

ISSN- 0975-7058

Thematic Special Issue 2022

Original Article

A COMPARATIVE PHYSICO CHEMICAL ANALYSIS OF AMRTOTTARA KVATHA AND IT'S PRAVAHI KVATHA

SREELAKSHMI S.*, ARUN MOHANAN, VINEETH P. K.

¹Department of Rasashastra and Bhaishajya Kalpana (Pharmaceuticals), Amrita School of Ayurveda, Amrita Viswa Vidyapeetham, Amritapuri, Kollam, India *Email: lakshmi.chaand@gmail.com

Received: 15 Apr 2021, Revised and Accepted: 30 May 2022

ABSTRACT

Objective: Herbal decoctions are commonly used pharmaceutical dosage form in Ayurveda. The major drawback of decction is short shelf life. To increase the shelf-life preservatives are used. The effectiveness of decoctions added with preservative is not evaluated yet. *Pravāhi kvātha* is fermented decoctions prepared to increase the shelf life as well as the palatability of decoctions. In the present study, an attempt has been made compare the efficacy of freshly prepared herbal decoction, decoction added with preservative and fermented decoction.

Methods: To compare the efficacy, the three samples were subjected to analytical study through organoleptic, physicochemical and other advanced chromatographic and instrumental analysis. For scientifically validating the effectiveness the samples were analysed for Physico chemical parameters, HPTLC, Gallic acid estimation, HR LC-MS and DPPH assay.

Results: After the physico chemical analysis it was found that the parameters of three samples was within permissible limit. The anti-oxidant potential of three samples were proved by the DPPH free radical scavenging activity. The I50 value of three samples shows only less variation and all the sample possess good anti-oxidant potential. Phyto chemical evaluation of the three samples were compared wit HPTLC, Gallic acid estimation and HR LCMS analysis.

Conclusion: The study shows that the modification of *Kaṣāya* to *Pravāhi Kvātha* will not affect its therapeutic efficacy rather it adds more therapeutic value due to the presence of newly synthesized compounds. Addition of Sodium benzoate preservative doesn't alter the therapeutic efficacy of *Amrtottara Kaṣāya* and it won't produce any toxic chemicals by the interaction with drugs.

Keywords: Decoction, Ayurveda, Amrtottara Kaşaya, Pravahi Kvatha, Kaşaya Kalpana, Preservative, Sodium benzoate

© 2022 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/) DOI: https://dx.doi.org/10.22159/ijap.2022.v14ti.29 Journal homepage: https://innovareacademics.in/journals/index.php/ijap

INTRODUCTION

Kasaya kalpana is the formulation prepared by extracting the active principles of herbal drugs which is also termed as decoction. It is the most significant and widely used dosage form in Ayurvedic pharmaceutics [1]. It has some drawbacks such as very short shelf-life, un pleasant taste and require high dose. For the large-scale production short shelf life is the major drawback. Moreover, in today's chaotic life style, people find it difficult to prepare and administer decoctions daily. To overcome this large pharmaceutical companies are making the *Kasāya* in concentrated form and adding preservatives to increase the shelf life [2].

Also, other modified forms of *Kasāya* like *Kasāya* tablets, Syrup and other flavoured medicaments has led to decline in the use of classically prepared decoctions. The effectiveness and therapeutic potency of these modified dosage forms are not studied properly [3].

Pravāhi kvātha is fermented decoctions which are prepared and practiced as Kāda. In classical texts, direct references are not available regarding this formulation but Ayurveda Sara Sangraha mentioned it as *"Pravahi Kvatha"*, which is prepared by fermentation process [4]. It is prepared by fermenting the *Kasāya* by adding sweetening and fermenting agent to increase the shelf life [5]. In the present study, an attempt has been made to lay the Standard Manufacturing Procedure for preparation of this formulation as well as analytically compare it with decoction prepared from same source.

