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ABSTRACT 

For decades, the nasal route of administration is principally used for many therapeutic applications owing to the non-invasive nature of the nasal 
pathway. Besides, it circumvents blood-brain-barrier (BBB) and hepatic first-pass effect. Consequently, the nasal route is much preferred over other 
invasive approaches like intravenous, intracerebral, and transcranial for the systemic delivery of drugs and the treatment of central nervous 
systems (CNS) disorders such as depression, Alzheimer’s disease (AD), multiple sclerosis, and Parkinson’s disease (PD) via the nose-to-brain 
pathway. Drug applied via the nasal route displays some difficulty to reach the brain, like the dose limitation of the nasal pathway, mucociliary 
clearance, etc. The efficiency of the nasal route depends on the application delivery system. Lipidic-based drug delivery systems (liposomes, solid 
lipid nanoparticles …etc.) have been confirmed for their promising impact on the nasal delivery approach. Furthermore, the sensitivity of the nasal 
route and the touched-complications of clinical trials in CNS disorders assigns the necessity of consideration to the clinical trials and approval 
process of the niosomal-based nasal drug delivery approach. This review describes different approaches to nasal delivery, lipidic-based delivery 
systems with a focus on niosomes as a promising nasal delivery system, along with different formulation methodologies, and applications. 
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INTRODUCTION 

A long time ago and till now, nasal drug delivery has been utilized as 
a very good alternative route of administration. In Indian literature 
of medicine, the nasal route was used in what is renowned as 
Ayurveda, which applied nasal delivery of active volatile oils, smoke, 
steam, and powders for alleviating many different systemic/local 
ailments [1]. At present, the intranasal application of drugs has been 
considered the first choice for easing nasal congestion and treating 
common rhinitis, allergic rhinitis, and local inflammations. Examples 
of the most commonly used nasal sprays/drops globally are 
decongestants, glucocorticoids, or antihistaminic drugs [2]. 

One of the pros of using the nasal route of administration is the fast 
absorption of drugs owing to the physiological nature of the nose, such 
as the high vascularity of the nasal mucosa. This will potentially cause 
the hasty/rapid local effect, decreasing any unintended systemic drug 
distribution, and thus, avoiding related side effects [2]. On the other 
hand, the systemic nasal delivery of drugs has also been considered a 
promising alternative to parenteral and/or oral routes of 
administration. As the nasal route is advantaged with the avoidance of 
the hepatic first-pass effect, the fast onset of action owing to the high 
penetrability of many active moieties, and the enhanced patient 
compliance. In addition, the nasal delivery dosage form has the 
probability to be designed and thus gain a sustained/prolonged effect 
with the aid of a suitable advanced delivery system [1].  

Interestingly, the nasal route can be potentially considered a very 
successful alternative route for any oral-problematic drugs, such as 
acid-sensitive drugs (proteins/peptide hormones), drugs with an 
active polar group, and drugs that are weakly orally absorbed. Besides, 
the use of permeation enhancers and advanced delivery systems for 
the nasal route can enhance further drug absorption as well as nasal-
drug uptake [3]. Other benefits of using nasal drug administration are 
being a form of non-invasive/painless route of administration, the 
ease of application by yourself or by nursing staff, with a much lower 
risk of infection for blood-borne diseases (such as HIV or hepatitis B) 
or injury, than parenteral route [3]. In this review, different 
approaches to nasal delivery and delivery systems, with a focus on 

niosomal delivery systems and their applications as nasal 
formulations, have been discussed and illustrated. 

It is worthy to mention that data collection for this review was done 
mainly from Innovare Academic Sciences (IAS) journals and other 
sources and publishers through the Egyptian Knowledge Bank (EKB) 
platform. Search criteria have been undertaken via using keywords 
(nasal delivery, niosomal-based delivery systems, methods of 
niosomal preparations, nose-to-brain delivery, niosomal systemic 
delivery) to collect data from research articles and review articles 
that have been published in the last twenty years and related to the 
selected keywords. The outcomes of data collection from the 
aforementioned sources have been systematically gathered, 
analyzed, interpreted, and cited in this review accordingly. 

