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ABSTRACT 

Objective: The main compounds in O. aristatus are rosmarinic acid, sinensetin, and eupatorin. Sinensetin and rosmarinic acid compounds have the 
potential as antiviral agents. The focus of this research is O. aristatus purple and white-purple varieties. This study aimed to determine the levels of 
three main secondary metabolites of O. aristatus, one of the specific standardizations.  

Methods: The standardization parameters to be tested were to determine the main compound levels by using thin-layer chromatography 
densitometry on two varieties of O. aristatus.  

Results: The highest value levels of sinensetin and rosmarinic acid in purple variety O. aristatus were 0.53 and 1.32% w/w, respectively. The 
highest level of eupatorin was 0.88% w/w in the ethanol extract of white-purple varieties of O. aristatus. The main secondary metabolites in the two 
varieties of O. aristatus were more significant in the leaves than in the stems. Meanwhile, the sinensetin and rosmarinic acid levels in the ethanol 
extract of leaves and stems of the purple variety O. aristatus were higher and significantly different than in the white-purple ones. However, the 
levels of eupatorin were higher and significantly (p<0.05) different in the white-purple variety compared to the purple variety.  

Conclusion: The purple variety is due to greater sinensetin and rosmarinic acid levels in the purple variety than in the white-purple ones. 
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INTRODUCTION  

The active compounds in O. aristatus have diuretic, hypoglycemic, 
and antihypertensive effects [1]. The extract of O. aristatus causes 
the diuretic effect and contains flavonoids (sinensetin and 
tetramethoxyflavone) [1]. The active isolates of O. aristatus 
(methylripariochromene A, acetovanillochromone, orthochoromen 
A) has an antihypertensive effect [1]. In addition, the flavonoid 
compound (sinensetin) in O. aristatus has activity in lowering blood 
sugar levels [2, 3]. Several studies about the extract of O. aristatus 
conducted in vitro show anti-tumor and anti-microbial effects [1]. 
There is a report of in vitro study on sinensetin and 
tetramethilscutellarein about the capability of anti-tumor activity in 
Ehrlich ascites tumor cells [1]. It has also been proven that the liquid 
extract from O. aristatus shows anti-bacterial activity against two 
serotypes of Streptococcus mutants. O. aristatus extract also inhibits 
the germination of six test fungal species [1]. Other pharmacological 
activity reports of the O. aristatus plant are antihyperglycemic [2], 
anti-epilepsy [4], analgesics antipyretic [5], rheumatoid treatment 
[6], and osteoarthritis arthritis [6], treatment to overcome gastric 
disorders [7, 8], hepatoprotective effect [9, 10], antioxidants [11, 
12], enhancing memory [13], treating cardiovascular disorders [14], 
antiviral [15], and immunomodulators [16-22].  

During the COVID-19 pandemic, the O. aristatus is a potential plant 
to be developed. Based on silico studies, several compounds have 
potential as COVID-19 inhibitors, including rosmarinic acid [23-25], 
sinensetin [26], cirsimaritin [27], caffeic acid derivatives [28], 
sagerinic acids [29], β-caryophyllene [30], and 1,8-cineole [31]. In 
addition to this inhibitive character, the O. aristatus plant's active 
compound has potential as an antiherpetic [32] (caffeic acid [33], N-
transferulolyl tyramine [34], β-caryophyllene [35], limonene [36], 
eugenol [37, 38], p-cymene) [39], as anti-influenza virus (sinensetin 
[40], caffeic acid [41], limonene [42], 1,8-cineol [43], linalool [44], 
eugenol [45], aurantiamide) [46], as anti-viral hepatitis (rosmarinic 
acid [47], ladanein [48], oleanolic acid [49], ursolic acid [50], 
danshensu) [51], as anti-Japanese viral encephalitis (rosmarinic 

acid) [52], as anti-enterovirus 71 (rosmarinic acid) [53], and as anti-
human immunodeficiency virus (HIV) (lithospermic acid [54], 
chicoric acid [55], 2,3-dicaffeoyltartaric acid [56], thansione ⅡA [57], 
oleanolic acid [58, 59], maslinic acid) [60].  

