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ABSTRACT  

Green Synthesized Cerium oxide nanoparticles (CeO2NPs) have sparked a lot of interest in numerous disciplines of science and Technology during 
the past decade. A wide range of biological resources has been employed in synthesizing CeO2NPs, including plants, microorganisms, and other 
biological products. Biosynthesis procedures, current knowledge, and prospects in the synthesis of Green synthesis of CeO2NPs are also discussed. 
Neurodegenerative diseases, such as aging, trauma, Alzheimer's and Parkinson's, and other neurological problems, are linked to higher oxidative 
stress and superoxide radicals generation. Cerium oxide nanoparticles' antioxidant properties suggest that they may be useful in the treatment of 
CNS diseases. The biological antioxidant benefits of cerium oxide nanoparticles on extending cell and organism lifespan, preventing a free radical 
attack, and preventing trauma-induced neurological damage are discussed in this section. CeO2NPs, an aspect of nanotechnology, would emerge as a 
novel drug delivery carrier through therapeutic strategies. In several diseases oxidative stress and inflammation. CeO2NPs exhibited a remarkable 
ability to switch between+3 and+4 oxidation states making this an efficient therapeutic option and an effective drug delivery agent. Further Reactive 
oxygen and nitrogen species. The overall goal of this study is to provide reasonable insight into CeO2NPs as new therapeutic agents and to solve the 
challenges, of safely and effectively employing these CeO2NPs for efficient management of Central Nervous System diseases. 
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INTRODUCTION  

Disorders of the central nervous system are a major source of 
disease burden globally and contribute significantly to health loss 
over time [1-4]. The worldwide burden of illness is shifting from 
communicable to chronic non-communicable diseases and from 
infant death to morbidity as a result of population expansion and 
aging [3, 4]. Epidemiological changes are increasing the worldwide 
burden of chronic illnesses, especially in low-income countries. Such 
as cancer and disorders of the central nervous system. A paradigm 
change from a single disorder strategy to one that emphasizes 
treatment for patients with numerous disorders is represented by 
comorbidity or co-morbidity (the occurrence of two or more chronic 
health conditions in a person) [5-7]. Multiple sclerosis, breast 
cancer, melanoma, and testicular cancer have all been linked to 
central nervous system disorders in several epidemiological studies 
and meta-analyses over the last several decades [8-16]. Meanwhile, 
epidemiological data suggest a lower cancer risk in conditions like 
Alzheimer's disease, and Parkinson's disease is all examples of 
neurodegenerative diseases that damage the brain and central 
nervous system [15-25]. A meta-analysis evaluated the incidence of 
cancer in more than 50 observational studies, which included data 
from more than 570,000 people from various backgrounds took part 
in the study (including eight illnesses of the central nervous system, 
including Alzheimer's Illness, ALS, and autism spectrum disorder 
schizophrenia with other mental illnesses, such as Down syndrome, 
Parkinson's disease, and multiple sclerosis eight malignancies that 
can only be found in a certain part of the body, including brain, 
breast, colorectal, lung, prostate, testicular, leukemia and 
melanoma)In the recent decades, the development of fresh 
methodologies form the building of Nano formulations 
(nanocarriers) for the effective transport of medicinal molecules 
provides a wide variety of biotechnological applications. Adaptive 
nanostructured materials can transport medications to the target 
locations with reduced dose frequencies and in a (spatial/temporal) 
regulated way to lessen the negative effects observed with standard 
therapy. In particular, they allow eliminating the primary important 

concerns faced with conventional pharmacological therapies like the 
nonspecific dispersion, rapid\sclearance, unregulated release of 
medicines, and limited bioavailability. The overall outcome is a 
sensitive decrease in toxicity and/or unpleasant effects. CeO2NPs 
have been widely used because of their unique surface chemistry as 
well as their stability and biocompatibility [26, 27]. These CeO2NPs 
are 1-100 nm-sized and presently manufactured via physical and 
chemical means [26-28]. One of the most common uses of green-
synthesized CeO2NPS is in the treatment of central nervous system 
disorders, bacterial and fungal infections, as well as cancer and 
insecticide resistance [15, 19, 21]. Reducing solvents in these 
processes poses several hazards to biodiversity and the 
environment. Because they generate unstable and potentially toxic 
N. P. s, these methods are less effective [8, 9]. Research is now 
embracing Green Synthesis, a safer and less dangerous method. This 
technique uses a broad variety of natural resources, including plants, 
bacteria, and any other kind of biological material. Phytochemicals, 
including ketones, amines, enzymes, and phenols that are assumed 
to be held considered for the stabilization and reduction of bulk ions 
into nanoparticles, are abundant in these biological extracts [10-14]. 
Antioxidant properties are among the most often employed 
biological functions. Numerous studies have found this to be the case 
that the antioxidant properties of CeO2NPs may be achieved in a 
variety of different methods [9]. Bacteria are killed by the reactive 
oxygen species (ROS) production in the cell of CeO2NPs [8, 15]. The 
method of action needs more investigation. In this evaluation, we 
would like to pay particular attention to the following areas. 
CeO2NPs have been synthesized using a wide variety of biological 
resources. With a focus on antibacterial properties, synthesis and 
therapeutic uses are examined. 

