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ABSTRACT 

Objective: Modeling and simulation are the two widely used terms, usually simultaneously mentioned in most PK discussions. There are several 
modeling strategies to model pharmacokinetic (PK) profiles. Compartmental modeling divides the body into different compartments based on the 
observed C-t profile and model comparison functions. Most C-t profiles are efficiently modeled using at max three compartments model (one, two, 
or three compartments). While there are many important applications of classical compartmental models, it emphasizes the importance of selecting 
the best model to explain the observed data. Therefore, initial data generation is very important. In many instances, insufficient data collection 
might not lead to the best model, which can be proved later costly by underpredicting or overpredicting PK parameters. This paper illustrates that 
adequate data collection can lead to correct model selection.  

Methods: Data was generated using the three-compartmental model's explicit equation for twenty-five simulated patients with 15% random variability. 
Generated data were fitted to different compartmental models using sufficient time points (case a) and without enough time points (case b).  

Results: In the case of a, generated data from three compartmental models was explained best by three compartmental models. In the case of b, the 
same data was presented better by two compartmental models. Finally, in the case of b, with sufficient time points, data generated from three 
compartmental models could be explained better by three compartmental models.  

Conclusion: With sufficient time points, the compartmental PK model can converge to an accurate one. Although almost all pharmacometricians 
know the importance of time points, there is no paper with a mathematical explanation of this incident. This paper will help the current and future 
pharmacometricians to help design efficient in vivo works. 
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INTRODUCTION 

Pharmacokinetics (PK) is one of the major concepts in pharmaceutical 
sciences. Famously defined, PK is simply what the body does to the 
drug. PK is widely described by the acronym ADME where A stands for 
absorption, D stands for distribution, M stands for metabolism, and E 
stands for excretion (fig. 1) [1-3]. The latter two (metabolism and 
excretion) are summed up to be further called elimination. A drug's PK 
depends on numerous factors in an individual. Physicochemical 
factors that influence a drug's PK can include molecular weight (MW), 
lipophilicity (log P), solubility profile, ionization behaviors, and many 

more [4-8]. Even for a specific drug, its PK can differ in different 
individuals depending on race, gender, age, genomic and proteomic 
profiles, and many other factors. Less discussed, but a drug's PK can 
also depend on formulation factors and administration routes. For 
example, if a drug is administered in different ways or it is formulated 
as immediate release vs. controlled release, the PK of a drug can 
change. The major PK parameters that are used to describe a drug's 
behavior in an individual are volume of distribution (Vd), total 
clearance (CL), and bioavailability (F) [2, 3, 9]. These PK parameters 
are efficiently extracted from the plasma concentration versus the 
time profile of a drug or the C-t profile. 

 

 

Fig. 1: Major divisions of PK 

 

Modeling and simulation are the two widely used terms, usually 
simultaneously mentioned in most PK discussions [10-17]. This is 
because modeling PK data means looking back at the data and 

extracting PK parameters. In contrast, simulation helps to predict 
what might happen in similar cases of the drug in question, looking 
at future circumstances [18]. There are several modeling strategies 
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to model PK profiles. Compartmental modeling divides the body into 
different compartments based on the observed C-t profile and model 
comparison functions [2, 3, 9]. Most C-t profiles are efficiently 
modeled using at max three compartments model (one, two, or three 
compartments). It is noteworthy that these compartments do not 
necessarily have any physiological relevance. These are merely 
imaginary compartments used to explain the observed C-t profile. 
Also, within one compartment, one can practically think of many 
organs that are kinetically in equilibrium. For example, in one 
compartmental model, it is assumed that the drug distributes 
rapidly throughout the body and that the equilibrium is reached 

within minutes. Or, if the drug does not distribute at all, meaning 
almost all the drugs are in vascular compartments, it can also be a 
one-compartmental model. However, if the drug spreads to different 
tissues of the body and the equilibrium takes longer, there will be 
necessary multi-compartmental models. In multi-compartmental 
models, one central compartment and one or more peripheral 
compartments depend on the C-t profile. Peripheral compartments 
are reversibly connected to the main compartment. Elimination is 
assumed to come from the central compartment since the major 
eliminating organs (liver and kidney) are highly perfused and are 
expected to reach equilibrium relatively quickly [2, 3, 9]. 

