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ABSTRACT 

Objective: The coronavirus disease 2019 (COVID-19) pandemic has become a global concern today. As a receptor that plays an important role in 
viral entry, inhibition of angiotensin-converting enzyme-2 (ACE-2) activity could prevent severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) infection. Quercetin is one of the flavonoid compounds reported to have activity as an ACE-2 inhibitor via interaction with the hydroxyl 
group at ring B positions 3' and 4'. The aims of this research to analyze the binding interaction of some flavonoid compounds into ACE-2 receptor to 
predict their activity as an anticovid-19. 

Methods: An in silico approach via molecular docking simulations was conducted, and the selection of potential compounds was based on Lipinski's 
rules, prediction of absorption, distribution, metabolism, and toxicity (ADMET). 

Results: The results showed that nepetin was the most potent compound, with a bond energy of-4.71 kcal/mol and an inhibition constant of 355.62 
µM. The compound is bound to amino acid residues Asp30, His34, Glu35, and Thr27, which are important amino acid residues of the ACE-2 
receptor. 

Conclusion: The nepetin compound complies with all Lipinski rules and has a better ADMET profile compared to other compounds. 
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INTRODUCTION 

Since the first case in Wuhan, cases of Coronavirus Disease-19 
(COVID-19) have been increasing every day. Based on data from 
World meter, as of May 10, 2021, it was reported that the number of 
positive cases of COVID-19 and mortality worldwide reached 
158,974,260 and 3,306,830, respectively (1). In Indonesia, the 
number of positive cases of COVID-19 has reached 1,713,684 with 
47,012 deaths (case fatality rate/CFR = 2.7%) [1]. 

COVID-19 is caused by Severe Acute Respiratory Syndrome 
Coronavirus-2 (SARS-CoV-2), which is transmitted from human to 
human through droplets released by an infected person’s coughs or 
sneezes, which are inhaled or through contact with contaminated 
objects in the vicinity of the infected person [2]. Clinical 
manifestations of COVID-19 usually appear within 3-14 d after 
exposure. Common symptoms of COVID-19 include fever, cough, and 
shortness of breath. However, a person exposed to SARS-CoV-2 may 
not show any symptoms (asymptomatic) and can still transmit the 
virus to others [3]. 

Various types of synthetic drugs have been used as therapy in 
patients with COVID-19 to reduce the case fatality rate (CFR), one of 
which is chloroquine. However, research has reported that the side 
effects are greater than the effectiveness [4]. Therefore, further 
research is needed to find active compounds that can be used in 
COVID-19 therapy. 

In the search for active compounds, a phytochemical study was 
carried out by screening compounds that have the potential for 
COVID-19. Flavonoids (fig. 1) are compounds that can be found in 
many plants and have bioactivity that is beneficial to health, such as 
anti-inflammatory, antioxidant, antimicrobial, and antiviral [5]. This 
bioactive compound has the potential to be developed as an anti-
COVID-19 drug by considering its mechanism of action as an 
inhibitor of the Angiotensin Converting Enzyme-2 (ACE-2) receptor 
as well as chloroquine. 

 

Fig. 1: Structure of flavonoids [6] 
 

ACE-2 is an integral type 1 membrane protein and a functional 
receptor for SARS-CoV-2, playing an important role in virus 
transmission into alveolar cells [7, 8]. Inhibition of ACE-2 activity 
could be promising in preventing SARS-CoV-2 infection due to its 
role in viral entry. Quercetin is one of the flavonoid compounds 
reported to have activity as an ACE-2 inhibitor, with two hydroxyl 
groups in ring B (positions 3' and 4') of the quercetin structure (fig. 
2) playing a role in the inhibition [9]. Therefore, it is postulated that 
other flavonoid compounds with structures similar to quercetin 
could provide similar activity. 
 

 

Fig. 2: Quercetin [9] 
 

Delphinidine, eriocitrin, eriodictyol, gossypetin, hyperoside, luteolin, 
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robinetin, rutin, and tricetin are flavonoid compounds having a 
similar structure to quercetin [6]. Molecular docking simulations 
were used to determine the interaction of these compounds with the 
ACE-2 receptor. In drug discovery and development, it is necessary 
to identify the pharmacokinetic profile and toxicity of these 
compounds. Therefore, compounds that meet Lipinski's rules were 
further tested for pharmacokinetics and toxicity using pre-ADMET 
and vNN programs. 

MATERIALS AND METHODS 

Materials 

The hardware used in this study was a Lenovo laptop (model 80XU) 
with the Microsoft Windows 10 Pro 64-bit operating system. It was 
equipped with an AMD A9-9420 RADEON R5 processor, which had 5 
COMPUTE CORES 2C+3G and a speed of 3.00 GHz. Additionally, it 
had 4.00 GB of RAM. The software used included AutoDockTools 
1.5.6, BIOVIA Discovery Studio Visualizer 2016, and Chem Office 
2016. 