Search strategy 

PubMed, EMBASE, Google scholar, sci-finder, and Web of Science 
were searched to identify eligible studies. We searched databases 
from January 2011 to 2021 August 15, 2021. We employed the 
following keywords and MeSH searches: (Green synthesis of Cerium 
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oxide nanoparticle) and (Central nervous or neurodegenerative 
diseases). We did not use the language restriction. For more eligible 
studies, we retrieved the reference lists of relevant articles or 
reviews. 

Methods of green synthesis of cerium oxide nanoparticles 

Nanoparticles may be made using a variety of physicochemical 
techniques. Toxic solvents, high temperatures, and high pressure are 
required in all methods, all of which are bad for the environment 
[22, 24]. Low yields, high costs, extensive downstream processing, 
and volatility all contribute to their ineffectiveness [6, 9]. There is a 
rising need for nanostructures that can solve these issues [5, 8]. 
Researchers are presently using green synthesis techniques to tackle 
all of these issues. In developing environmentally acceptable N. P. s, 
for example, plant, microbial, and additionally, natural materials 
from various sources were used to reduce and stabilize [24]. 
CeO2NPs have also been created using a variety of physical, chemical, 
and biological methods [8]. Because of its biocompatibility and 
safety, the latter is often used in biomedical, pharmaceutical, and 
food applications. Using a green technique may result in higher 
yields, longer-term stability, and improved morphologies, among 
other advantages [6, 8, 29].  

Cerium oxide nanoparticles from plant sources 

Plant extracts, microbial derivatives, and other biological derivatives 
have all been used in the green manufacture of CeO2NPs. Because of 
the amount of reducing and stabilizing substances in plants, as well 
as their accessibility and safety, they have shown to be the most 
effective source in this respect [25, 26]. CeO2NPs nanoparticles have 
been synthesized using plant materials, including leaves, flowers, 
stems, and other similar parts [26]. In the early stages of green 
synthesis research, the emphasis has been on extracts from leaves. 
An array of metabolites/phytochemicals found in plant extracts, 
such as ketones, carboxylic acids, phenolic acids, and ascorbic acid, 
serve as reduction and stabilization agents [27]. To make plant-
based CeO2NPs a bulk metal salt is combined with the extract, and 
the reaction is initiated. Is completed to nanoparticles by 
phytochemicals [28]. The production of these nanoparticles is first 