Here, Amrtottara Kaṣāya yoga has been selected for the preparation of decoction and *Pravāhi Kvātha. Amrtottara Kaṣāya* is commonly used formulation for treating fever and other inflammatory conditions. It contains only three ingredients namely *Tinospora cordifolia (Guduci), Emblica officinalis (Haritaki),* and *Zingiber officinale (Sunthi).*

Sodium benzoate is the commonly used preservative for Ayurvedic medicine. *Amŗtottara Kaṣāya* added with Sodium benzoate is also subjected for the study to evaluate the efficacy and to check whether

the reaction of ingredients with preservative leads to the formation of any toxic chemicals.

So, to compare the efficacy the three samples are subjected to analytical study through organoleptic, physicochemical and other advanced chromatographic and instrumental analysis.

MATERIALS AND METHODS

Collection of raw material and its authentication

Raw drugs for the preparation were procured from Amrita life, Amrita enterprises Pvt Ltd (GMP certified). All the raw drugs were authenticated and identified by Department of Dravyaguna, Amrita School of Ayurveda. Sodium benzoate (food grade) was procured from Laboratory supplies, Trivandrum.

Pharmaceutical study

Three samples of kvātha were prepared as per the classical reference. It includes:-

Sample 1-Amrtottara Kaşāya freshly prepared

Sample 2-Amrtottara Kaşaya added with Sodium benzoate

Sample 3-Amrtottara Pravahi kvatha

Method of preparation of Amrtottara Kaşāya (fresh decoction)

Table 1: Proportion of ingredients

S. No.	Drugs	As per AFI	Quantity taken
1	Gudūchi	6 parts	90g
2	Harītaki	4 parts	60g
3	Sunthi	2 parts	30g
4	Water	16 parts	28.8L

Procedure

Properly cleaned ingredients such as *Tinospora cordifolia, Emblica officinalis,* and *Zingiber officinale* had been taken and made into small pieces. Water taken in a large vessel and the ingredients added into it (fig. 1). The proportion of ingredients mentioned in table 1.

Fig. 1: Preparation of decoction

Fig. 2: Filtering of decoction

Fig. 3: Final product

Vessel was kept on *mandāgni* on stove and reduced to $1/8^{\text{th}}$. The process of heating was continued for 8 h. When *Kasāya* was around 3.6 litres, vessel was taken out from the fire and filtered through a clean and dry cotton cloth (fig. 2). After cooling, it was stored in a clean container (fig. 3).

Method of preparation of Amrtottara Kaşāya with preservative

Quantity of Sodium benzoate: 2g/l

2 litres of Kasaya were taken in a clean container and Sodium benzoate was added in the ratio 2g per litre. The mixture was stirred well till the Sodium benzoate was completely dissolved.

Table 2: Proportion of ingredients

Ingredients	Quantity
Kasāya	2 Litre
Guda	800g
Dhātaki pushpa	200g

2 L of *Kasāya* was taken and *gaggery* was added into it. The proportion of gaggery and woodfordi fruticose mentioned in table 2. Gaggery should dissolve in *Kasāya* (fig. 4). Again, this solution was filtered to remove physical impurities.

One clean and dried ceramic jar was taken. *Dhūpana* (fumigation) was done with *Sarjarasa, Jatāmāmsi, Guggulu* and *Karpūra*. After *dhūpana* ghee was smeared on the inner surface of ceramic jar.

Fig. 4: Dissolving gaggery in decoction

Fig. 5: Sealing of mud jar for fermentation

Then the mixture of *Kaṣāya* and *Guda* was poured into the jar. The temperature of the mixture was 29 °C. *Dhatāki pushpa* was added into it. The jar was closed and *sandhibandhana* (sealing) was done with mud smeared cloth (fig. 5).

After drying of *sandhibandhana* jar was kept for *sandhāna* (fermentation) in a clean and dry place. The room temperature was 30 °C. The jar was covered with thick sack to maintain optimum temperature for fermentation. After 30 d jar was opened and assessment of *Sandhānasidhhi lakshana* (fermentation tests) was done [9].

