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ABSTRACT  

To review and discuss the current therapeutic strategies available for the management of cognitive dysfunction in major depressive disorder with 
special emphasis on novel therapeutics based on nanotechnology like nano carrier delivery systems. The method entailed a review of research 
articles, review articles, and other internet-sourced materials. Journals, articles, and reports were thoroughly searched for the efficacy and safety of 
nanotechnology based newer drug delivery approaches for the management of cognitive dysfunction in major depressive disorder. The information 
obtained during the literature search aided in comprehending the scenario. Several new nanomedicines and nanotechnology based drug delivery 
systems for improving the efficacy of new and old drugs used for the management of cognitive dysfunction in major depressive disorder were 
reviewed. There is a dearth of sufficient studies which focus on cognitive domain in depression. Nanomedicines and nanotechnology based drug 
delivery systems holds tremendous potential in the management of cognitive impairment in depression as well as other neuropsychiatric disorders. 
It is imperative to conduct advanced studies in this regard for better therapeutic outcomes in the management of such patients. 
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INTRODUCTION 

Cognitive dysfunction is one of the primary sign of the clinical 
manifestation of depression and is one of the major causes of 
functional deterioration in patients with major depressive disorder 
[MDD]. The response of the patients to antidepressant medications 
may be good in clinical practise, but cognitive impairment persist as 
residual symptom. These cognitive symptoms appear to have a 
significant impact not only on patient’s functional ability, but also on 
the risk of recurrence of the disease [1, 2]. In recent years, evidence 
has emerged that the elemental cause of the disease is dysfunction of 
circuits other than the known aminergic neurotransmitter systems, 
such as glutamatergic pathways; furthermore, the impact of other 
pathogenic mechanisms, for example, loss of synaptic plasticity in 
those areas involved in emotion and affect regulation, has emerged 
[3-5]. This has fuelled interest in new molecules capable of 
interfering with these pathways and mechanisms, which are known 
to have established roles in cognitive processes. However, current 
medications for depression have seldom been shown to be effective 
in treating cognitive disorders. Rather, they are found to aggravate 
the cognitive decline [6]. Recently, vortioxetine has surfaced a 
promising drug which act on the serotonergic system via a unique 
mechanism. After being shown to improve cognitive performance in 
various animal models and clinical trials, this drug with a distinct 
pharmacological profile was approved for use in the European Union 
as well as in the United States in 2013 for the treatment of MDD in 
adult patients (dose 5 to 20 mg/day). The recommended starting 
dose was 10 mg/day for patients more than 65 y and 5 mg/day for 
patients aged more than 65 y. The European Medicines Agency 
[EMA] updated its data on vortioxetine's clinical efficacy in 2015, 
stating that its efficacy cognitive improvement and global 
functioning and the drug was later approved by Food and Drug 
Administration [FDA] for the management of cognitive dysfunction 
in MDD. Vortioxetine has been found to produce significant 
improvement in symptoms of depression as well as cognition from a 
large number of clinical trials [7-10]. 

According to studies, vortioxetine has a linear pharmacokinetic 
profile [11]. When administered by oral route, approximate 
bioavailability is 75%, independent of food consumption. It has a 
high binding rate to plasma proteins [98%] and this will not vary 
between normal people or who have renal or hepatic impairment. Its 
plasma concentration spikes after 7 to 11 h of oral ingestion, and 

plasma half-life was obtained to be 57 to 66 h. It has an observable 
distribution volume of approximately 2,600 L, implying that it is a 
lipophilic substance with widespread distribution in the 
extravascular compartment. The pharmacological profile of 
vortioxetine is attributed to the unmodified molecule. The liver is 
where the majority of the drug is metabolised. Several cytochrome 
p450 isozymes like CYP2D6, CYP3A4/5, CYP2C19, CYP2C9, CYP2A6, 
CYP2C8, and CYP2B6 are involved in its metabolism. The primary 
enzyme that catalyzes the conversion the drug into its metabolite 
which is inactive is CYP2D6. Hvenegaard et al. discovered that 
Vortioxetine levels were twice as high in slow CYP2D6 metabolizers 
as they were in fast metabolizers [12]. 