demonstrated by a color shift from colorless to yellowish, brownish, 
or white, and then described using various spectroscopic and 
imaging methods [30]. Moringa oleifera L leaf extract was used to 
make CeO2NPs with 100 nm dimensions and spherical 
morphologies. Antibacterial and wound-healing capabilities have 
been discovered in the NPs [31]. CeO2NPs were synthesized using an 
antibacterial leaf extract from Gloriosa Superba as a reducing and 
stabilizing agent [32]. 3.9 nm-sized crystalline CeO2NPs were 
produced from an extract of Hibiscus sabdariffa. Nanoparticles with a 
diameter of 63.6 nm were synthesized using the gel extract of the 
medicinal plant Aloe Barbadensis [33]. It has been shown that the 
nanoparticles of CeO2 that have been synthesized exhibit excellent 
antioxidant properties. For the green synthesis of CeO2NPs with high 
photocatalytic activity and a monodispersed shape of 3–5 nm, extracts 
from the leaves of Jatropha curcus were used. CeO2NPs with a 
diameter of 24 nm, which has good antibacterial properties against 
both gram-negative and gram-positive bacteria, are created using the 
Oleo Europaea leaf extract. Pseudospherical CeO2NPs were 
synthesized using Origanum majoranaextracts (20 nm). According to 
FT-IR studies, the decrease is due to the presence of different phenolic 
and flavonoids components in the extract. Rubia cordifolia leaf fusions 
were used to create CeO2NPs. Hexagonal N. P. s with a diameter of 26 
nm were found using spectroscopy and microscopy. It has been shown 
that the biogenic CeO2NPs also have powerful anti-cancer properties. 
From 5 to 55 nm in diameter, nanorods are available. When Pedalium 
murex L. was exposed to a salt aqueous solution at ambient 
temperature, CeO2NPs with substantial antibacterial activity were 
formed. As a bio template, China rose petals were employed to create a 
unique, 7-nm diameter Ceria Nanosheet that was easy to fabricate 
[34]. Reaction temperature, pH, duration, the concentration of salt 
precursor or plant extracts, and plant component utilized may have 
contributed to the observed differences in size [35]. It was found that 
plant-derived CeO2NPs were exceptionally stable throughout a wide 
variety of experimental settings [36]. Nanoparticles derived from 
green ceria, for example, have no physiochemical alterations in liquid 
solution. Biogenic CeO2NPs on the other hand showed excellent 
thermal stability and lasted longer, proving their long-term stability 
and endurance. Displays the plants employed in the biogenic 
production of CeO2NPs to this point. 

  

Table 1: Green synthesis of CeO2NPs from various plants sources 

Name Part Nanoparticle Shape Size (NM) Reference 
Moringa Oleifera Peel CeO2  Spherical 45 [36] 
Lemon Grass Grass CeO2 - 10-45 [37] 
Prosopis Fractal Aerial CeO2 Spherical 30 [38] 
China Rose Petal CeO2 Nanosheet 7 [39] 
Euphorbiatirucalli Stem CeO2 Flaky 37-40 [40] 
Azadirachta Indica Leaf CeO2 Spherical 10-1 [41] 
Aloe vera Leaf CeO2 Spherical 2-3 [42] 
Aloe Barbadensis Leaf CeO2 Spherical 63 [43] 
Walnut Shell CeO2 Spherical 9-1 [44] 
Watermelon Fruit Juice CeO2 Irregular 36 [45] 
 Morus Nigra Fruit CeO2 Irregular 7.5 [46] 
 Origanum majorana Leaf CeO2 Spherical 20 [47] 
Elaeagnus Angustifolia Leaf CeO2 Spherical 42 [48] 
 Orange Fruit CeO2  Cubic  20-25 [49] 

 

Cerium oxide nanoparticles from microorganisms 

Secondary metabolites found in microbes make them capable of 
producing nanoparticles naturally. CeO2NPs of different shapes and 
sizes have been created by microorganisms over the past few decades, 
along with other nanoparticles. Synthesizing CeO2NPs from microbes 
is an environmentally benign and cost-effective method [50, 51]. 
CeO2NPs bulk salt is reduced and stabilized into matching 
NanoParticles primarily by enzymes and proteins, as well as their 
heterocyclic derivatives. Stability, water dispensability, and 
fluorescence characteristics of micro-biogenic CeO2NPs were 
enhanced while they were less agglomerated. While Aspergillus niger 
extract has been acquired, cubic fluorite N. P. s with a spherical shape 
or an average size of 5 nanometers were obtained (nm). There was 

evidence of a phenyl group, a carboxylic group (known to play a role in 
N. P. reduction), and a hydroxyl group. Spherical CeO2NPs with sizes 
ranging from 5 to 20 nm were also synthesized using Curvularialunata 
extract. As a first impression, the color went from white to a rich, rusty 
brown. An incredible antibacterial effect was shown when the 
nanoparticles were tested against microbial diseases. To prevent the 
production and growth of harmful bacteria biofilms, CeO2NPs with a 
diameter of 20–30 nm were created using Fusarium solani extract. The 
thermophilic fungus Humicola was used as a capping agent in Shadab 
Ali Khan's study on the biosynthesis of spherical (12–20 nm) CeO2NPs. 
It was discovered that the resulting nanoparticles might be used for 
the treatment of neurological disorders, including Alzheimer's and 
Parkinson's disease, when various techniques such as ultraviolet (U. 
V.), x-ray photoelectron (XRD), x-ray fluorescence (XRF), and more 
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were used to characterize them. It has also been used to create 
spherical CeO2NPs from bacteria, such as the Bacillus subtilis extract. 
In vitro, the bacterial-mediated N. P. s had comparable antioxidant 
efficacy [52, 53]. Microbial syntheses have certain drawbacks despite 
their wide range of uses, including a high risk of pathogens and a 
lengthy culture period. Nanotechnology, even though it has yet to be 

investigated, shows a lot of promise in this area and has the potential 
to be an essential route in nanomedicine. It is possible to employ 
microbial-based N. P. s to generate new fertilizers, sterile surfaces, 
polymers, and therapeutic devices. These biogenic nanoparticles might 
be used in the treatment of illness, pharmaceutical production, and 
medication delivery [54, 55]. 