Analytical study

The analytical parameters include Organoleptic characters, Total soluble solids, pH, Specific gravity, Total sugar, Acid value, Alcohol percentage were studied.

The major analytical techniques include DPPH Assay using Uv-Visible Spectrometer, HPTLC, Estimation of Gallic Acid using HPTLC and HR-LCMS (High Resolution Liquid Chromatography Mass Spectrometer) were also done on three samples of *Kvātha*.

RESULTS AND DISCUSSION

Table 2: O	rannolontic	characters	of the cam	nloc
Table 5: U	rganoiepuc	characters	of the san	ipies

Parameters	AMT Kaṣāya	Kaṣāya with preservative	AMT Pravāhi kvātha
Colour	Dark brown	Dark brown	Brownish black
Odour	Characteristic	Characteristic	Characteristic
State	Liquid	Liquid	Liquid
Taste	Bitter	Bitter	Bitter with slight sweet taste

Parameters	AMT Kaṣāya	Kaṣāya with preservative	AMT Pravāhi kvātha
Brix	11	12	26
Specific gravity	1.44	1.46	1.08
рН	4.29 at 29 °C	4.2 at 29 °C	3.76 at 29 °C
Alcohol content	NA	NA	9%
Acid value	NA	NA	8 mg/g
Total sugar	NA	NA	10%

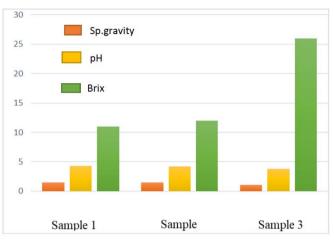


Fig. 6: Physico chemical characters of three samples

The characteristic colour of Kasāva is due to the extraction of active components from the drugs. Agnivesa has mentioned the siddha lakshana of Kaşāya as "Gatarasheshu Aushadheshu" means the active principle of the drugs should completely extracted into the water [7]. The organoleptic and physico chemical characters shown in table. 3, table 4 and the comparison shown in (fig. 6). Due to the continuous heating the water-soluble principles from the herbs are extracted to the water and makes it dark in colour. The Kasāva started boiling between 90-100 °C. Eight hours required for the preparation and the average temperature was maintained between 95-110 °C. The characteristic smell of Kasāya is depending on the ingredient drugs [8]. Here the Sunti is aromatic drug so it imparts odour to the Kşāya . The characteristic taste of Kaşāya is Kaşāya rasa along with the rasa of ingredient drugs. Here the major ingredient is Guduci which makes the Kaşāya more Tiktha. The Pravāhi kvātha was prepared following the classical reference and the onset and completion of fermentation were confirmed by classical parameters6. Pravāhi kvātha is having alcoholic odour and taste along with slight sweet taste of Guda. The characteristic taste of fermented products is due to the presence of flavoring compounds such as carbonyl, ketones and alcohols. TDS of Kaşāya helps to know the complete extraction of water-soluble principles of ingredients drugs into Kasāva [6]. The Brix value of Kasāva was within the standard limit. When Sodium benzoate was added Brix was slightly increased. Prakrā kvātha showed more Brix as it contains sugar content from guda. Specific gravity indicates the presence of solute in solvents. In case of Amrtottara Kaşāya the solvent is water and the solutes refer to the extracted active principles from the drug. The specific gravity of Kasāya was with in standard limit. The specific gravity slightly increased after the addition of Sodium benzoate. The Specific gravity of Pravāhi kvātha is less compared to other samples. During fermentation, with the conversion of solute and carbohydrate into alcohol, a slight fall in specific gravity occurs. Kaṣāya has acidic pH. When it was converted into Pravāhi kvātha pH value decreased due to the formation of selfgenerated alcohol. Acid value, total sugar and alcohol content of Pravāhi kvātha was found to be with in standard limit.

HPTLC-high performance thin layer chromatography

HPTLC analysis was done using CAMAG Automatic TLC Sampler 4 (ATS4) "ATS4_170206" S/N 170206 (1.02.13) instrument. The

HPTLC analysis of fractions of all the three samples were done using the mobile phase Chloroform: Ethyl acetate: Formic acid (5:4:1) solvent system in Camag Twin trough chamber. Visualization was made at 254 and 366 nm.