 

 

Fig. 2: a. one compartmental model, b. two compartmental models, and c. three compartmental models. Number 1 denotes central 
compartment, numbers 2 and 3 denote peripheral compartments. The k12, k21, k13, and k31 represent inter-compartmental first-order rate 

constants. The k10 denotes irreversible first-order elimination rate constant 

 

There are different forms of equations for different compartmental 
models. Simplest forms of equations are derived from the IV bolus 
drug administration since there is practically no absorption present 
in IV bolus administration. If a drug is administered by IV bolus and 
the drug's C-t profile is explained by one compartmental model (fig. 
2a), at any time (t) drug's concentration (cp) can be expressed by 
equation 1 [2, 3, 9]. 

cp = c0. e−k10t …… Equation 1 

Where c0 is the initial drug concentration right after IV bolus drug 
administration. 

While the equation for one compartmental model has one 
exponential term, if the drug follows two compartmental model (fig. 
2b), it will have two exponential terms, which can be represented by 
equation 2 [2, 3, 9]. 

cp = Ae−at + Be−bt…. Equation 2 

Where A+B=c0, the initial drug concentration, a and b denotes macro-
rate constants formed from micro-rate constants k12, k21, and k10. 

Similarly, if the drug follows three compartmental model (fig. 2c), it 
will have three exponential terms, which can be represented by 
equation 3 [2, 3, 9]. 

cp = Ae−at + Be−bt + Ce−ct …… Equation 3 

Where, A+B+C=c0, the initial drug concentration, a, b, and c denotes 
macro-rate constants formed from micro-rate constants k12, k21, k13, 
k31, and k10. 

Compartmental models are not mechanistic models. They are mainly 
application-based models. And their application has made them so 
useful in PK. Compartmental models are relatively simpler than the 
widely discussed, more recent physiologically-based 
pharmacokinetic (PBPK) models [12, 15, 19-28], as the 
compartmental models need fewer mathematical inputs for 
successful model development. Some of the major utilities of the 
compartmental models include the calculation of primary PK 
parameters, including Vd, CL, and F, the prediction of C-t profiles for 
different dosage forms, including oral, dose selection to keep drug 
concentration within the therapeutic window, dosage regimen 
design for multiple doses, and the determination of pharmacokinetic 
variability among different populations. 

While there are many important applications of classical 
compartmental models, it emphasizes the importance of selecting 

the best model that can explain the observed data. The scenario can 
be two-way traffic. While the data will decide which model better 
explains the data, at the same time, the best-fit model will decide the 
simulated or predicted data in the future. This is why initial data 
generation is very important. In many instances, insufficient data 
collection might not lead to the best model, and this can be proved 
later costly by underpredicting or overpredicting PK parameters. 
This paper aims to illustrate that insufficient data collection can lead 
to wrong model selection. 

MATERIALS AND METHODS 

Generation of IV dataset based on 3C model 

Equation 3 was used to generate data points that follow three 
compartmental model. Table 1 enumerates the values used for 
equation 3: 

 

Table 1: Values used for equation 3 to generate data points that 
follow three-compartment model 

Constant in equation 3 Value (unit) 
A 1000 (ng/ml) 
B 700 (ng/ml) 
C 10 (ng/ml) 
a 2.5 (hour-1) 
b 0.5 (hour-1) 
c 0.1 (hour-1) 

Different time points ranging from 0-24 h have been used to 
generate simulated data. Data were generated for 25 simulated 
patients using equation 3 with a 15% normal function variability. 
Mean and standard error of the simulated data were calculated and 
plotted in a semi-log graph paper. 