There are three O. aristatus in Indonesia, namely, O. aristatus with 
purple, white-purple and white varieties [61]. Meanwhile, in Malaysia, 
there are some reports of two varieties, such as purple-flowered and 
white flowers of O. aristatus [62]. According to Padua et al., old leaves 
of O. aristatus with purple flowers had sinensetin up to 0.4% [63]. 
Similar data reports by Lee stated that those purple varieties had 
higher bioactive compounds than the white varieties [64]. White-
flowered O. aristatus has many leaves, branches, stems, and roots. 
Meanwhile, the purple and white-flowered O. aristatus had the most 
extensive leaf area indices [65]. Hence, the results of this study are 
expected to provide levels of the active compounds of the two varieties 
of O. aristatus, so that it can be used as a specific parameter to ensure 
the consistency of traditional medicinal products.  

MATERIALS AND METHODS 

Preparation of plant material 

O. aristatus were collected from the Manoko Experimental Garden, 
West Bandung, Indonesia. The processes carried out on plant samples 
were sorting, drying in an oven at 50 °C and reducing particle size. 

Extraction of plant material 

The extraction was done through maceration, in which there were 
four macerators prepared, and each macerator was added 100 g of 
purple leaves (LP), purple stems (SP), white-purple leaves (LWP) 
and white-purple stems (SWP) raw material. After that, each 
macerator was added 1.5 l of ethanol solvent. Meanwhile, the filtrate 
was concentrated using a water bath to form a thick extract. 

Preparation of the standard and samples solutions 

Standard solutions of rosmarinic acid, sinensetin, and eupatorin were 
prepared at a concentration of 1000 mg/l in methanol. The stock 
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solution was diluted with methanol up to five concentrations ranging. 
Furthermore, the acetone, ethyl acetate, and ethanol extracts from two 
varieties of O. aristatus were prepared by dissolving 15 mg of extract 
in 1 ml of methanol and sonicated for 45 min. 

Chromatographic conditions 

Standard solutions and samples were applied on TLC plates, and the 
standard solution and sample were applied using a micropipette 
with a volume of 5 ml. The mobile phase of toluene consisting of 
ethyl acetate: formic acid: water (3: 3: 1: 0.2) [66] was pre-saturated 
in the chamber. Observing the area of each spot with a densitometry 
CAMAG analyzer, monitoring was carried out at a wavelength of 254 
nm. Data analysis was performed using the win CATS software. 

Data analysis 

Data processing was performed by one-way ANOVA using SPSS 22 
software P values <0.05. 

RESULTS  

The previous research reported that the differences in morphology 
of white-purple and purple O. aristatus were sighted in leaf colour, 
petal colour, crown colour, the colour of the stems of the pistil, and 
colour of stamens (fig. 1) [67]. 

Determination of the main secondary metabolites levels in two 
varieties of O. aristatus using TLC-Spectrodensitometry referred to 
the research conducted by Hossain [72] with the development and 
modification of the mobile phase, standard concentrations, and 
determined compounds, not only sinensetin. The linearity 

correlation coefficient (R2) of determining the levels of the main 
secondary metabolites of two varieties of O. aristatus is presented in 
table 1. 
 

 

Fig. 1: O. aristatus plant. A: the flower (white-purple) b: the 
flower (purple variety) c: the leaf of (white-purple), d: the leaf 

(purple variety) 
 

 

A 

 

B 

Fig. 2: The TLC profiling of the ethanol extract of two varieties O. aristatus and the standard sinensetin in UV light at 365 (A) and 254 nm 
(B). S1 = sinensetin (60 ppm), S2 = sinensetin (70 ppm), S3 = sinensetin (80 ppm), S4 sinensetin (90 ppm), S5 = sinensetin (100 ppm), 