 

Table 2: Green synthesis of ceo2nps from various fungal sources 

Name Nanoparticles Shape Size (NM) 
HumicolaSp CeO2 Spherical  12-20 [52] 
Aspergillus niger CeO2 Spherical  5-20 [32] 
Curvularialunata CeO2 Spherical  5-20 [53] 
Fusarium solani CeO2 Spherical 20-30 [54] 
 

Cerium oxide nanoparticles from miscellaneous sources  

To produce nanoparticles, scientists have employed biological 
derivatives as well as eukaryotes and prokaryotes (NPS). They also 
play a role in NPS stability and decrease. CeO2Nps derived from bio-
products are far safer, more scalable, and have shown superior 
biocompatibility compared to Plants and the microbial approach 
[55]. To generate CeO2NPs of 8–17 nm in diameter, for example, egg 
white protein was used [56]. NPS was characterized by U. V., FT-IR, 
TGA/DTA, and PXRD. The phenol, ether, hydroxyl, and amide groups 
were shown to take responsibility to reduce these NPS in FT-IR 
studies. Furthermore, in vitro cytotoxicity against human 
periodontal fibroblast cells was relatively high. CeO2NPs have been 
stabilized and capped using agarose, a naturally occurring matrix. 
The NPS had a diameter of 10.5 nm and were spherical. Methods for 

determining the properties of the NPS included U. V., FT-IR, PXRD, 
and TGA/DTA. An FT-IR investigation showed that the hydroxyl, 
ether, phenol, and amide groups were involved in biosynthesis. 
Additionally, starch has been used as a unique source of nanoceria, 
generating spherical form N. P. s with a diameter of six nanometers. 
These CeO2NPs have sizes of 5–10 nm and were created using 
Dextran. The anticancer potential of the nanoparticles produced is 
enormous. Gum tragacanth was employed by Darroudi et al. to 
synthesize CeO2NPs [57]. Monodispersed in form, these N. P. s 
averaged in size between 20 and 40 nm. These CeO2Nps are 
intriguing candidates for a broad variety of biomedical and 
pharmaceutical applications because of their extraordinarily low cell 
toxicity on Neuro 2A cells. Regardless of their biological uses, these 
biogenic NPs might be competitors in illness treatment, medication 
administration, and packaging for food. 

 

Table 3: Green synthesis of ceo2nps from various fungal sources 

Name Nanoparticles Shape Size (NM) 
Egg Protein CeO2 Spherical 18-17 [58] 
Honey CeO2 Spherical  23 [39] 
Agarose CeO2 Spherical  10.5 [60] 
Starch 
Dextran 
Polyethelene  
Glycol 
Chitosan 

CeO2 

CeO2 

CeO2 

CeO2 

CeO2 

Spherical 
Spherical 
Spherical  
Spherical 
Spherical 

 6 [23] 
5-10 [61] 
~2 [62] 
~4 [63] 
≤ 40 [54] 

  

 

Fig. 1: Schematic diagram of green synthesis of CeO2NPs 

 

The diagrams used in this review article have not been published in 
any journal and were created originally and innovatively using 
subject knowledge and Microsoft PowerPoint. 

Cerium oxide nanoparticles in central nervous system 
disorders 

Mechanism of action of cerium oxide nanoparticles as an 
effective antioxidant 

Disease diagnosis, therapy, and new pharmaceutical formulations 
have benefited from nanotechnology in recent years. Numerous 