The High-end chromatographic technique was used to evaluate the active components of the three samples. *Amṛtottara Kaṣāya* was prepared with three ingredients ie *Guduci, Haritaki* and *Sunthi*, and the formulation contains the phytochemicals from these medicinal plants. In addition to these the second sample contain sodium benzoate.

The HPTLC chromatogram of *Amrtottara Kaṣāya* showed 7 peaks of unknown compounds and the *Kaṣāya* with sodium benzoate showed 8 peaks of compounds. The additional compounds might be the derivatives of sodium benzoate. Four similar bands were identified in both the samples. Peaks at Rf 0.07, 0.47, 0.66, 0.72 are common in both samples. Peaks at Rf 0.23 was identified only in second sample. The third sample is *Pravāhi Kvātha*, the fermented sample prepared by adding jaggery and *Woodfordia fruticose (Dhathaki pushpa)*. Hence the sample showed a greater number of compounds. Total 9 peaks were identified and the peaks at Rf 0.07, 0.47, 0.66 was common in the three samples and peaks at Rf 0.14, 0.73, 0.77, 0.86 was identified only in third sample (fig. 7) table 5. The peaks with similar Rf value might be the similar compounds. it can be confirmed only with higher instrumental analysis like LCMS.

Estimation of gallic acid

Gallic acid estimation was done using CAMAG Linomat HPTLC machine. The plate (HPTLC plates silica gel 60 F 254) was developed in Camag Twin through chamber using Chloroform: Ethyl acetate: Formic acid (5:4:1) solvent system in Camag Twin trough chamber was made at 254 and 366 nm.

Table 5: Evaluation sequence of HPTLC

Track	Sample
1	Amŗtottara Kaṣāya
2	Amrtottara Kaşāya with preservative
3	Amŗtottara Pravāhi Kvātha

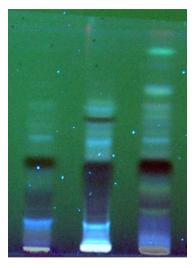


Fig. 7: HPTLC chromatogram

Gallic acid was identified in the three samples by HPTLC analysis. Gallic acid is one of the major compounds in *Amṛtottara Kaṣāya* [10]. Gallic acid (3,4,5-trihydroxybenzoic acid) possesses important medicinal properties. It blocks histamine release and proinflammatory cytokine production in mast cells. Gallic acid has antiinflammatory and anti-pyretic properties. It acts as an antioxidant and helps to protect cells against oxidative damage, cytotoxicity against cancer cells without harming healthy cells. The analysis shows that the addition of preservative or fermentation process doesn't affect the gallic acid content in the formulation.

DPPH assay using uv-visible spectrometer

The DPPH assay was used for determining the antioxidant capacity of samples by analysing the free radical scavenging activity on DPPH radical. The lower the IC 50 value (the concentration of antioxidant using 50% DPPH scavenging) more will be the antioxidant activity. It was analysed using the instrument UV-Visible spectrophotometer-Varian 50 Bio and 1,1 Diphenyl-2-picryl hydrazyl (DPPH) and Methanol as reagents.

The IC50 Value of *Amṛtottara Kaṣāya* is 25.15 mg/kg and *Kaṣāya* added with preservative is found to be 20.08 mg/kg, whereas the IC 50 value of *Amrtottaram Pravāhi Kvātha* is 26.49 mg/kg. The results shows that all the samples possess good anti-oxidant potential. Only slight variation in IC50 value noted.

HR-LCMS (High resolution liquid chromatography mass spectrometer)

HR-LCMS was done using Q-Exactive plus Biopharma-High Resolution Orbitrap. The analysis was performed using ESI in negative mode. Mobile phase was optimized as methanol (A) and 0.1 % acetic acid in water in a ratio of 60:40 with a flow rate of 0.9 ml/minute [11]. The analysis showed list of compounds identified in each sample.