 

Fitting to the IV models 

Sufficient time points (case a) 

All the 25 simulated patients' data up to 24 h were fitted to both 
two-compartment and three-compartment models. One 
compartment was eliminated because of more than one curvature in 
the semi-log plot of the simulated data. Based on the Akaike 
Information Criterion (AIC) [29, 30] best-fit model was selected. 
Finally, model predicted lines were plotted with the observed data 
to visualize the success of each model. 
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Insufficient time points (case b) 

The 10-hour data from all 25 simulated patients were fitted to two-
compartment and three-compartment models. Due of many curvatures 
in the semi-log plot of the simulated data, one compartment was deleted. 
The best-fit model was chosen based on the Akaike Information 
Criterion (AIC) [29, 30]. The success of each model was then illustrated 
by plotting model-predicted lines against the observed data. 

All the details of mathematical data analysis are provided in the 
supplementary files. 

RESULTS 

Generation of IV dataset based on 3C model 

Fig. 3 shows the mean simulated data with the standard error plot in 
a semi-log scale. 

Fitting to the IV models 

Sufficient time points (case a) 

Table 2 presents the model comparison function for case a, where 
sufficient time points were considered. Since the three-
compartmental model produced a lower AICc value, it was 
considered the better model to explain the data. Fig. 4 shows 

individual model fittings. Finally, table 3 shows all the micro-rate 
constants and volume of central compartment obtained from both 
model fittings. 

 

 

Fig. 3: Semi-logarithmic plot of mean C-t profile with standard 
error of 25 simulated patients 

 

Table 2: Model comparison functions for case a 

Function Two compartmental model Three compartmental model 
AICc 132.367 114.392 
R2 0.9992 0.9998 

 

 

a.        b. 

Fig. 4: a. Two compartmental model fitting for case a, b. Three compartmental model fitting for case a 
 

Table 3: Micro-rate constants and volume of central compartment for both model fittings in case a. Data shows as mean (SE.) 

Parameter Two compartmental model Three compartmental model 
k12 0.6890 (0.0416) 0.7172 (0.0311) 
k21 1.0717 (0.0554) 1.2555 (0.0783) 
k13 NA 0.0305 (0.0049) 
k31 NA 0.0826 (0.0383) 
k10 0.9024 (0.0155) 0.8939 (0.0091) 
Vc 5.9537 (0.0722) 5.9289 (0.0394) 
 

Insufficient time points (case b) 

Table 4 presents the model comparison function for case b where 
sufficient time points were not considered (just 10 h). Since the two 
compartmental models produced lower AICc values, it was 

considered the better model to explain the data. Fig. 5 shows 
individual model fittings. Finally, table 5 shows all the micro-rate 
constants and volume of the central compartment obtained from 
both model fittings. 

 

Table 4: Model comparison functions for case b 

Function Two compartmental model Three compartmental model 
AICc 106.676 121.484 
R2 0.9998 0.9998 
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a.       b. 

Fig. 5: a. Two compartmental model fitting for case b, b. Three compartmental model fitting for case b 

 

Table 5: Micro-rate constants and volume of central compartment for both model fittings in case a. Data shows as mean (SE.) 

Parameter Two compartmental model Three compartmental model 
k12 0.7094 (0.0264) 0.7156 (0.0486) 
k21 1.1533 (0.0315) 1.2163 (0.1145) 
k13 NA 0.0263 (0.2828) 
k31 NA 0.0455 (0.7377) 
k10 0.9081 (0.0102) 0.8912 (0.2999) 
Vc 5.9403 (0.0439) 5.9326 (0.0495) 

 

DISCUSSION 

When a drug is available in systemic circulation, it needs time to 
equilibrate throughout the body. Within this time, drugs reversibly 
distribute to different tissues of the body depending upon the blood 
flow to the organ and the apparent affinity of the drug to that 
particular tissue [2, 3, 9]. Some of the body's organs are highly 
perfused, and the equilibrium to those organs is relatively quick, 
including the liver and kidney. These organs are therefore 
considered in the central compartment in a compartmental 
modeling approach. Other tissues with less blood perfusion or 
deeper anatomical position will be considered in the peripheral 
tissues. Drugs' physicochemical properties can also dictate which 
organ might be in the central compartment versus the peripheral 
compartment. For example, for a highly lipophilic drug, the brain can 
be considered in a central compartment since the drug can cross the 
blood-brain barrier. Conversely, the brain will merge in the 
peripheral compartment for less lipophilic drugs due to higher 
equilibration time. 