studies have been done on the antibacterial properties of N. P. s, for 
example. Increasingly, CeO2NPs are being used as an antibacterial 
agent, particularly for the treatment of bacterial infections [64]. It's 
still unclear how exactly bacteria will be eradicated. It has been 
claimed that CeO2NPs kill bacteria by promoting the generation of 
reactive oxygen species (ROS) in the cells of the organism [65]. 
Electrostatic characteristics, unique geometries, tiny size, and low 
band energy of CeO2NPs contribute to their bactericidal potential 
[43]. When CeO2NPs interact with thiol groups on the membranes of 
bacteria, they destabilize proteins and cause the membranes to 
become immobile, resulting in microbial death. Membrane collapse, 
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dysfunction of cellular compartments, and bio-organic compounds 
are all factors that contribute to microorganisms dying from 
CeO2NPs induced aberrant metabolism and physiology. A broad 
range of biological species has been harnessed and tested against 
various bacteria in the same way as green-mediated nanoparticles. A 
wide variety of harmful bacteria may be treated by Biogenic 
CeO2NPs because of their varied morphologies, microscopic size, and 
bio-compatibility. This makes them more effective. Because gram-
negative bacteria have complex membranes, it is more sensitive to 
gram-positive bacteria than to gram-negative ones [39]. Plant 
species, bacterial wall composition, and changes in N. P. 
Electrostatics all influence antibacterial action. Because of the 
oxygen-bound nature of CeO2NPs, cerium atoms can be found in the 

three and four valence state configurations, respectively. A SOD-like 
enzyme, Ce3+, is transitioned to Ce4+, and oxygen vacancies are 
shifted. The hydration shell surrounding the CeO2NPs likely 
contributes to this reaction as well H202is the product of the reduction 
of superoxide to superoxide. H202is transformed to O2+4H+and 
cerium valence to+3 (because of changes occurring in oxygen 
vacancies) via an oxidase activity involving Ce4+, restoring the initial 
CeO2NPs state. Again, the water hydration shell's ions are most likely 
to blame. The ionic species subjected to CeO2NPs, the hydration shell, 
the partial oxygen pressure, or any surrounding ionic species all 
influence this action in the biological environment. The radicals 
scavenged here are superoxide and H202, but any amount of 
biologically active free radicals could serve as a helpful example. 

 

 

Fig. 2: Auto regenerative property of CeO2Nps 

 

The diagrams used in this review article have not been published in 
any journal and were created originally and innovatively using 
subject knowledge and Microsoft PowerPoint. 

Neuroprotection of cerium oxide nanoparticles  

Alzheimer's disease, Parkinson's disease, and Huntington's disease 
are all connected to oxidative stress in the brain. In the long run, 
neurodegeneration occurs in the slow loss of neurons. Neuronal 
mitochondrial function is thought to be altered by oxidative stress, 
resulting in a redox reaction failure. The ability of CeO2NPs to 
protect cells from ROS has raised the possibility of their usage in the 
therapy of neurodegeneration [66]. Researchers used CeO2NPs and 
lipophilic cation triphenylphosphonium (TPP) in an Alzheimer's 
disease animal model. The protective effects of CeO2NPs on nerve 
tissue outside of the brain and spinal cord were also discovered 
(CNS). After a first ocular injection in albino rats, CeO2NPs were 
shown to be stable in the outer photoreceptor area of the retina and 
to protect against the damage produced by severe exposure to light 
after three weeks. It was shown that CeO2NPs offered retinal safety 
by scavenging ROS and reducing microglial activation and the 
inflammatory response, similar to what was reported in the CNS 
[67]. Intravenous administration of NPS did not protect against 
light-induced damage, which was surprising. Antioxidant properties 
and the capacity to cross its Blood-Brain Barrier (BBB) suggest that 
CeO2NPs might be used as a treatment for neurodegeneration. They 
were also shown to reduce neuronal death when conjugated N. P. s 
were found to reside in mitochondria. Suppression of gliosis. The 
CeO2NPs without a surface alteration were also examined. 
Internalization and localization to a mitochondrial membrane in 
neuronal cells were shown to take place. Additionally, CeO2NPs 
treatment decreased mitochondrial dysfunction caused by 
peroxynitrite and amyloid-beta protein death and fragmentation of 
the brain neuron [68]. 