Approaches to nasal drug delivery 

The drug-physicochemical properties are having a major influence 
on nasal-drug absorption small sized, hydrophilic, or highly 
unionizable drugs are characterized by their high penetration ability 
through the mucosa and a large proportion of the absorbed drug can 
avoid systemic degradation/elimination and vice versa. Accordingly, 
many factors can affect the nasal delivery of drugs, such as the pH of 
a drug, which influences its degree of ionization and stability and 
can irritate the nasal mucosa. Highly hypertonic or hypotonic 
formulations can significantly alter the ciliary movement, which will 
potentially lead to much lower absorption. Other factors like the 
surface and the physical condition of the dosage form, viscosity of 
formulations, the drug concentration/quantity, and even the 
position of the patient’s head during application are playing a 
significant role in the process of drug absorption [4]. Therefore, 
utilizing the suitable factors will strongly result in controlling the 
desired behavior of the drug delivery system, either for local, 
systemic, or even brain targeting by bypassing blood-brain barriers, 
which will be discussed in the next sections. 

Nasal drug delivery for local effect 

As abovementioned, the nasal application of drugs for local effect 
is well-known. Nasal drops/sprays for local alleviation of 
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inflammation or congested nose are almost world-widely 
available. Drugs with hydrophobic nature or with low molecular 
weight are the best to be utilized for nasal local effectiveness. 
Examples of nasal pharmaceutical products with local effects are 
Allergodil®, Pollicrom®, Levocamed®, Rhinivict®, Budapp®, 
Avamys®, MomeAllerg®, Rhinex®, Nasivin®, and Olynth®. Such 
drugs with local effects have been manufactured with a lower drug 
dose than the systemic alternative dosage form, which leads to a 
lower risk of systemic side effects like drowsiness related to oral 
antihistaminics [1]. 

Systemic drug delivery 

The interior of the nasal cavity can be divided into four main 
segments: the atrium, the nasal vestibule, the olfactory region, and 
the respiratory region. Many transport routes are available for 
systemic drug delivery. One of them is via the transcellular route 
(mainly for small hydrophobic molecules) to pass through the nasal 
epithelium reaching the blood or lymphatic system (fig. 1). On this 
specific route, the drug will suffer from the hepatic first-pass effect 

after passing through the blood-brain barrier “BBB” to enter the 
brain. Drugs can be transferred directly through the respiratory 
region into the stem and further areas of the brain. A much greater 
amount of the drug can be transmitted to the brain through the 
olfactory region. Generally, there are three routes of transport, 
either intracellular and/or neuronal route via internalization with 
neurons (transport route I), the extracellular route via the gaps 
between the cells (transport route II), or transcellular via the basal 
epithelial cells (transport route III) as displayed in fig. 1 [5]. 
Regarding route I, the drug can be internalized via 
endocytosis/pinocytosis within the olfactory sensory neurons, 
released in the olfactory bulb by exocytosis, and then passed more to 
the brain region. This route is comparatively slow transport, which 
may last from many hours to days. The fastest route of drug 
transport can be considered via the extracellular route II. The lamina 
propria directly under the epithelium in the olfactory region is 
responsible for the extracellular transfer of hydrophobic compounds 
either via passive diffusion or active transport (as a neuronal source 
of olfactory axon bundles), which allows this route of transport [5]. 

 

 

Fig. 1: Drug transport pathways to the lungs or the brain, after nasal application [1] 

 

Nose-to-brain drug delivery 

The BBB comprises a tightly-closed monolayer net of blood vessels 
bargained by polarized endothelial cells that form the brain and 
spinal cord capillaries. This monolayer blocks the flow of most 
ingredients from the blood circulation to the brain and vice versa. 
The epithelial cells of the brain are closely connected by tight 
junctions and adherent junctions, which strictly control the 
passageway of ingredients between the brain and the blood [6]. 
Furthermore, the BBB guards the brain versus infiltration of 
pathogens, neurotoxic plasma components, transmitters, and even 
blood cells [7]. One possibility to circumvent the BBB is injections 
administered intrathecally, intracerebroventricularly, or 
intraparenchymally. With this approach, the drug can be delivered 
directly to the cerebrospinal fluid of the CNS. However, these routes 
of administration are considered invasive and can only be 
performed by well-trained professionals. Besides, these routes have 
a furthermore risk of infection [8]. An alternative/noninvasive 
technique to dodge both the blood-cerebrospinal fluid barrier and 
the BBB is to deliver drugs via the nose-to-the-brain (N-to-B) 
approach. The nose is not only placed just near the brain, but it also 
comprises distinct nerves (the olfactory and the trigeminal nerve), 
which have a direct connection to the brain, independent from the 
limitations of the BBB. Studies confirmed that the absorption of 
many moieties such as proteins, peptides, stem cells, viruses as well 
as possible nucleotides can be granted via the N-to-B route, not only 
small active ingredients [8]. 

