthetics rat tails Hydrogel [103] 
Col/HA Synthetics bovine tendon lyophilized [105] 
Col/HA Synthetics rat tail tendons Solid [106] 
Col/HA Synthetics rat tail tendons Solid [107] 
HA/Col/Calcium phosphate Synthetics bovine skin Solid [108] 
HA/Col/polycaprolactone Synthetics Bovine Fibers [109] 
HA/Col/Fe Synthetics horse tendon Solid [110] 
Han/Col Nano-powder tail tendons rats lyophilized [111] 
HA/Col Micro-powder Rat Gel [112] 
HA/Col Synthetics tail tendon Solid [113] 
Col/HA/Cisplatin Ca(NO3)2.4H2O, and NH4H2PO4 calf hide Solid [114] 
Col/HA Ca(NO3)2.4H2O, and NH4H2PO4 calf hide Solid [115] 
Col/HA Synthetics bovine tendon Solid [116] 
Col/HA/PLCL Sigma–Aldrich Sigma–Aldrich Solid [117] 
PVA-Col-HA Berkeley, CA, USA rat tail Fibers [118] 
Col/HA Nanocomposite Ca(NO3)2.4H2O, and NH4H2PO4 Porcine Solid [119] 
Col/HA Synthetics calf skin lyophilized [120] 
Col/HA/PVA Synthetics rat-tail Hydrogel [121] 
Col/HA/hyaluronic acid Ca(NO3)2.4H2O, and NH4H2PO4 bovine Achilles tendon Solid [122] 
Col/HA Synthetics Calf Hides Solid [123] 
Col/HA/Chitosan Synthetics bovine tendon Solid [124] 
silica/Col/HA Synthetics Bovine hydrogels [125] 
Col/HA/PLCL Synthetics Purchase from Fisher Scientific Solid [126] 
Col/nHA/PVA Purchase from aap Implantate 

AG, Germany 
Rat tail Fibers [127] 

`Col\HA\ PLLA purchased from PURAC bovine tendon Solid [128] 
Col/HA nano/Chitosan composite Synthetics bovine dermis Fibers [129] 
Col/HA Plasma Biota Limited Fetal calf skin Solid [130] 
Col/HA Synthesized calf hide Solid [131] 
Col/HA Sigma–Aldrich tail tendons of rats Spongy [132] 
Col/HA Synthesized calf hides Solid [133] 
Col/HA purchased from Merck bull skin Gel [34] 

 

CONCLUSION  

HA/Col composites were investigated as a functional biomaterial, 
which was used in many medical applications; the composites that 
were mentioned in this section were fabricated from various 
sources. The previous studies demonstrated for many sources for 
the HA and Col; the wide source for hydroxyapatite was synthetic, 
while the col was isolated from an animal source. In conclusion, 
Accordingly, previous studies have been documented to prepare 
composites of hydroxyapatite/collagen (HA/Col) from synthetic and 
natural sources. The majority of these studies were using 
hydroxyapatite from synthetic sources of chemicals that may cause 
toxicity when applied in the future. Col was used from natural 
sources such as porcine dermal, bovine skin, rat tails and bovine 
tendon. However, the recent problem of animal diseases such as 
Hyaline Membrane Disease (HMD) and mad cow disease made 
animal-based HA not a good alternative of HA. A lot of HA/Col 

composites were used in tissue engineering applications due to the 
higher properties that can be obtained from them. Despite the 
exceptional and harmonic properties of these substances and the 
way they are synthesized as compounds for the medical and 
biological fields of many prosthetic processes to enhance the growth 
and cohesion of the bones, many operations have failed due to 
bacterial infection. 
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