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ABSTRACT 

Objective: The loading of drugs into mesoporous silica (MS) is an effective strategy to improve the solubility of poorly water-soluble drugs. 
Previous reports have stated that the surface area and pore volume of MS can affect drug loading and its crystallization in M S. Therefore, this study 
aims to elucidate the effect of MS pore size on the maximum drug loading and its dissolution profile.  

Methods: The ritonavir (RTV) and itraconazole (ITZ) were encapsulated-MS using the solvent evaporation method. The RTV and ITZ loaded-MS 
were characterized using differential scanning calorimetry (DSC) and PXRD measurement.  

Results: The amorphization of RTV loaded-MPS and ITZ loaded-MPS were confirmed as a halo pattern in the powder X-ray diffraction pattern. The 
melting peak and the glass transition of RTV and ITZ were not discovered in MS with the pore size of 80 Å (weight ratio of 3:7), while in the RTV and 
ITZ loaded-MS with the pore size of 45 Å, the melting peak and the glass transition were observed. This indicated that the loading amount of RTV 
and ITZ with larger pore sizes is higher than the lower sizes.  

Conclusion: This study demonstrated that the pore size of MS has a significant effect on the loading amount of drugs in MS. 
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The aqueous solubility of active pharmaceutical ingredients (API) 
remains the major challenge in the development of oral dosage 
forms [1-2]. Recently, approximately 90% of new drug candidates 
are poorly water-soluble, leading to insufficient bioavailability [3-5]. 
Therefore, the development of a strategy to improve the aqueous 
solubility of drugs is needed in the formulation of poorly water-
soluble drugs [6, 7]. Drug amorphization is an effective strategy to 
improve the solubility of poorly water-soluble drugs due to a higher 
Gibbs free energy [8-10]. However, the formulation of the 
amorphous drug is thermodynamically unstable and recrystallizes 
easily after dispersing in aqueous or during storage [11, 12]. 

Drug loading into mesoporous silica (MS) is a promising strategy to 
stabilize the drug in the amorphous state [13]. MS can also improve 
the dissolution rate and apparent solubility of the drug compared to 
their crystalline counterparts [14, 15]. The two mechanisms of drug 
crystallization inhibition in MS have been proposed include (1) The 
drug adsorption on the MS surface due to the molecular interaction 
between the surface of MS of the drug and (2) the nanoconfinement 
effect of MS, which lead to suppression of crystal growth of drug [2, 
16]. Therefore, the surface interaction of drug-MS and pore volume 
of MS can affect the drug loading and crystallization inhibition in MS 
[17, 18]. 

The pore size of MS was also discovered to influence the dissolution 
profile of drugs. This is because it directly correlated with the 

loading amount and the release rate of the drug [19]. A large pore 
size of MS exhibit a relatively faster drug release in dissolution 
medium [20]. Meanwhile, when a drug within mesoporous silica is 
dispersed in a dissolution medium, the rapid dissolution of drugs 
can be achieved as entrapped drugs are easily diffused out of 
mesopores [19]. This showed that there is a need for the 
determination of drug loading below the experimental ones to 
maximize its effect due to the incomplete release within MS. 

Several studies reported the drug loading into MS carriers; however, 
the effect of pore size on the drug loading and its dissolution profile 
has remained unclear. Therefore, this study aims to elucidate the 
effect of MS pore size on the maximum drug loading. Ritonavir (RTV) 
and itraconazole (ITZ) were used as models of poorly water-soluble 
drugs, with a molecular weight of over 500 g/mol. The solvent 
evaporation method was adopted to encapsulate the drug into MS, 
while the amorphous drugs within MS and the maximum drug 
loading were characterized by modulated differential scanning 
calorimetry (MDSC) and X-ray powder diffraction (XRPD) analysis. 