Nasal vaccines 

Vaccination is renowned for the administration of non-disease-
causing microorganisms, sections of microorganisms, or live-
attenuated vaccine microorganisms, with the purpose of 
immunization versus certain infectious diseases. It is very popular 
that most conventional vaccines are administered parenterally, 
owing to the difficulty to be absorbed through the mucous 
membranes and having little stability in the GIT. However, many 
drawbacks are also encountered like the increased risk of infection, 
poor patient compliance, and the need for trained personnel in 
vaccination [9]. Nasal vaccines are one of the emerging approaches 
to nasal delivery of moieties for augmented bioavailability and 
stability. Nasal delivery systems should possess some specifications. 
They should not exceed 100 nm in size to be able to penetrate the 
nasal mucosa barriers. Therefore, the optimal size range is between 
20 and 80 nm in diameter [10]. Besides, and to be effective, the nasal 
vaccine needs a significant degree of interaction with the immune 
system (interaction with the nasopharynx-associated lymphoid 
tissue). Such stimulation causes a strong humoral/cellular immune 
response in the body, which takes place on the mucosal as well as on 
the systemic level [11]. Nasal vaccination is painless to use, non-
invasive and can be economically manufactured. However, few 
products are available on the market, and preclinical investigations 
are mostly conducted on rodents. In addition, the differences 
between a human nose and a rodent render some difficulties in 
implementation, prediction of efficacy, and application safety [10].  
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Lipidic-based nasal delivery systems 

To optimize and improve nasal drug uptake, various drug delivery 
systems are under investigation. Lipidic-based nasal delivery 

systems like niosomes, liposomes, in-situ gel systems, cyclodextrins, 
microemulsions, and nanoemulsions [12–14], can be considered as 
one type of the most emerging drug delivery systems utilized in the 
nasal delivery route (fig. 2). 

  

 

Fig. 2: Different lipid-based nanocarriers with their structures [2] 

 

Many successful research works confirmed the significance of such a 
delivery system being utilized for nasal delivery. In earlier research 
work, the anti-schizophrenic quetiapine fumarate-loaded lipidic-
based drug delivery systems were investigated. The outcomes 
revealed that the 7–8% poor oral bioavailability of Quetiapine 
fumarate (due to its low water solubility and sensitivity to the first 
pass effect) has been improved and increased to reach 32.61% of 
drug oral bioavailability with the drug-loaded lipidic nanocarriers 
[15]. Another example is the basic fibroblast growth factor (a 16.5 
kDa protein), which has neuroprotective properties and is used in 
stroke. Owing to its comparatively large size, it cannot pass the BBB 
and must be administered invasively via the intracerebroventricular 
or intraparenchymal route. This protein was encapsulated in a nano-
liposomal drug delivery system and was investigated for its efficacy 
and distribution in rats by intranasal route of administration. The 
experimental animals were observed and examined for 21 d. The 
rats treated with the drug nanoliposome-complex displayed an 
enhancement of the damaged-brain tissue and the survival rate was 
57% [16]. Previous research investigated the efficacy of ovalbumin-
loaded cationic liposomes, as the positively-charged liposomal 
formulation was found to be a safe/potent nasal drug delivery 

system. The results displayed that the intranasal ovalbumin-loaded 
positively-charged liposomal formulation enhanced the antigen 
uptake by dendritic cells in nasal-associated lymphoid tissue, and 
the immune response is induced via antigen-specific Th2 reaction 
[17]. 