However no major developments have emerged since the approval 
of vortioxetine for the management of cognitive impairment in MDD. 
The blood-brain barrier [BBB] complicates permeation to target 
sites in brain cells significantly. To overcome the BBB, it has been 
proposed to use the nanocarrier systems. Polymeric nanoparticles, 
solid lipid nanoparticles [SLN], nanostructured lipid carriers [NLC], 
nanoemulsions, nanogels, carbon nanotubes, and liquid crystalline 
nanoparticles with neuroprotective properties are currently being 
studied as forms of nanotherapy for neuropsychiatric disorders [13]. 

In this update, we will present recent developments in the promising 
areas of nanotherapy in the field of cognitive dysfunction in patients 
with MDD. We will discuss in detail about [i] the physiology of drug 
transport across BBB [ii] Current evidences on nano drugs for 
cognitive dysfunction in MDD, [iii] future prospects of nano drugs for 
management of cognitive dysfunction in MDD. 

The physiology of drug transport across the blood brain barrier  

In spite of major advances in recognising the molecular and cellular 
mechanisms of neuropsychiatric illnesses and the advancement of 
therapeutic approaches, effective drug delivery to the central 
nervous system continues to be a significant challenge today. The 
BBB is the most significant impediment to drug transport to the 
brain. The BBB is responsible for transporting nutrients and oxygen 
from the blood to the brain as well as protecting the CNS from toxic 
chemicals. Vascular endothelium, glial cell, perivascular 
macrophages, and pericytes make up the BBB. Tight junctions 
between endothelial cells, which form the proteins occludins, 
claudins, and adhesion molecules, which s formr edcause the BBB's 
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impermeability to many molecules [14]. Controlled BBB 
permeability is provided by endothelial cell tight junctions, a 
specialised extracellular matrix, and a basement membrane 
composed of collagen IV type, laminin, fibronectin, tenascin, and 
proteoglycans [15-17]. 

Passive or transcellular diffusion, facilitated diffusion, and active 
transport are the most studied substance transport pathways 
through the BBB. Active and passive diffusion transport substances 
across cells. There are three types of active molecule transport 
systems in the BBB: receptor-mediated transport, which transports 
macromolecules; carrier proteins, which transfer sugars, amino 
acids, organic anions as well as cations, neurotransmitters, and 
metabolites; and active transport by peptides of the adenosine 
triphosphate binding cassette family. P-glycoprotein and other 
adenosine triphosphate binding cassette proteins render the BBB 
impermeable to pharmaceuticals [18]. 

The current challenge is indeed the development of substances that will 
cross the BBB to treat CNS disorders. The drug's levels must accrue in 
the appropriate body region and remain stable for a prolonged time 
period if the drug should have an appropriate therapeutic effect [19]. To 
reduce side effects, the drug concentration in other organs and tissues 
must be kept as low as possible. The presence of BBB significantly 
hinders transfer of drugs into the CNS. The presence of BBB necessitates 
the development of newer therapeutic strategies for the treatment of 
central nervous system disorders. 

To overcome this problem several strategies have been devised by 
researchers, such as disruption of the integrity of the tight contacts 
by osmotic disruption as shown by Kavineni et al. using intraarterial 
infusion of hyperosmolar mannitol [20] or chemical disruption [21, 
22], vasoactive drugs like TNF-α [23, 24], IFN-γ [25], directed 

ultrasound [26], direct injection into brain tissue by intrathecal [27] 
or intraventricular route [28, 29], intranasal delivery [30], 
administration of biodegradable substances [31], nanoparticle 
delivery [32], delivery via interstitial wafers [33] and microchips 
[19, 34]. 