LWP = leaves ethanol extract (white-purple), LP = leaves ethanol extract (purple), SWP = stem ethanol extract (white-purple), SP = stem 
ethanol extract (purple) 
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Table 1: The regression equation of determining the levels of secondary metabolites of two varieties of O. aristatus using TLC-densitometry 

Compound Linearity range (µg/ml) Regression equation R2(n= 3) 
Sinensetin 60-100 y = 86.872x-4438.5 0.9954 
Eupatorin 60-100 y = 28.509x-458.66 0.9986 
Rosmarinic acid 60-100 y = 30.043x-1365 0.9961 

The results of TLC showed the presence of a sinensetin compound in two varieties of O. aristatus because there were spots with the same retention 
factor (Rf = 0.60) as the sinensetin standard with bright blue fluorescence. TLC profiles and 3D chromatogram displays are illustrated in fig. 2 and 
fig. 3. The levels of sinensetin in leaves of purple varieties were 0.55% w/w, leaves of white-purple varieties were 0.43% w/w, stems of purple 
varieties were 0.39% w/w, and stems of white-purple varieties were 0.38% w/w respectively. 
 

 

Fig. 3: Chromatogram of the ethanol extract of two varieties, O. aristatus and the standard sinensetin (3D-TLC). pink chromatogram = 
sinensetin standard, blue chromatogram = leaves ethanol extract (white-purple), green chromatogram = leaves ethanol extract (purple), 

brown chromatogram = stem ethanol extract (white-purple), red chromatogram = stem ethanol extract (purple) 
 

Eupatorin was detected in leaves and stems of white-purple 
varieties, whereas in purple varieties, it was only detected in leaf 
parts with Rf = 0.67 (fig. 4 and fig. 5). The level of eupatorin in the 
ethanol extract of purple varieties O. aristatus leaves was 0.45% 
w/w, while the stem was not detected. The ethanol extract of leaves 
and stems of white-purple varieties contained eupatorin with 1.09% 
w/w and 0.18% w/w, respectively. 

Rosmarinic acid was detected at Rf 0.43 on a UV-254 nm 
observation lamp (fig. 6 and 7). The levels of rosmarinic acid in the 
ethanol extract of leaves and stems of purple varieties were 1.36% 
w/w and 0.46% w/w, respectively, while those in white-purple 
varieties were 0.43% w/w and 0.38% w/w, respectively. 

The comparison of sinensetin, eupatorin, and rosmarinic acid levels 
is presented in table 2 and fig. 8. 

  

 

A 

 

B 

Fig. 4: The TLC profiling of the ethanol extract of two varieties O. aristaus and the standard eupatorin in UV light at 365 (A) and 254 nm 
(B). E1 = eupatorin (60 ppm), E2 = eupatorin (70 ppm), E3 = eupatorin (80 ppm), E4 = eupatorin (90 ppm), E5 = eupatorin (100 ppm), 

LWP = leaves ethanol extract (white-purple), LP = leaves ethanol extract (purple), SWP = Stem ethanol extract (white-purple), SP = Stem 
ethanol extract (purple) 
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Fig. 5: Chromatogram of the ethanol extract of two varieties, O. aristatus and the standard eupatorin (3D-TLC). pink chromatogram = 
eupatorin standard, blue chromatogram = leaves ethanol extract (white-purple), green chromatogram = leaves ethanol extract (purple), 

brown chromatogram = stem ethanol extract (white-purple), red chromatogram = stem ethanol extract (purple) 
 

 
A 

 
B 

Fig. 6: The TLC profiling of the ethanol extract of two varieties O. aristatus and the standard rosmarinic acid in UV light at 365 (A) and 254 
nm (B). RA 1 = rosmarinic acid (60 ppm), RA 2 = rosmarinic acid (70 ppm), RA 3 = rosmarinic acid (80 ppm), RA 4 = rosmarinic acid (90 
ppm), RA 5 = rosmarinic acid (100 ppm), LWP = leaves ethanol extract (white-purple), LP = leaves ethanol extract (purple), SWP = Stem 

ethanol extract (white-purple), SP = Stem ethanol extract (purple) 
 