Therefore, further investigations utilizing lipidic-based nasal 
delivery systems are very promising and crucial for safety, 
compliance, and efficacy applications. Niosomes, as one of the 
lipidic-based delivery systems, will be discussed for the applicability 
of nasal administration in the following sections. 

Niosomes 

Niosomes, the well-renowned nonionic surfactant vesicles, can be 
best described as unilamellar/multilamellar vesicles mainly 
prepared from a combination of nonionic surfactants and 
cholesterol [18]. A niosomal formulation can also be described as a 
self-assembly system that can be assembled from a variety of 
hydrophilic moieties along with molecules with a hydrophobic alkyl 
group, resulting in the entrapment of hydrophilic and/or 
hydrophobic active ingredients in these vesicles (fig. 3). 

 

 

Fig. 3: Classification of niosomes (according to size and number of lamella) [19] 

 

According to configuration and physical assets, niosomes (in 
comparison with liposomes) offer many added pros regarding 

biodegradability and biocompatibility. Like liposomes, niosomes can 
boost the bioavailability and solubility of low water-soluble 
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medicaments, and reduce the required quantity of used medication, 
along with targeting ability [20]. They can also augment the stability 
of the loaded drug, like enhanced protection/drug encapsulation 
[21], prolonged circulation, targeted and controlled drug delivery 
[22] photostability [23], and improved chemical/physical stability 
[24]. In addition, niosomes are much more feasible in production, 
less costly, more economic, more stable, and easier to store than 
liposomal formulations [23]. Niosomes can encapsulate aqueous 
solutions leading to either the encapsulation of hydrophobic or 
hydrophilic mixtures of pharmaceuticals, micronutrients, 
antioxidants, nutraceuticals and other active molecules [25, 26]. 
From an economical perspective, the amendment/improvement/ 
functionalization of niosomes utilizes a relatively simple/suitable 
approach by using the least amount of suitable pharmaceutical 
solvents [27]. Additionally, the characteristics of these particular 
niosomal nanovesicle formulizations (such as lamellarity, surface 
charge, size, and concentration) can be easily and feasibly well-
controlled [28]. 

Niosomes elaboration via different procedures  

At raised temperatures, the hydration of surfactant/lipid 
combination followed by niosomal size reduction (optional) to 
produce a colloidal suspension of homogenous niosomes with a low 
polydispersity index value. There are many well-established 
procedures for the elaboration of niosomes. Furthermore, 

comparatively more economic and facility of production make 
niosomes with high potential for applications in several arenas. 
Procedures like the Thin-Film hydration method, Ether injection 
method, Bubble method, and Microfluidization technique are some 
of the well-known procedures employed to elaborate niosomes (fig. 
4) [29]. 

Thin-film hydration method  

This technique includes solubilizing the total amount of lipids in a 
proper organic solvent or mixture of solvents used as a vehicle [30], 
followed by eliminating this vehicle to form structured lipid thin 
films and then hydrating these films via an aqueous environment 
comprising water-soluble ingredients [31]. The next step is vesicle 
formation, which comprises the direct combining/coalescing of 
lipids and aqueous medium at rea latively high temperature (higher 
than the phase transfer temperature of used surfactants), with the 
aid of applying reduced pressure to eliminate the dangerous 
influence of trace sediments of organic solvents on encapsulated 
material or biologically practical situations [20]. The thin-film 
hydration method (TFH) is regarded as the most common method of 
niosomal formulation. Usually, multilaminar vesicular (MLV) 
niosomes are produced by this technique, which contributes to a 
larger particle size distribution (fig. 4A). The niosomes of 
epigallocatechin gallate, pyrazolopyrimidines, citicoline, curcumin 
and methotrexate were prepared by this technique [26]. 

 

 

Fig. 4: Different niosomal formulation processes [26] 

 

Ether injection method  

By utilizing the ether injection method (EIM), various designs of 
niosomes can be prepared. Surfactants with additives are solubilized 
in diethyl ether and then inserted/injected slowly via a certain 
needle into the previously prepared aqueous drug solution and kept 
at a high temperature (above the boiling point of the organic 
solvent). The organic solvents are then evaporated using a rotary 
evaporator. Through the vaporization step, the controlled formation 
of uni-layered vesicles takes place (fig. 4B). The niosomes of 
resveratrol and pilocarpine hydrochloride were elaborated via this 
simple method [26, 32]. 