Among the most effective techniques for overcoming BBB is the use 
of carriers for drug loading that, due to their small size, have the 
ability to cross the BBB. This has the ability to increase 
bioavailability while decreasing side effects. The nanoparticles [NP] 
are transported across the blood brain barrier via several 
mechanisms, the most important of which is transient opening of the 
BBB caused by nanoparticle induced effects such as stimulus from 
the bioactive component on the nanoparticle surface or due to nano-
effects or nano-toxicity. Other mechanisms are the surface of 
capillary endothelium will facilitate adsorption of nanocarrier 
conjugates which will cause release of drug from the carrier, which 
further leads to increase in concentration gradient of the drug and 
diffusion into the brain. The nanocarriers may also directly 
penetrate the brain tissue by transcytosis, endocytosis and 
exocytosis [35-37]. 

The NPs ability to penetrate the BBB has paved the way to the 
development of a spectrum of nanoparticles like polymeric NPs 
which are based on natural or synthetic polymers like alginate, 
chitosan, gelatin, cellulose, polyacrylate, polycaprolactone [PCL], 
polylactic acid [PLA], polyethylenimine [PEI], Polyethylene glycol 
[PEG], nanocapsules or dendrimers etc; lipid based NPs like 
liposomes, nanoemulsions; inorganic NPs like mesoporous silica 
NPs, gold NPs, carbon nanotubules, and iron oxide NPs, quantam 
dots and new class based on nucleolipid nanoparticles. A schematic 
illustration of different classes of nanoparticles according to their 
chemical composition has been depicted in fig. 1. 

 

 

Fig. 1: Schematic illustration of different classes of nanoparticles according to their chemical composition [Created with BioRender.com] 
 

Current evidences on Nano drugs for  cognitive dysfunction in MDD 

In spite of variety of drugs for the management of symptoms of 
depression, the cognitive functions are not adequately addressed by 
any of these antidepressant drugs. The response to treatment is 
determined by the drug concentration in the CNS. Cognitive 
dysfunction in depression can be produced as a result of the disease 
itself or due to the medication effects [1]. 

Currently there are no FDA approved nanodrug with targeted 
delivery to the brain, but there are promising results from several 
studies which indicate the potential of this delivery system in the 
immediate future. In the section below, we shall review about the 
various nanoforms of the classical drugs of depression and their 
application in cognitive dysfunction. 

(i) Monoamine oxidase-A [MAO-A] inhibitors 

Tranylcypromine was loaded into polymeric micellar in-situ nasal gel 
and sucessfullly formulated enabled direct delivery to brain by Shilpa 
et al. [38]. Our literature search found that Singh et al. in 2016 had 
studied the use of thiolated chitosan nanoparticles for enhancing 

transnasal delivery of MA0-B inhibitors like Selegiline with promising 
results in rats and had proposed the probable use of thiolated chitosan 
nanoparticles for delivery to brain via nasal route for antidepressant 
effects [39]. Intranasal delivery transported via olfactory or trigeminal 
route had emerged as a recent trend in the non-invasive delivery of 
drugs targeting the brain with a wide spectrum of applications in 
several disorders including neuropsychiatric disorders [40-42].  

(ii) Tricyclic antidepressants [TCAs] 

Amitriptyline, doxepin and imipramine, which are among the most 
frequently used TCAs, encapsulated with poly [lactic-co-glycolic] 
acid [PLGA] as polymer was investigated for analgesic and 
antiallodynic effect and resulted in long lasting and better effects. 
This holds for further research in its utility in neuropsychairic 
disorders, particularly depression [43]. 

(iii) Selective serotonin reuptake inhibitors [SSRIs] 

Several SSRIs have been investigated nanoformualtions like paroxetine, 
fluoxetine, escitalopram [44-47]. Among these fluoxetine was 
investigated as an in-situ gelling system for nose to brain delivery with 
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increased release, mucoadhesive strength and might result in enhanced 
patient compliance [48]. Paroxetine delivered intranasally as a 
nanoemulsion via olfactory region remarkably improved behavioural 
activities comapared to paroxetine suspension. It was also found that the 
nanoformulation significantly enhanced depressed levels of glutathione 
and decreased elevated levels of TBARS (Thiobarbituric acid reactive 
substances) [49]. All of these with promising results need further 
investigations [50, 51]. Among all the antidepressant drugs SSRIs have 
been the most interesting drug candidates for the researchers. However 
our literature survey couldn’t find any of the above studies considering 
cognitive improvement as an endpoint.  