Applications of cerium oxide nanoparticles in CNS disorders 

As an antimicrobial and treatment for many disorders, CeO2NPs 
have been used. When it comes to the treatment of osteosarcoma 
and other bone cancers, CeO2NPs have been most often employed 
[69]. Because of their low toxicity and capacity to induce cancer cells 
to apoptosis or necrosis, these nanoparticles could be used as an 
effective treatment for cancer-antioxidant activity in CeO2NPs 
obtained from Origanum majorana as well as Ceratonia siliqua [70]. 
Antioxidant enzyme expression was upregulated, removing free 
radicals and enhancing cellular processes. When compared to 
commercially available synthetic antioxidants, the antioxidant 
potential was greater. In L6 cell lines, CeO2NPs generated from 
Morus nigra fruit extract showed outstanding anti-diabetic action. 
Researchers found that smaller N. P. s facilitated glucose absorption 
in vitro, whereas bigger N. P. s inhibited glucose absorption. The best 
delivery method and mechanism of action thus are critical 
considerations, for CeO2NPs must all be identified. When testing 
compatibility in vitro and in vivo, it is necessary to test cytotoxicity 
and genotoxicity in vivo. 

Alzheimer's disease (AD) 

Alzheimer's disease is associated with high levels of oxidative stress, 
causing CeO2NPs an attractive therapeutic option [71]. The 
cholinergic neurons in the brain are the first to die in Alzheimer's 
disease. There has been no in vivo research utilizing CeO2NPs in A. D. 
animal models to date, despite numerous in vitro studies showing 
outstanding potential for this treatment. Using electron 
paramagnetic resonance (EPR), it was demonstrated that CeO2NPs 
could be beneficial in the treatment of Alzheimer's disease by 
scavenging free radicals generated in vitro during the aggregation of 
Amyloid-β(1–42). CeO2NPs prevented the rapid death of pure rat 
cortical neuronal cells caused by aggregated Amyloid-β(1–42) in 
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these studies, showing the efficacy of CeO2NPs in A. D. animal studies 
at 10 nm (10 nM). After that, Dowding et al. [71] demonstrated that 
3–5 nm CeO2NPs also prevented mitochondrial fragmentation 
generated by Amyloid-β(1–42). Any positive effects on animal 
models of A. D. will require more research. 

Parkinson's disease (PD) 

A high level of oxidative stress in the substantia nigra and striatum is also 
linked to Parkinson's disease, which results in the death of neurons in 
these areas. In vivo studies have shown that Green synthesized CeO2NPs 
can be used in the treatment of Parkinson's disease. There have been few 
reports on the use of CeO2NPs to treat Parkinson's disease. Shortly, 
current research activities exploiting CeO2NP's antioxidant 
characteristics might lead to viable therapy alternatives for Parkinson's 
disease. Many studies have linked a variety of environmental variables to 
the development of Parkinson's disease [42, 52]. Heavy metal exposure 
is one such cause. In recent years, occupational Parkinson's disease has 
been linked to manganese exposure. Pinna et al. investigated the 
antioxidant activity of CeO2NPs on manganese-exposed 
catecholaminergic cells (PC12). This was accomplished using MTT and 
trypan blue tests to determine their levels during cell metabolism. This 
group also used Raman and confocal imaging to look at CeO2NPs 
internalization [72]. They investigated CeO2NPs alone and combined 
with L-DOPA to see whether they could design a more successful 
combined therapy, with the latter exhibiting a substantial reduction in 
manganese chloride-induced oxidative stress. The protective effect of 
CeO2NPs on catecholamine metabolism was discovered using liquid 
chromatography to observe the intracellular subject matter of dopamine 
and its metabolites. To treat Parkinson's-like illnesses caused by long 
manganese exposure, CeO2NPs have been shown to have a preventive 
role on PC12 cells and dopamine metabolism. 

Amyotrophic lateral sclerosis (ALS) 

It is a neurodegenerative illness that manifests as gradual muscular 
paralysis due to a decline in motor neuron function inside the motor 
cortex, brain stem, and spinal cord. When it comes to the phenotypic 
presentation of ALS, there are several variables to consider. These 
include the location of the first onset in the body, the relative 
involvement of upper and lower motor neurons (UMNs), the rate of 
progression, and cognitive deterioration. When it comes to the early 
signs of amyotrophic lateral sclerosis (ALS), muscle twitching and 
cramping, as well as stiffness and a lack of mobility, are often overlooked 
[73]. In the ALS SOD1G93A mouse model, DeCoteau et al. identified 
promising results from citrate-EDTA stabilized CeO2NPs that neutralized 
ROS but also nitrogen species. When their muscles began to weaken, the 
mice were given a twice-weekly treatment. Patients who received 
CeO2NPs treatment maintained muscle function and lived for an 
additional 33 d. They concluded that these CeO2NPs, with their well-
known antioxidant properties, exhibited catalase activity [74]. 