In this study, the RTV (MW = 720.95 g/mol) and ITZ (MW = 705.64 
g/mol) used were purchased from FUJIFILM Wako Pure Chemical 
Corporation (Osaka, Japan), and ChemShuttle (Hayward, USA), 
respectively. The chemical structures of the drugs are shown in fig. 
1. Meanwhile, MS and FSM were kindly gifted from Taiyo Kagaku., 
Ltd. (Mie, Japan). 

  

 

Fig. 1: Chemical structures of (a) RTV, and (b) ITZ 
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Each drug was dissolved in chloroform and the MPS or FSM was 
dispersed in the chloroform solution, containing the drug with various 
weight ratios. The suspension was sonicated at 25 °C for 3 min and 
evaporated using a rotary evaporator for 30 min at 30 °C. 
Subsequently, the remaining powder was dried at 30 °C using a 
vacuum dryer for 48 h to obtain RTV encapsulated into MS (RTV/MS), 
RTV encapsulated into FSM (RTV/FSM), ITZ encapsulated into MS 
(RTV/MS), and ITZ encapsulated into FSM (RTV/FSM).  

DSC measurement was carried out using a DSC-7000X instrument 
and approximately 5 mg of the sample was placed into an aluminum 
DSC pan under an N2 purge at a flow rate of 40 ml/min. 
Subsequently, the calorimetric analysis of the samples was 
measured from 0 to 200 °C.  

The PXRD patterns were collected using a Miniflex II with the 
following conditions, namely 30kV voltage, 15mA current, Cu target, 
Ni filter, scanning angle of 2θ = 3°-40°, and scanning rate, 4°/min. 

In this study, the MS and FSM used were ordered mesoporous silica 
with a porous texture. Based on the results, the MS and FSM showed 

a typically irreversible type IV isotherm according to the 
IUPAC classification, while their pore sizes were 80 Å and 45 Å, 
respectively.  

Ritonavir (RTV) and itraconazole (ITZ) were used as models for 
poorly water-soluble drugs due to their good glass formers that do 
not crystallize upon cooling and reheating, which is categorized in 
class III. Subsequently, the amorphization of each sample was 
evaluated by PXRD measurement. The RTV crystal exhibited a 
characteristic diffraction peak in the PXRD patterns, while all ratios 
of RTV amorphous, RTV/FSM, and RTV/MS showed a hallo pattern 
without any diffraction peak of RTV crystal in the higher weight 
ratio (fig. 2). A similar result was also observed in both ITZ/MS and 
ITZ/FSM (data not shown), which can be due to the low 
crystallization tendency of RTV and ITZ. Therefore, the 
amorphization of RTV and ITZ was formed after preparation by the 
solvent evaporation method. The PXRD result was unable to 
distinguish whether the drug was inside or outside the pores. This 
showed that the data cannot determine the loading amount of RTV 
or ITZ within mesoporous silica. 

  

 

Fig. 2: The PXRD patterns of (a) RTV crystal, RTV amorphous, and RTV/MPS with various weight ratios 

 

The DSC was carried out based on the presence of their melting 
peaks to evaluate the encapsulation of the drug within the 
mesoporous silica. Meanwhile, the DSC measurement result of 
RTV/MS and RTV/is shown in fig. 3. The melting peak of the RTV 
crystal was observed at 122 °C, while its glass transition 
temperature (Tg) was observed at 47 °C. However, the melting peak 
of RTV was not observed in RTV amorphous, RTV/MS, and RTV/FSM 
due to its good glass formers that do not crystallize upon reheating. 
Therefore, the presence of Tg was used to determine the 
encapsulation of RTV within mesoporous silica. The heat capacity 
changes (ΔCp) of Tg of RTV decreased with a reduction in RTV 

concentration in MPS, either in RTV/MS system or RTV/FSM system. 
In RTV/MS, the Tg was not observed in the weight ratio of 3:7. A 
previous study stated that the absence of Tg was attributed to the 
successful encapsulation of the drug into MPS [21]. The 
monomolecular absorption of RTV on the silica surface of MS leads 
to the absence of Tg in DSC curves. This occurred due to hydrogen 
bond interaction between the C=O of RTV and the Si-OH of MS. 
However, the Tg of RTV was still observed in RTV/FSM = 3:7, which 
indicated that some RTV still existed outside the FSM [22]. 
Therefore, the amount of RTV encapsulated into MS was higher 
compared to FSM [23]. 