(iv) Serotonin Nor epinephrine Reuptake Inhibitors [SNRIs] 

Venlafaxine hydrochloride was formulated as a thermogelling 
polymer as an insitu mucoadhesive thermoreversible gel resulted in 
more effective behavioural improvements [52] Venlafaxine 
formulated as chitosan spray dried microparticles for controlled 
delivery has also promising results [53]. Desvenlafaxine has also 
been evaluated in nanoformulations with remarkable results [54]. 

(v) Serotonin Antagonist and Reuptake Inhibitors [SARIs] 

This class of drugs include trazadone and nefazodone. Trazadone 
loaded into nanoform showed enhanced delivery of the drug 
compared to pure substance [55, 56]. 

(vi) Others 

Other drugs like Agomelatine which has antidepressant property 
due to its blockade of 5HT2C receptors has shown increased 
therapeutic effect when loaded into nanoform and administered 
intranasally by loading of agomelatine loaded with poly-lactic-co-
glycolic acid nanoparticles [57]. Ahmad et al. and shinde et al. has 
shown better permeability and enhanced brain delivery of 
Agomelatine NPs [58, 59]. 

Future prospects for nano drugs for cognitive dysfunction in 
depression 

Vortioxetine is an effective antidepressant with multimodal 
mechanisms like inhibition of serotonin reuptake and activating 
receptors. In a clinical trial in adult patients aged between 18 to 65 y 
with recurrent MDD and a current depressive episode, evaluation of 
vortioxetine in a dose of 10 or 20 mg/day was found efficacious than 
the placebo [60]. This drug with proven efficacy in cognitive 
dysfunction in depression if formulated into nanoform can ensure 
better penetration, sustained action and patient compliance.  

Duloxetine is another drug which has been studied as an 
antidepressant with pro-cognitive effects in MDD in subpopulations 
ranging from young patients to middle-aged. Duloxetine, produced 
remarkable enhancement of cognition, especially, speed of 
psychomotor functions, in an open-label trial of 12 w duration [61]. 

Long term SSRI treatment has also been found to reduce mild 
cognitive impairment to Alzheimer dementia in patients with MDD 
[62]. Mathews et al., in their systematic review and meta-analysis 
found that SSRIs/SNRIs give promising results on memory than 
tricyclic antidepressants [TCAs], but had almost same result on 
working memory as Norepinephrine-Dopamine Reuptake Inhibitors 
[NDRIs]. Sertraline, when compared to fluoxetine, was found to have 
more positive effect on psychomotor speed within the SSRI class [63]. 

Ketamine has been found to exert a fast-acting antidepressant action 
in MDD subpopulations that fail to respond to treatment with 
conventional antidepressants. Ketamine has been suggested to 
improve neurocognitive symptoms in Treatment Resistant 
Depression [TRD], hence it could be used effectively as an 
antidepressant in sub-anaesthetic doses. However, there were 
concerns that ketamine might impair recall for previously learned 
information, but evidence in control participants has shown that 
ketamine does not affect recall for previously learned material and 
ketamine treatment has not been associated with impairments in 
executive function [64, 65].  

EPO [erythropoietin] is a glycoprotein secreted by the kidneys that 
stimulates the production of red blood cells in the bone marrow. 

EPO has established vital roles in the central nervous system like 
neurodevelopment, adult neurogenesis, and neuroprotection. Its 
role in haemopoiesis has already been very well established. 
Hippocampal EPO has been shown to improve cognitive 
performance in a variety of disease models by exerting 
neuroprotective and neurotrophic effects [66, 67]. 