The materials used in this study consisted of a macromolecule ACE-2 
(downloaded from the Protein Data Bank with a resolution of 2.45 
Å) and the three-dimensional structures of flavonoids, which were 
described using the software Chem Office 2016. The flavonoid 
compounds used as ligands were: quercetin, delphinidine, eriocitrin, 
eriodictyol, gossypetin, hyperoside, luteolin, monoxerutin, 
myricetin, nepetin, nepitrin, orientin, rhamnetin, robinetin, rutin, 
and tricetin. Chloroquine was used as the positive control. 

Method 

Molecular docking simulation 

The test and comparison ligands were prepared by converting them 
into a three-dimensional structure using the Chem3D program. The 
energy was minimized, and Gasteiger charge and torque parameters 
were added. Grid parameters were then created by specifying the 

grid box and selecting the map type. A molecular docking parameter 
was created by adding Lamarckian Parameters and setting the 
Number of GA Runs to 100 repetitions. The file was saved in. dpf 
format [10]. The interactions and bond energies between the 
comparison drug, chloroquine, the test flavonoid compounds, and 
the ACE-2 receptor were simulated using the ADT program. 

Selection of compounds using lipinski's rule 

The website http://scfbio-
iitd.res.in/software/drugdesign/lipinski.jsp was used to view the 
parameters in Lipinski's rules. For an active compound to be used as 
an oral drug candidate, it must meet no more than one of the 
Lipinski rule parameters, which include a hydrogen bond donor<5, a 
hydrogen bond acceptor<10, a molecular weight<500 Da, and a log 
P<5 [11]. 

Prediction of absorption, distribution, metabolism and toxicity 

Analysis of the pharmacokinetic properties of the test flavonoid 
compounds can be carried out using pre-ADMET and vNN programs. 
The parameters analyzed were Human Intestinal Absorption (HIA) 
and Caco-2 cells for absorption, Plasma Protein Binding (PPB) and 
Blood Brain Barrier (BBB) for distribution, Cytochrome P450 (CYP) 
inhibitors for metabolism, and mutagenicity and carcinogenicity for 
toxicity [12]. 

RESULTS AND DISCUSSION 

Molecular docking simulation 

In docking molecules, a grid box is needed to determine the active 
site coordinates of the ACE-2 receptor. Parameters that need to be 
considered are the size of the grid box and the center (initial 
position of the ligand to be docked). The determination of the grid 
box was carried out through a literature study to obtain the grid box 
size of 40 x 40 x 40, space of 0.375, and center coordinates of x =-
36.126, y = 32.573, and z = 3.383 [13]. 

 

Table 1: Simulation results of molecular docking to ACE-2 receptor 

Compound  ∆G (kcal/mol) Ki (µM) Interaction with amino acids 
Hydrogen Hydrophobic Other interactions 

Chloroquine -4.34 653.69 Asp30 His34 - 
Quercetin -4.58 441.46 Glu35, Thr27 His34 Asp30, Lys31 
Delphinidine -4.51 495.27 Asp30, Thr27, Glu35 His34 - 
Eriocitrin -3.02 6090 Asp30, His34, Glu35 Lys31 - 
Eriodictyol -4.71 350.23 Thr27, Lys31, Glu35 His34 Asp30 
Gossypetin -4.47 523.74 Thr27, Glu35 - His34, Asp30 
Hyperoside -3.94 1290 Asp30, Lys31, Glu35, Thr27 - His34 
Luteolin -4.79 308,41 Asp30, Thr27, Glu35 His34 Lys31 
Monoxerutin -2.78 9160 Asp30, Thr27, Lys31 - His34 
Myricetin -4.51 490.88 Thr27, Glu35 - Asp30 
Nepetin -4.71 355.62 Asp30, Thr27, Lys31, Glu35 His34 - 
Nepitrin -3.59 2330 Asp30, Glu35, Lys31, Lys353, His34 - - 
Orientin -3.25 4110 Asp30, Glu35 His34, Lys31 - 
Rhamnetin -4.17 872.26 Glu35 His34, Lys31 Asp30 
Robinetin -4.53 477 Glu35, Thr27 His34 Asp30, Lys31 
Rutin -3.12 5150 Asp30, Lys31, Glu35 - His34 
Tricetin -4.55 465.08 Asp30, Thr27, Glu35, Lys31 His34 - 

 

There are three parameters used in determining the affinity of the 
test compound to the receptor, namely binding energy (∆G), 
inhibition constant (Ki), and interaction with amino acids. The 
negative value of ∆G indicates that interactions occur spontaneous ly 
[14]. The estimated minimum effective concentration is represented 
by the value of Ki, which is well-correlated to IC50 in the 
experimental assay [15]. The more negative the bond energy value 
and the lower value of the inhibition constant, the higher and more 
stable the affinity of the ligand to the receptor [16, 17]. Based on 
table 2, luteolin (-4.79 kcal/mol; 308.41 µM), eriodictyol (-4.71 
kcal/mol; 350.23 µM), and nepetin (-4.71 kcal/mol; 355.62 µM) have 
higher bond energy values with lower inhibition constants than 
chloroquine (-4.34 kcal/mol; 653.69 µM) and quercetin (-4.58 
kcal/mol; 441.46 µM). 