  

 

Fig. 3: DSC curve of RTV crystal, RTV amorphous, RTV/MS, and RTV/FSM with various weight ratios 
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As shown in fig. 4, the concentration of RTV was plotted as a function 
of ΔCp values of RTV amorphous on the DSC curves to predict the 
amount of RTV encapsulated into MPS. The fitted lines for RTV/MS 
and ITZ/FSM systems showed good linearity with correlation 

coefficients of 0.97 and 0.99, respectively. The loading amount of RTV 
within MS and FSM, which is represented with y-intercept value, was 
30.07 % and 14.83 %, respectively. Therefore, the loading of RTV into 
MS is more efficient compared to FSM due to its larger pore size. 

 

 

Fig. 4: Plots of RTV concentration against ΔCp of RTV calculated from the DSC curves 

 

Based on the result of DSC measurement from ITZ/MS and 
ITZ/FSM as shown in fig. 5, the melting peak ITZ crystal was 
observed at 170.3 °C, while its glass transition temperature (Tg) 
was observed at 56.7 °C. In the ITZ/FSM system, the heat of fusion 
decreases with a reduction in ITZ concentration. The melting peak 
of ITZ crystal was still observed in weight ratios of 3:7, while the 
melting peak disappeared in ITZ/MS at a ratio of 2:8. Meanwhile, 
in the ITZ/MS system, the melting peak of ITZ was not observed at 

a ratio of 3:7. A previous study has reported that the drug within 
mesoporous silica did not melt in DSC curves because of its 
amorphous form [24]. The absence of the melting peak of ITZ was 
attributed to the interaction between the carbonyl and ether 
groups of ITZ with surface silanol groups through hydrogen 
bonding, which led to their amorphization after encapsulation into 
MPS [21]. Therefore, the amount of ITZ encapsulated into FSM was 
lower compared to MS [23]. 

  

 

Fig. 5: DSC curve of ITZ amorphous, ITZ/FSM, and ITZ/MS with various weight ratios 

 

The concentration of ITZ was plotted as a function of the heat of fusion 
on DSC curves as shown in fig. 6 to predict the amount of ITZ 
encapsulated into MPS. The fitted lines for ITZ/FSM and ITZ/MS 
systems exhibited good linearity with correlation coefficients of 0.97 
and 0.99, respectively. Furthermore, the loading amount of ITZ within 
FSM and MS, which is represented with y-intercept value, was 25.89 % 
and 34.27 %, respectively. This showed that the maximum loading 
amount of ITZ into MS is higher than FSM due to its larger pore size. 

Although the amorphization of ITZ was formed in ITZ/MS and 
ITZ FSM system, the two endothermic peaks of ITZ were 
observed as shown in fig. 7. These peaks were attributed to the 
liquid crystal of ITZ with initial temperature values for a smectic 
to nematic transition at 72.1 °C and a nematic to isotropic 
transformation at 88.2 °C [25]. The dissolution study was not 
carried out in the ITZ/MPS system due to the liquid crystal that 
was being observed. 
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Fig. 6: Plots of ITZ concentration against the heat of fusion  of ITZ calculated from the DSC curves 

 

 

Fig. 7: DSC curve of ITZ amorphous, ITZ/MS = 7:3, and ITZ/MS = 5:5 

 

The effect of pore size on the loading amount of the drug was 
elucidated. The DSC measurement showed that the loading amount 
of drug into mesoporous silica with the larger pore size is higher 
than the lower pore size. This provided fundamental insight into the 
formulation of drugs encapsulated into MPS, specifically in 
elucidating the relationship between the pore size of MPS with the 
loading amount into MPS. 
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