From the above it is evident that different nanocontainer 
formulations are under development for the treatment of 
depression. To summarise nanoformulations have a high potential 
for use in the treatment of depression because they provide a 
platform with very good penetration potential, targeted 
transmission, and enhanced safety and efficacy. Simultaneously all 
these formulations should be evaluated for cognitive improvement 
as well, which then can provide flourishing opportunities in the 
research activities in this domain. Nanotechnology has emerged as a 
promising approach for delivery of drugs for neuropsyachiatric 
disorders. However our search couldn’t find the exploration of the 
above antidepressant drugs for cognitive improvement as a core 
research objetive. It is imperative that animal studies investigating 
the effectives of nanoforms of antidepressants should have cognitive 
changes as one of the secondary endpoint. However several other 
neuroprotective drugs have been evaluated in nanoformulations like 
curcumin, edaravone and nerve growth factors in 
neurodegenerative diseases like stroke, epilepsy, parkinsonism, 
alzheimers disease and brain tumors [52]. Most of these molecules 
have been successfully nanostructured for therapeutic applications 
[68]. Gold nanoparticles were shown to protect cognitive 
impairments, oxidative damage, and inflammation in a rat model of 
Alzheimer's disease sporadic dementia. [69]. Similarly cholesterol 
loaded nanoparticles was shown to improve synaptic and cognitive 
function in mice model of Huntington’s disease after intraperitoneal 
injection suggesting the potential of this new route of drug 
administration to cross the BBB [70]. 

In another study by Abd-Allah et al. for management of insulin 
resistance induced cognitive defects, ascorbic acid and nicotinamide 
chitosan nanoparticles were found to have superior therapeutic 
effects compared to the conventional delivery forms [71]. Likewise 
there are several studies exploring the cognitive dysfunction in 
neurodegenerative conditions but there is a paucity of researches 
and evidences with regard to cognitive dysfunction in depression. 
We researchers should use the potential of nanotechnology in 
formulating new antidepressant drugs which will benefit the patient 
community. 

Intra-nasal insulin was investigated as a pro-cognitive drug for the 
management of mood and mental disorders. Intranasal insulin therapy, 
for example, has been shown to improve cognition in both bipolar 
disorder and Alzheimer dementia. The presence of MDD has been linked 
to insulin availability and insulin receptor sensitivity [72-74]. 

Several vitamins like Vitamin-B [75], Vitamin D [76] and other 
multivitamins [77] and fatty acids like n-3 PUFA [78] have also been 
evaluated in the management of cognitive dysfunction and all these 
holds tremendous potential in nanoforms.  

CONCLUSION 

Cognitive dysfunction is one of the main pathological feature of MDD 
which is often underappreciated and not properly evaluated in the 
disorder's diagnosis and management. It is a key factor mediating 
the outcome of the patient with respect to psychosocial and 
functional domains, with implications for productivity at work. The 
evaluation of subjective and objective cognition metrics is inevitable 
and critical for better outcomes in patients with MDD. Conventional 
methods to managing cognitive dysfunction in MDD are grossly 
inadequate, with poor response rates to both first-and second-line 
antidepressant medications. The pharmacological treatment options 
primarily focus on the restoration of MDD mood symptoms, but 
research shows that remitted patients also have clinically significant 
cognitive impairments that negatively impact the patient's function 
and quality of life. 

This situation has led to the emergence of new formulations that 
have enhanced delivery and sustained action for exerting 



J. James et al. 
Int J App Pharm, Thematic Special Issue 2022, 28-33 

Thematic Special Issue: Modern Drug Discovery – Current Challenges & Future Perspectives 2022         | 31 

precognitive effects. Nanotechnology based formulations and 
nanocarriers holds tremendous potential in this regard. But we need 
to move further from preclinical studies for systemic use of these 
formulations. Several studies have demonstrated astounding results 
as discussed above as well as several other drug candidates are 
there which have not yet been tried in nano forms. Hence in future, 
we should focus more on development of such formulations. 
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