The properties of each compound identified by literature search. By comparing the compounds identified in each sample the result obtained as follows: -

Total number of compounds in each sample: -

AMT Kaşāya-38

Kaṣāya with preservative-39

Pravāhi Kvātha-44

✓ 26 compounds found common in 3 samples.

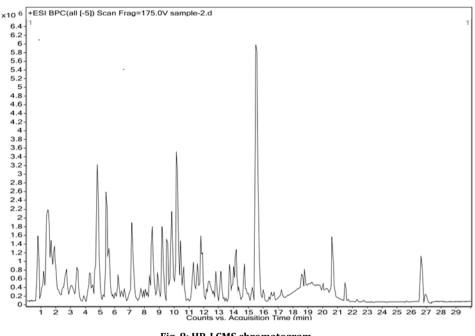
✓ 12 compounds common in AMT Kaşāya and AMT with preservative and absent in *Pravāhi Kvātha*

✓ 18 new compounds identified in *Pravāhi Kvātha* sample absent in other samples.

✓ 1 new compound identified in *Kaṣāya* with preservative absent in other samples.

Table 6: Compounds identified in each sar	mple and therapeutic action
---	-----------------------------

Compounds present in 3 samples		
Compound	Therapeutic action	
Chebulic acid [12]	Anti-inflammatory, anti-oxidant, anti-pyretic	
Catechin [13]	Anti-inflammatory, anti-oxidant, anti-pyretic	
Gallic acid [14]	Anti-inflammatory, anti-oxidant, anti-pyretic	
Shikimic acid [15]	Anti-inflammatory, anti-oxidant, anti-pyretic	
Mallic acid [16]	Anti-inflammatory, anti-oxidant, anti-pyretic	
Cyclic di-gmp [17]	Anti-microbial	
Amritoside [18]	Anti-inflammatory	
Aminoglutathimide [19]	Analgesic	
Trenbolone [20]	Steroids	
Compounds present in sample 1 and 2 ab	sent in sample 3	
Cirsimaritin [21]	Flavonoid	
Polyporusterone [22]	Triterpene carboxylic acid	
Compounds present only in sample 3		
Ketotifen [23]	Anti-histamine, anti-inflammatory	
Nifedipine [24]	Calcium channel blocker medication used to manage angina, high blood pressure etc	
Luvangetin [25]	Anti-inflammatory	


Compounds are highly polar resulting in aqueous extraction during the *Kaşāya* preparation 15 compounds from the raw materials are found to be still retained as such in the *Kaşāya* sample 11 number of new compounds are being chemically synthesized⁹ during the *Kaşāya* preparation process due to the synergistic interaction between drugs. The newly developed compounds have medicinal properties. The preservative containing sample showed the presence of Benzoic acid due to the reaction of Sodium benzoate with some of the phenols present in the *Kaṣāya* sample.

All the newly formed compounds are retained in preservative containing Sample. It suggests no appreciable variation in

medicinal efficacy of the preservative containing sample. The *Pravāhi Kvātha* sample retained 18 compounds from *Kaṣāya* and some new compounds synthesized during the fermentation process. Among the new compounds, two compounds were derived from *Woodfordia fruticosa*. Some compounds present in *Kaṣāya* not retained after fermentation due to the effect of enzymatic decomposition. Most of these compounds have no relevance in therapeutic action [26]. Structurally they are identified as ester, N-H and COOH groups containing compounds. Most of the compounds identified in three samples possesses anti-inflammatory, anti-pyretic and anti-oxidant potential validates the

therapeutic potency of *Amrtottara Kaşāya* and its *Pravāhi Kvātha*. In addition to that, the compounds identified only in *Pravāhi*

Kvātha possess anti-hypertensive, Analgesic and anti-histamine properties table 6 (fig. 8).