Microfluidization method 

The main feature of this method is that it can be utilized for 
generating large unilamellar vesicles (LUVs) with a particular 
uniform size dispersion. The submerged jet principle was employed 
in this procedure, which introduced two fluidized streams moving at 

ultra-high speeds in microchannels inside the interaction chamber. 
The collision of a thin liquid sheet with a common foreside was 
arranged in a mode that the energy equipped for the procedure 
remains in the zone of niosomes formation. Accordingly, the 
elaborated niosomes had high uniformity, were smaller in size, and 
had better reproducibility of niosomal formulation (fig. 4C). The 
topotecan (TPT)-loaded PEGylated niosomes were formulated via 
the microfluidics technique [26]. 

The Bubble method 

The “Bubble” procedure is a unique technique for the assembly of 
liposomes and niosomes without utilizing any organic solvents, 
using a round-bottomed flask with three temperature-controlling 
necks in the water bath. There is water-cooled reflux in the first 
neck, a thermometer in the second neck, and nitrogen is supplied via 
the third neck. Cholesterol and surfactants are dispersed together in 
a 7.4 pH phosphate buffer at 70 ℃, then mixed for 0.25 min with a 
high shear homogenizer, and then instantaneously bubbled with 
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nitrogen gas at 70 ℃, to form the desired niosomal formulation [26, 
33] (fig. 4D). 

Applications of niosomes–based nasal drug delivery systems 

As previously mentioned, niosomes are vesicular systems that 
gained much consideration owing to their inimitable characteristics 
like utilization of non-ionic surfactant, probability of including 
poorly-soluble drugs, and structurally similar to liposomes but with 
improved stability/economical features. They are characterized to 
have a multi-thin-layer vesicular structure and comprise mostly 
non-ionic surfactants, a hydration medium, and lipids such as 
cholesterol [34]. Surfactants like Tween mimics apolipoprotein and 
the niosomes molecule as a low-density lipoprotein in the body which 
are absorbed by epithelial cells. Niosomes, which are prepared by 
following the same procedures and under the same variety of 
conditions, are structurally analogous to liposomes [35]. Besides, 
niosomes have several advantages over liposomes such as the ability 
to target the brain via using Receptor Facilitated Transcytosis (RFT), 
lower cost, scaling-up, and ease of formulation [36].  

Lately, niosomes have been an interesting consideration in 
neurodegeneration treatment applications for many reasons. The 
first is owing to their potential opportunity to upsurge nose-to-brain 

drug delivery as well as augment drug chemical and biological 
stability. The second is due to their particular structures, which 
make them able of encapsulating both hydrophilic and lipophilic 
types of substances. The third is because of the probability of 
governing niosomes’ properties like surface charge and size. The 
fourth is the absence of any special conditions that might be 
required for handling and storage [2].  

Many systemically-administered drugs cannot spread to the brain 
owing to the presence of BBB. The nasal route can help boost drug 
delivery to the brain by evading the BBB. The results of many 
previous studies showed that the nose can be a very potential inlet 
to deliver drugs that cannot bypass the BBB. Both olfactory neurons 
and facial trigeminal have a significant role in transferring drugs 
from the nasal cavity to the brain. Niosomes, as nano-sized vesicular 
carriers, can entrap, encapsulate, or solubilize the active molecules 
to deliver the loaded substances to the brain. Niosomal vesicles 
augment cellular uptake, enhance chemical stability, and decrease 
systemic side effects [19, 37]. They can also enhance the passage of 
drugs through the olfactory region, boost bioavailability and 
improve patient compliance. Examples of many niosomal 
formulations that were studied for nasal administration and 
thoroughly investigated are presented and reviewed in table 1. 

 

Table 1: Examples of research work on niosomal–based nasal drug delivery systems (for nose-to-brain delivery) [19] 

Loaded 
drug/substance 

Compositions Indication(s) Aim(s) EE 
(%) 

Experimental model Year Reference 
In vitro In vivo 

Sumatriptan 
succinate 

Span 60 Cholesterol 
Dicetyl Phosphate 
Sephadex, 

Acute migraine 
attacks Cluster 
headaches 

To increase bioavailability 
To accelerate the 
absorption rate in 
comparison to oral ways. 