Multiple sclerosis (MS) 

CeO2NPs have been extensively studied to neutralize biologically 
produced free radicals in vitro. Although CeO2NPs have extremely 
negative potentials and pile up in the liver and spleen, they can be 
stabilized to citrate or polyethylene glycol in general. Heckman et al. 
synthesized unique CeO2NPs with a different size (2.9 nm) or a 
lower negative potential to counteract this effect. Using a citrate-
EDTA coating, they could keep these CeO2NPs from wiping away in 
biological solutions. Using a mouse model of M. S. induced by 
oxidative injury mediated by free radicals, these custom-synthesized 
CeO2NPs were found to have beneficial biological effects. It's 
interesting whenever this formulation is administered 
intravenously, it finally reaches the brain and scavenges free 
radicals, thereby facilitating the clinical signs and motor dysfunction 
in mice. Using CeO2NPs treated animals, they found that ROS 
concentrations in the brain were reduced, indicating the CeO2NPs 
preserve their antioxidant activities and could treat oxidative stress 
in Multiple sclerosis. [63, 75-78]. 

Ischemic stroke (IS) 

The formation of free radicals post-stroke is significant and has been 
linked to a cascading of free radical processes, making CeO2NPs 
potentially useful in therapy. Although not strictly an in vivo 

research, Estevez et al. [79] used brain slices to investigate CeO2NPs 
in a rat stroke model. Commercially manufactured 10 nm CeO2NPs 
have been used in this study, which were dispersed in distilled water 
via sonication. CeO2NPs decreased ischemia cell death in brain 
segments by more than 50% when used at doses of 0.2–1 g/ml, and 
lowered NO and superoxide contents by 15%. As in the mouse 
hippocampal brain slice method of cerebral ischemia, Estevez et al. 
investigated the use of CeO2NPs as a potential treatment agent for 
Ischemic Stroke (I. S.). Peroxynitrite-induced ischemic mouse brains 
were used to test CeO2NPs neuroprotective activity and found that it 
significantly decreased 3-nitrotyrosine, a protein residue modified 
by the peroxynitrite radical. A study conducted by the researchers 
found that CeO2NPs limited the ischemic cell damage by 
approximately 50%. It's been shown that pegylated-CeO2NPs to 
uniform diameters (about 3 nm) could indeed effectively remove 
ROS from the brain and reduce neuronal cell death in the presence of 
I. S. CeO2NPs optimum dosage reduced infarct volumes in vivo, as 
well [80, 81]. 

Encephalomyelitis 

It was found that CeO2NPs (3–5 nm) have been effective in a mouse 
model of EAE, which mimics the human disease Multiple Sclerosis 
(M. S.). Following EAE induction, multiple intravenous (IV) doses of 
one milligram per kilogram of body weight were administered with 
CeO2NPs and lenalidomide, an EAE severity-decreasing drug. 
Combining the CeO2NPs and lenalidomide treatments was used in 
some animals. When lenalidomide was used alone, it delayed the 
onset of symptoms and yet did not prevent this same disease 
progression. CeO2NPs alone seemed not to affect the onset of 
symptoms but had a significant impact on recovery later in the 
disease. In contrast, the combining of CeO2NPs and lenalidomide 
removed health symptoms, decreased grey matter damage, and 
reduced CNS inflammation, making CeO2NPs a very promising 
adjuvant in MS treatment phosphate buffer has been proven to 
interact with the redox potential of CeO2NPs, as noted previously, in 
this investigation, which was the case here. It was shown that 
CeO2NPs did not aggregate when administered in a vehicle such as 
saline citrate, which helps drugs not aggregate [68]. Additionally, 
Heckman et al. [82] looked at the usage of CeO2NPs in a mouse EAE 
model. A citrate/EDTA-stabilized CeO2NPs was used in these studies, 
which should lead to improved delivery to the brain. The method of 
stability, on the other hand, remained a mystery. CeO2 NPs were 2.9 
nm in diameter and homogeneous whether used as a therapeutic or 
prophylactic dose. Before the commencement of sickness, a single 
intravenous dose was delivered, followed by seven-day maintenance 
doses. Three days after the illness was induced, the therapeutic 
dosage was begun, and thereafter maintenance doses were given. 
Ten, twenty, and thirty milligrams per kilogram were employed in 
this study, which is higher than the Eitan study. 