CONCLUSION

By combining the results of HPTLC and HR LCMS it can be assumed that by modifying *Kaşāya* to *Pravāhi Kvātha* the compounds capable of therapeutic action are retained. Sodium benzoate preservative doesn't produce any toxic chemicals by the interaction with drugs. So, it can be assumed that within the normal limit it won't produce any harmful effect. The study shows that the modification of *Kaşāya* to *Pravāhi Kvātha* will not affect its therapeutic efficacy rather it adds more therapeutic value due to the presence of newly synthesized compounds. Since this preparation has good palatability and nutritional value it can be used in pediatric cases, due to the presence *tīkshanadi gunas* rendered by *Sandhāna* it can stimulate the activity of digestive enzyme, the self-generated alcohol present in it acts as preservative which increase the shelf life. Hence, *Amṛtottara Pravāhi Kvātha* can be given as an alternative to *Amṛtottara Kaṣāya*.

FUNDING

Nil

AUTHORS CONTRIBUTIONS

All the authors have contributed equally.

CONFLICTS OF INTERESTS

The authors do not have any conflicts of interest.

REFERENCES

- Deepthi CP, Basavaraj G, Sreekanth G, Rohit KS, Anu PK. Modifications of Pancha Vidha kashaya Kalpana. Unique J Ayurvedic Herb Med. 2015;3(5):60-3.
- 2. Pandit Parusurama Shastri, Sarangadhara Samhita with commentaries Dipika of Adhamalla, Gudartha Dipika of Kairama. New Delhi, Chaukhambha Publication. reprint ed;, Madhyama khanda, chapter 2; 2013. p. 102-9.
- 3. Namdev SR, Rakesh SR. Critical study of pharmaco-clinical basis of panchvidha kashaya Kalpana selection. International Ayurvedic Medical. 2016;4(8):2488-92.
- 4. Randive DS, Sayyad SF, Bhinge SD, Bhutkar MA. Preparation of Arjunarista using microbes isolated from Woodfordia fruticosa

Flowers (Dhayati). Anc Sci Life. 2016;36(1):42-7. doi: 10.4103/0257-7941.195405, PMID 28182028.

- 5. Baidyanath Ayurved Sara Samgraha Baidyanath Priv Limited,edition; 2005. p. 718-25.
- The Ayurvedic Formulary of India. 2nd ed. New Delhi: National Institute of Science Communication and Information Resources; 2003. p. 53.
- Trikamji A Yadavji, Samhita C. With ayurveda dipika commentary, Varanasi. Chaukhamba Prakaśan Ed; 2013.
- Acharya S. Sharngadhara S with the commentaries of Adhamall's Dipika and Kashirama's Gudhartha Dipika, Chaukhambha Orientalia; Varanasi edition; 2000. p. 522-31.
- Stanbury PF, Whitker A, Hall SJ. Principles of fermentation technology. 2nd ed. New Delhi: Aditya books; 1997. p. 192-209.
- Prashant S Bhokardankar, Balasubramani, Manjiri Prashant Bhokardankar. Estimation of gallic acid in different commercial samples of amruttotharam kasayam by using HPLC. PBJ 2018;6(3):41-5. doi: 10.20510/ukjpb/6/i3/175590.
- Sulaiman CT, Anju K, Anandan EM, Balachandran I. Synergistic interactions of phytochemicals in polyherbal formulation enhance the chemical transformations of active constituents. J Appl Spectrosc. 2021;88(1):181-6. doi: 10.1007/s10812-021-01156-w.
- Zhao HY, Lan Q, He S, Su BJ, Wang YQ, Liao HB. Chebulic acid derivatives from Balakata baccata and their antineuroinflammatory and antioxidant activities. Bioorg Chem. 2021 Nov;116:105332. doi: 10.1016/j.bioorg.2021.105332. PMID 34509045.
- Musial C, Kuban Jankowska A, Gorska Ponikowska M. Beneficial properties of green tea catechins. Int J Mol Sci. 2020 Mar 4;21(5):1744. doi: 10.3390/ijms21051744, PMID 32143309, PMCID PMC7084675.
- Bai J, Zhang Y, Tang C, Hou Y, Ai X, Chen X. Gallic acid: pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother. 2021 Jan;133:110985. doi: 10.1016/j.biopha.2020.110985. PMID 33212373.
- Stavric B, Stoltz DR. Shikimic acid. Food Cosmet Toxicol. 1976 Apr;14(2):141-5. doi: 10.1016/s0015-6264(76)80259-3, PMID 773799.
- 16. Tanasiewicz M, Hildebrandt T, Obersztyn I. Xerostomia of various etiologies: a review of the literature. Adv Clin Exp Med.