 

Fig. 7: Chromatogram of the ethanol extract of two varieties, O. aristatus and the standard eupatorin (3D-TLC). pink chromatogram = 
sinensetin standard, blue chromatogram = leaves ethanol extract (white-purple), green chromatogram = leaves ethanol extract (purple), 

brown chromatogram = stem ethanol extract (white-purple), red chromatogram = stem ethanol extract (purple) 
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Table 2: Levels of rosmarinic acid, sinensetin, eupatorin from ethanol extracts of two varieties of O. aristatus with TLC-densitometry 

Sample Sinensetin (% w/w)±SD (n = 3) Eupatorin (% w/w)±SD (n = 3) Rosmarinic acid (% w/w)±SD (n = 3) 
LWP 0.43±0.00a 1.09±0.07a 0.43±0.01a 
LP 0.55±0.02b 0.44±0.07b 1.36±0.08b 
SWP 0.38±0.01c 0.18±0.01c 0.38±0.00c 
SP 0.39±0.00c ND 0.46±0.01a 

Mean values with different superscript letters were significantly different (p<.05), ND: Not detected 

 

 

Fig. 8: The comparison of sinensetin, eupatorin, and rosmarinic 
acid in ethanol extracts of two varieties of O. aristatus. LWP = 

leaves ethanol extract (white-purple), LP = leaves ethanol 
extract (purple), SWP = Stem ethanol extract (white-purple), SP 

= Stem ethanol extract (purple) 

 

DISCUSSION 

In purple varieties, the colour of the stems of the pistil (purple) and 
colour of stamens (purple). Meanwhile, the colour of the stems of 
the pistil (white-purple), and colour of stamens (white-purple) [67]. 
Observing the plant morphology or sources of traditional medicinal 
ingredients was essential to ensure the correctness and validity of 
the plants to be used. Thus, morphological studies were carried out 
in this analysis to differentiate purple and white-purple varieties to 
verify the possibility of variations in the levels of secondary 
metabolites of both varieties. Febijslami et al., Keng and Siongand 
Almatar et al. have also conducted studies comparing the 
morphology of purple, white-purple, and white varieties [61,62,68]. 
Their studies showed that the purple variety O. aristatus were 
higher than those of the white varieties [63,64], but there was no 
comparison of secondary metabolite levels reported between the 
purple and white-purple varieties. 

The leaf shape was rhombus in the purple and white-purple 
varieties; this result was consistent with the one recorded by Keng 
and Siong [62]. The colour of the two O. aristatus varieties' leaves 
was not different from the report of Almater et al. [68]. Green-purple 
was the colour of purple flower petals, which was consistent with a 
report by Keng and Siong [62], while white was the colour of petals 
of the white-purple type. The purple variety's crown colour was 
purplish, and the white-purple variety was white. The morphology 
of flowers was the most fundamental distinction between these two 
varieties. There were some variations and similarities in the 
morphology of roots, leaves, and flowers in the genus Lamiaceae 
[69].  

According to Faramayuda et al., there were no differences in 
phytochemical content between purple and white-purple varieties. 
The crude drugs and ethanol extracts of both varieties contained 
secondary metabolites of alkaloids, flavonoids, tannins, 
polyphenolic, saponin, steroid and triterpenoid, monoterpenoid and 
sesquiterpenoid [67]. The research at the genetic level on O. 
aristatus, can be used to distinguish between white and purple 
varieties [70]. Both varieties were reported to have different 
bioactive compounds, mostly purple varieties that produced higher 
levels of bioactive compounds than white varieties [64]. 
Morphological studies showed that the morphology of flowers and 
leaves could identify both varieties [62, 71]. 