Huntington’s disease (HD) 

Myelodysplastic syndrome the repetitive CAG nucleotide sequences 
inside the Huntingtin gene are responsible for the development of 
Huntington's disease (H. D.). The enlarged CAG repeat in the mutant 
HTT gene causes pathological polyglutamine (poly Q) growth and 
accumulation of mutated HTT protein in the striatum. H. D. is linked 
to protein aggregations in cells in the brain, especially mutant HTT, 
polyQ-expanded ataxins, with synuclein, like other 
neurodegenerative illnesses. It is possible to detect numerous 
amyloid deposits independent of their amino acid sequences using 
conformation-dependent, oligomer-specific antibodies. It was 
necessary to penetrate the BBB to introduce an oligomer-specific 
scFv antibody (W20) in conjunction with CeO2NPs into the affected 
region. Early-stage HD diagnostics or an encouraging strategic plan 
for attempting to cross the BBB [56] are demonstrated here. 
However, as of now, there is no medical treatment that can slow or 
stop the progression of H. D [82-87]. 

Toxicity and safety of cerium oxide nanoparticles  

Concerns have been raised concerning the toxicity of CeO2NPs as 
their potential in numerous applications has emerged. Although 
research has stated that CeO2NPs are biocompatible, other 
investigations have shown that the innate properties and medicinal 
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uses of CeO2NPs can generate harmful consequences. Studies on the 
toxicity of CeO2NPs mostly focus on the effects of systemic exposure 
on intracellular toxicity and organ-level damage [20]. Some 
mechanisms have been postulated to describe cytotoxically, 
including autophagy activation, mitochondria damage, DNA 
breakage, induced apoptosis, and the production of oxidative stress 
[88-91]. Many studies have shown the nontoxicity of NPs, although 
particular NP designs and cell types have been linked to specific cell 
death processes. Since cell death was seen with lysosomal 
absorption but not cytoplasmic uptake, particle intracellular 
position may be a role in cytotoxicity. Cancer cells have been 
demonstrated to be particularly vulnerable to CeO2NPs. A lower pH 
in cancer cells due to Warburg effects may be a significant factor [19, 
92], although the cause is unknown. CeO2NPs may respond 
positively or negatively to changes in the external environment's pH, 
which may alter their antioxidant and oxidant functions.  

Functional characteristics and toxicity of CeO2NPs may be influenced 
by their size, shape, charge density, and surface features [90, 93-95]. 

CONCLUSION  

Biosynthesized CeO2NPs and their pharmaceutical applications were 
examined in this study. These biological products have been studied 
regarding their biomedical applications and mechanisms of 
synthesis. Biogenic CeO2NPs have sparked much interest in 
biomedical and other sectors because of their distinctive surface 
morphologies, tiny crystal size, and biocompatibility. It's been used 
to treat cancer, CNS disorders, antibacterial, and antioxidant 
therapy, among other things. Green Synthesized nanoparticles, in 
particular, have shown remarkable antibacterial activity against a 
broad spectrum of bacterial species. Also discovered is a way to fight 
these diseases, and it's caused primarily by an increase in free 
radicals and the deactivation of enzymes that remove them. ROS 
disrupts membranes, disrupts cellular compartments, degrades 
bioorganic molecules, impairs activities related, and ultimately 
results in death through these and other effects. Multidrug 
resistance bacteria have shown promising results, and they could be 
a prospective antimicrobial agent against these stubborn infections. 
Aside from that, future research should use Vivo models to show the 
entire process and any negative consequences. Aside from that, in 
vitro studies have demonstrated significant anticancer and 
antioxidant activity, although the toxicity and dose of these 
substances remain unknown. Regardless of their involvement in 
diverse treatments, their synthesis method must be enhanced, and in 
vivo assessment and toxicity must be further investigated. 

ABBREVIATIONS 

AD: Alzheimer's disease, CNS: Central nervous system, CeO2: Cerium 
Oxide nanoparticles, PD: Parkinson ’s disease, MS: Multiple sclerosis, 
HD: Huntington's disease, IS: Ischemic Stroke, HTT: Huntingtin, NPS: 
Nanoparticles, POLYQ: Polyglutamine, CAG: Cytosine, Adenine, 
Guanine, EAE: Experimental autoimmune encephalomyelitis, XRD: X-
ray diffraction, XRF: x-ray fluorescence EDTA: Ethylene diamine 
tetraacetic Acid, ROS: reactive oxygen species. PXRD: Powder X-ray 
Diffraction, TGA: Thermogravimetric Analysis, FT-IR: Fourier 
transform infrared spectroscopy. 
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