2016 Jan-Feb;25(1):199-206. doi: 10.17219/acem/29375, PMID 26935515.

- Cavagnero KJ, Badrani JH, Naji LH, Amadeo MB, Leng AS, Lacasa LD. Cyclic-di-GMP induces STING-dependent ILC2 to ILC1 shift during innate type 2 lung inflammation. Front Immunol. 2021 Feb 18;12:618807. doi: 10.3389/fimmu.2021.618807, PMID 33679760, PMCID PMC7935536.
- Murugesan S, Kottekad S, Crasta I, Sreevathsan S, Usharani D, Perumal MK. Targeting COVID-19 (SARS-CoV-2) main protease through active phytocompounds of ayurvedic medicinal plants-Emblica officinalis (Amla), Phyllanthus niruri Linn. (Bhumi Amla) and Tinospora cordifolia (Giloy)–A molecular docking and simulation study. Comput Biol Med. 2021;136:104683. doi: 10.1016/j.compbiomed.2021.104683. PMID 34329860.
- Aminoglutethimide. National center for biotechnology information. Lancet. 1981 May 30;1(8231):1194-5. PMID 6112535.
- Yarrow JF, McCoy SC, Borst SE. Tissue selectivity and potential clinical applications of trenbolone (17beta-hydroxyestra-4,9,11-trien-3-one): A potent anabolic steroid with reduced androgenic and estrogenic activity. Steroids. 2010 Jun;75(6):377-89. doi: 10.1016/j.steroids.2010.01.019, PMID 20138077.
- 21. Pathak G, Singh S, Kumari P, Raza W, Hussain Y, Meena A. Cirsimaritin, a lung squamous carcinoma cells (NCIH-520)

proliferation inhibitor. J Biomol Struct Dyn. 2021 Jun;39(9):3312-23. doi: 10.1080/07391102.2020.1763198. PMID 32362196.

- Moreno D, Sobarzo CM, Lustig L, Rodriguez Pena MG, Guazzone VA. Effect of ketotifen fumarate on experimental autoimmune orchitis and torsion of the spermatic cord. Asian J Androl. 2020 Jan-Feb;22(1):112-7. doi: 10.4103/aja.aja_30_19. PMID 31115365, PMCID PMC6958983.
- 23. Radomski L, Brody MJ. Nifedipine. J Iowa Med Soc. 1983 Jul;73(7):278-80. PMID 6350496.
- Tuan Anh HL, Kim DC, Ko W, Ha TM, Nhiem NX, Yen PH. Antiinflammatory coumarins from Paramignya trimera. Pharm Biol. 2017 Dec;55(1):1195-201. doi: 10.1080/13880209. 2017.1296001, PMID 28245363, PMCID PMC6130569.
- Sivakumar S, Mohanasundaram S, Rangarajan N, Sampath V, Velayutham Dass Prakash MV. *In silico* prediction of interactions and molecular dynamics simulation analysis of Mpro of severe acute respiratory syndrome caused by novel coronavirus 2 with the FDA-approved nonprotein antiviral drugs. J Appl Pharm Sci. 2022;12(05):104-19. doi: 10.7324/JAPS.2022.120508.
- Sawarkar G, Sawarkar P. Ayurvedic management of chronic pancreatitis in adolescent girl: A case report. JPRI. 2021;33(33B):58-67. doi: 10.9734/jpri/2021/ v33i33B31797.