All these physiologic plus physicochemical properties can determine 
the time to equilibrate the drug inside the body. For a rapid IV bolus 
administration, this feature is more visible. The drug's time to 
equilibrate inside the body is called the distributive phase. After the 
distributive phase, equilibration is reached, and the phase is called 
the elimination phase. Although distribution and elimination occur 
simultaneously in the distributive phase, only elimination is 
apparent in the elimination phase. This is why the drug 
concentration in the plasma drops faster in the distributive phase 
than in the elimination phase. The presence of a distributive phase 
will depend on how frequently blood samples are taken. Multi-
compartment PK models are created based on the degree of post-
distribution equilibrium and the number of tissues with similar 
kinetic properties. 

Inaccurate estimations of the elimination phase of the IV data might 
result in incorrect calculations of the intercompartmental and 
elimination rate constants. For instance, if a drug has three 
compartmental characteristics but the IV bolus PK data only shows 
two compartmental characteristics due to shorter blood collection 
time points or the analytical sensitivity limitation, it may 
significantly overpredict the elimination rate constant, causing the 
oral PK profile to degrade rapidly. Therefore, scientists must draw 
blood and samples analyzed over an extended period to properly 

ascertain the IV PK profile's tail end for the accurate characterization 
of the disposition function utilizing conventional compartmental PK 
models. Given that the sensitivity of LC-MS/MS will also catch the post-
distributive phase, blood collection up to 5 half-lives may typically 
provide sufficient blood collection [27, 31-34]. 

This research aimed to evaluate the sufficiency of time points for 
successful pharmacokinetic compartmental modeling. Initially, the 
data was generated using a three-compartmental model. For this 
purpose, the explicit equation for three compartmental 
pharmacokinetic models was used using random numbers. A 
random error of 15% was applied to generate data for twenty-five 
simulated patients. This random error was added while generating 
simulated patients' data to consider experimental variability and 
patient-to-patient inter-individual differences. However, the data 
variability might be higher in practice, which is typical of in 
vivo experiments [33, 35-40]. 

The next job was to determine if the PK modeling could converge to 
three compartmental models better than other models statistically. 
Furthermore, since the data was generated using a three-
compartmental model, it was aimed to see if it is still the best model 
to explain its data. For this purpose, two cases were designed. One in 
which sufficient time points were considered (case a) and the other 
in which sufficient time points were not considered (case b). 

Before starting to model PK data, the first step is to look at the data. 
In a semi-logarithmic plot, the number of an apparently linear region 
can suggest which model might be followed by the generated data. 
In the case of a, more than two linear regions were apparent from 
the simulated data. Also, the model comparison functions suggested 
that the three-compartmental model better explained the data. On 
the other hand, in the case of b, only two linear regions were 
apparent from the simulated data. Also, the model comparison 
functions suggested that the two-compartmental model better 
explained the data. From these two cases, data generation up to 
sufficient time points is a prerequisite for successful compartmental 
PK modeling. 

Now the next question becomes, how long time points are sufficient? 
It depends on several factors. One of the limiting factors might be 
analytical sensitivity. With very sensitive analytical techniques, it is 
practically possible to characterize the terminal portion of the C-t 
profile. With the advent of newer technologies, picomolar 
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concentrations are also possible to determine with scientific 
confidence. Therefore, this research recommends blood collection 
until it reaches the lower limit of quantitation of the analytical 
instrument. Another thing to consider might be the dose for the 
compartmental PK modeling. Within linear PK, using a higher dose 
might help to better characterize the terminal phase of the C-t 
profile without compromising the analytical sensitivity. 

CONCLUSION 

Compartmental PK modeling is still one of the most useful modeling 
techniques in PK. However, without proper characterization or 
improper modeling might lead to inaccurate PK parameters. 
Sufficient time points are one of the simplest way to avoid error in 
compartmental PK modeling. 
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