57.9 Dialysis 
bag 

Wistar 
albino rats 

2000 [38] 

Melatonin Span 60 Sodium 
deoxycholate 
Dimethyl sulfoxide 
Cholesterol 

Sleep disorder To reduce side effects such 
as unconsciousness, GI 
disturbance, etc. 
To prevent the first-pass 
metabolism. 

95 - Male wistar 
rats 

2012 [39] 

Folic acid Span 60 
Cholesterol 

Prevention of 
depression in 
Alzheimer’s 
disease 

To provide a faster 
therapeutic effect (faster 
onset of action) 

69.42 - - 2013 [40] 

Diltiazem Span 60 
Brij 52 
Cholesterol 

Hypertension 
angina pectoris 
some types of 
arrhythmia 

To achieve high 
bioavailability to prolong 
the duration of action 

66.26 - Male wistar 
rats 

2017 [41] 

Nefopam Span 40 
Cholesterol 

Moderate and 
acute 
pain 

To improve bioavailability 80.5 Vertical 
Franz 
diffusion 
cell 

Male wistar 
albino rats 

2018 [42] 

Buspirone Span 40 
Cholesterol 

Anxiety 
disorders 

To improve bioavailability 87.7 - - 2018 [43] 

Pentamidine Tween 20 
Cholesterol 
Dicetyl phosphate 

Alzheimer’s 
disease 

To improve pentamidine 
permeability and reduce 
the side effects 

10.96 - - 2018 [44] 

Olanzapine Cholesterol/ 
Span 60 (1:4) 

Schizophrenia To improve brain targeting 95 - Male white 
albino rats 

2019 [45] 

 

Interestingly, the intranasal route for the administration of 
antipsychotics may be an appealing alternative route of 
administration. The advantage of the nasal route in comparison with 
other routes is its capacity to directly deliver drugs to the brain via 
the olfactory region and its ability to avoid the first-pass effect to 
improve bioavailability and reduce adverse events. In an earlier 
study, olanzapine (OL)-loaded surface-modified niosomes were 
elaborated for improving permeability to the brain via the nasal 
route, which proved to have improved characteristics and 
effectiveness over the pharmaceutical solution. Functionalization of 
niosomal surfaces proved to increase drug penetration even further, 
and the nasal delivery of the produced vesicles successfully 
transported OL into the brain [26, 45]. Niosomes were also reported 
to be absorbed by the olfactory epithelium in the nasal mucosa and 
then distributed to the brain [46]. Bromocriptine-loaded niosomal 

formulation for the intranasal route in rats displayed greater brain 
targeting and enhanced efficiency over the oral route which 
decrease its dose by 1/10th, thus almost diminishing the risk of 
toxicity [47, 48]. Another research was designed to formulate non-
ionic surfactant vesicles loaded with Bromocriptine Mesylate (BCM) 
to enhance brain absorption via the nose-to-brain route. Compared 
to the BCM pharmaceutical solution, penetration through nasal 
mucosa was found to be elevated up to 6.4 times over the 
conventional drug solution in a 24-hour ex vivo study [36]. 
Depending on the theory that the low blood level of folates is the 
main cause of depression in Alzheimer’s disease (AD), many studies 
investigated and studied possible facilitated delivery of folic acid, 
since folic acid is a water-soluble vitamin with significant difficulty 
in bypassing the BBB. An earlier study reported that prepared folic 
acid-loaded niosomes (with 1: 1 molar ratio Span 60: Cholesterol 
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composition) exhibited better entrapment efficiency (69.42 %) and 
better in vitro cumulative drug release (64.2 %) after 12 h [2]. 