Several previous studies reported that purple varieties had higher 
levels of sinensetin than white ones [64]. The results of a study 
reported by Febjislami reported that the levels of sinensetin in the 
methanol extract of O. aristatus growing in Indonesia were higher in 
purple varieties than in white varieties [73]. White varieties of O. 
aristatus, which had the characteristics of a plant with medium 
height and had strong anthocyanin colouration on the stem [74]. 
These results indicated that in addition to the influence of varieties, 
plant age factors could affect sinensetin levels because they were 
related to anthocyanin concentrations and maturity levels. In 
addition, flower colour had a strong correlation with sinensetin 
levels. Flower colour could be used for initial estimates of O. 
aristatus, which tend to have high sinensetin levels when found in 
the field. 

Hossain and Ismail recorded monitoring of the TLC profile of the O. 
aristatus variety with mobile phase chloroform–ethyl acetate 
(60:40), where sinensetin was observed at Rf 0.49 and reported that 
sinensetin levels with TLC-densitometry on the extract of O. 
aristatus that grew in Penang Malaysia with acetone: water (70:30) 
solvent was 0.32% w/w, methanol: water (1:1) 0.15% [72]. The 
determination of sinensetin levels in O. aristatus growing in Fujian 
Zhangzhou, Guangxi Yulin, and Yunnan Kunming, averaged 0.057 
mg/g [75]. The levels of sinensetin in the stems, and roots of O. 
aristatus obtained from the Yulin Chinese herbal medicine market in 
Yulin China using HPLC-MS, were 0.097 mg/g, 0.103 mg/g, and 
2.719 mg/g, respectively [76]. This report aligned with this study's 
results, where the levels of sinensetin in the leaves were more 
significant than in the stems. 

In general, eupatorin levels were higher in white-purple varieties 
than in purple varieties. The result was inversely proportional to 
sinensetin levels, where purple varieties were higher than white-
purple varieties. The results of previous studies reported that 
eupatorin levels in the leaves of one O. aristatus variety were 0.209 
mg/g and 4.73 mg/g, while those in the roots and stems were 0.184 
mg/g and 0.285 mg/g [76]. Rosmarinic acid levels in the leaves of 
the two varieties of O. aristatus were more significant (p<0.05) than 
in stems. In other studies, it was reported that the rosmarinic acid 
levels of water-ethanol extract in the roots, stems and leaves were 
0.018 g/g, 0.008 g/g, and 0.020 g/g raw material [76]. Methanol-
water extract of O. aristatus contained rosmarinic acid as much as 
2.826 mg/g [75]. The morphological observations of the purple 
variety O. aristatus had a purple tinge to the crown and pistil stalk, 
while the white-purple variety had a purple tinge.  

The results of this morphological observation aligned with what has 
been reported by Faramayuda [79, 80] stating that the levels of 
sinensetin and rosmarinic acid compounds were higher in the 
purple variety. The result of previous studies also reported higher 
flavonoid levels in the purple variety than in the white-purple 
variety [81]. Sinensetin and rosmarinic acid compounds had the 
potential as antiviral [82], antihypertensive [83, 84] and antidiabetic 
[85-87]. Moreover, sinensetin concentrations were lower in non-
polar solvents such as hexane [77]. Rosmarinic acid was more 
soluble in polar solvents and had four hydroxyl groups and one 
carboxyl group (water) [78]. Compounds of rosmarinic acid were 
more drawn to ethanol solvents than ethyl acetate solvents [77]. 

CONCLUSION 

The morphological difference between the purple and white-purple 
varieties of O. aristatus lies in the colour of the crown and pistil stalk. 
Sinensetin and rosmarinic acid levels are higher in purple varieties 
than in white-purple varieties, while eupatorin compounds are 



F. Faramayuda et al. 
Int J App Pharm, Vol 14, Special Issue 5, 2022, 72-79 

5th International Seminar on Pharmaceutical Science and Technology (ISPST)-3rd International Seminar and Expo on Jamu-13th Annual ISCC 2022.          | 77  

higher in white-purple varieties than purple ones. This study has 
proved differences in the levels of active compounds of the two 
varieties of O. aristatus. Therefore, the findings of this study are 
expected to become a recommendation for herbal medicine 
developers in choosing the varieties of O. aristatus. 
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