On the other hand, many niosomal enhancement approaches 
should be carefully studied. For example, the PEGylation of 
lipidic nanocarriers is known to prolong their half-life after 
being administrated. However, the utilization of such an 
approach was limited because the lipid bilayer can maximally 
tolerate about 5 to 6% mol of PEGylation. Above this percentage, 
some stability complications like the lysis of lipid-based vesicles 
at high PEG concentrations can potentially encounter [49]. In a 
previous study, drug-free and pentamidine-loaded chitosan-
glutamate (CG) coated niosomes were formulated and 
characterized for delivery to the brain via the intranasal route. 
Entrapment efficacy was found to be 10.96%, which is 
significantly high and can be considered valuable to attain 
therapeutic effectiveness. Moreover, PEGylation of the niosomal 
surface enhanced the mucoadhesive properties. Furthermore, 
niosomal surface functionalization via CG was found to be of 
great influence due to its penetration-enhancing ability [44]. 

Limitations (challenges) and how to defeat (future directions) 

Several studies reported that there are some limitations in using 
niosomes in a wide-scale drug delivery system, including 
aggregation, fusion, and leakage, possible chemical reactions with 
the encapsulated drug, and other factors related to the proper 
stability of niosomes. In other words, niosomes' physical stability is 
one of the main barriers challenging their use as prospective drug 
delivery vehicles [50]. However, it is required to face such 
limitations as challenges that can be defeated via various 
approaches. Therefore, the focus of our future directions in niosome 
research should be on investigating various methods for enhancing 
niosome physical stability. Some examples of stability challenges 
and how to investigate and defeat them were mentioned in the next 
paragraphs. 

The property of aggregation can be encountered in many types of 
niosomes which need much focus while designing and formulating 
any type of niosomes. In many studies, it was investigated by 
applying the sedimentation behavior and stability tests, and found 
that using some surfactants like Span 60 and Pluronic P85 in the 
mixed noisome formulation may potentially show excellent stability 
and drug release [51]. Pluronics are polymers composed of triblock 
(PEO-PPO-PEO) of polyethylene oxide (PEO, which is water soluble) 
and propylene oxide (PPO, which is water insoluble), and they are 
used as drug carriers because of their assembly property which 
behaved as drug container. In addition, the cholesterol and 
surfactant ratio has a significant influence on the stability of 
niosomes [50]. 

The chemical reaction of the encapsulated drug is another important 
issue needed to be also considered. It has been found that the 
hydration media and the molecular weight of loaded drugs are 
important determinants of the chemical reaction of the encapsulated 
medicine. The efficiency of encapsulation is increased with 
increasing vesicle size and the composition of hydrated media will 
affect the bilayer packing and physical properties of niosomes [52]. 
Generally, the hydration media that is used in the preparation of 
niosomes is phosphate buffer, but the desired pH depends on the 
encapsulated drug solubility [53]. Both the quick leakage of the 
medication from the niosomes and the burst release effect 
associated with niosomes have been reduced by dispersing 
niosomes in a viscous gel. Using this method, the niosomes' physical 
stability might be increased. In addition to the previous method, 
lyophilization (freeze-drying) or spray-drying the final niosomal 
liquid dispersion to a powder form improves the physical stability of 
the vesicles and significantly lowers the oxidative instability of 
oxidizable drug molecules by reducing the production of hydroxyl-
free radicals [50].  

The aforementioned techniques might be useful for creating stable 
niosomes, so studying how each one affects the niosomes' physical 
stability could be a promising area/future direction for further 
potential investigation. 

CONCLUSION 

Niosomal-based drug delivery systems for the nasal route, as nano-
sized vesicular nanocarriers, have a diversity of pros and are well-
favored delivery platforms over other lipidic-based delivery 
systems. With understanding the different approaches to nasal 
delivery, and selecting the appropriate compositions, these nonionic 
surfactant vesicular carriers are promising means for significantly 
controlling the drug release profile, targeting exact body tissues or 
cells, minimizing the systemic side effects and toxicity, and 
enhancing the efficacy and bio-distribution profile in the body. 
Niosomes facilitate drug delivery via the nasal route (mainly via the 
olfactory region) by increasing the solubility of low water-soluble-
loaded molecules and improving drug transmission through the 
biological membranes, which leads to bioavailability enhancement. 
On the other hand, the expected toxicity from niosomes (according 
to the selected ingredients for formulation and their composition) 
must be well-thought-out. Additional research studies are expected 
to be conducted concerning the synthesis/production of non-toxic 
nonionic surfactants with recognized metabolic mechanisms. 
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