Han et al. identified an ACE-2 residue that directly interacts with the 
Receptor Binding Domain (RBD) of the SARS-CoV spike protein. The 
residues involved were Asp30, His34, Lys353, Thr27, Glu35, Gln24, 
Tyr41, Gln42, Met82, and Lys353 [18, 19]. It is important to identify 
the amino acid residues that interact with the test compounds, as 
the more similar amino acids, the more similar the mode of 
interaction will be established [20, 21]. 

Based on table 2, chloroquine, as the comparison compound, forms 
hydrogen bonds with Asp30 and hydrophobic interactions with 
His34. Meanwhile, quercetin, as a guide compound, forms 
hydrogen bonds with Glu35, Thr27, and hydrophobic interactions 
with His34. All test compounds interact with important amino acid 
residues at the active site of the ACE-2 receptor. However, based 
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on the three parameters used to determine the affinity of the test 
compound for the receptor, luteolin, eriodictyol, and nepetin are 
the best test compounds (fig. 3). This indicates that the test 

compounds can form stronger interactions than chloroquine and 
quercetin, making them potential candidates to inhibit the ACE-2 
receptor. 

 

  
a 

  
b 

  
c 

  
d 

  
e 

Fig. 3: Interaction between (a) Chloroquine, (b) Quercetin, (c) Luteolin, (d) Eriodictiol, (e) Nepetin with ACE-2 receptors 
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Selection of compounds using lipinski's rule 

As an oral drug, an orally dissolving tablet (ODT) is the most preferred 
dosage form [22]. Therefore, the compatibility of the test drugs to be 
formulated in an oral dosage form was also investigated. Active 
compounds used as oral drug candidates must comply with Lipinski's 
rules to determine whether these compounds can penetrate biological 

membranes and have good permeability [23, 24]. Lipinski parameters 
of the flavonoid compounds tested are shown in table 2. 

Based on table 2, luteolin, eriodictyol, and nepetin are the best 
compounds complying with Lipinski's rules without any violations. 
Thus, these compounds can be further investigated to determine 
their absorption profile, distribution, metabolism, and toxicity. 

 

Table 2: Lipinski rule parameters of Flavonoids 

No. Compound  Molecular weight  Log P Hydrogen bond 
Donor Acceptor  

1. Quercetin 302 2 5 7 
2. Delphinidin 303 2.61 6 7 
3. Eriocitrin 596 -1.46 9 15 
4. Eriodictyol 288 2.21 4 6 
5. Gossypetin 318 1.71 6 8 
6. Hyperoside 464 -0.73 8 12 
7. Luteolin 286 2.12 4 6 
8. Monoxerutin 654 -2.21 10 17 
9. Myricetin 318 1.71 6 8 
10. Nepetin 316 2.13 4 7 
11. Nepitrin 478 -0.39 7 12 
12. Orientin 448 -0.36 8 11 
13. Rhamnetin 316 2.31 4 7 
14. Robinetin 302 1.18 5 7 
15. Rutin 610 -1.87 10 16 
16. Tricetin 302 1.8 5 7 

 

Prediction of absorption, distribution, metabolism and toxicity 

Prediction of the pharmacokinetic profile of drug candidates could 
minimize inappropriate decisions on suitable drugs for oral dosage 
form [25–27]. Table 3 shows the absorption, distribution, and toxicity 
profiles of the tested flavonoid compounds. Parameters used to view 
absorption profiles include Human Intestinal Absorption (HIA) and 
Caco-2 cell permeation values; distribution profiles include Plasma 
Protein Binding (PPB) and Blood Brain Barrier (BBB); and toxicity 

profiles include mutagen city and carcinogenicity. 

The HIA value indicates the predicted percentage of drugs that can 
be absorbed by the human intestine [28]. A compound is categorized 
as well absorbed if the % HIA value is in the range of 70-100%, 
sufficiently absorbed if in the range of 20-70%, and poorly absorbed 
if in the range of 0-20% [29, 30]. Based on table 3, luteolin, 
eriodictyol, and nepetin have HIA values of 77-79%, indicating that 
these compounds can be well absorbed by the intestines. 

 

Table 3: Prediction of absorption, distribution, and toxicity of test flavonoid compounds 

No Compound Absorption Distribution Toxicity 
HIA (%) Caco2 (nm/sec) PPB (%) BBB Mutagenic Carcinogenic 

1. Luteolin 79.4 4.54 99.7 0.36 + + 
2. Eriodiktiol 77.4 4.53 100 0.3 + + 
3. Nepetin 78.3 2.47 92.9 0.1 + + 
 

In addition, there is a Caco-2 cell model, which is a model for 
estimating drug absorption in vitro [31]. The value of the Caco-2 cell 
divides the level of permeability of a compound into three levels, 
namely<4 nm/sec (low), 4-70 nm/sec (moderate), and>70 nm/sec 
(good) [32, 33]. Based on table 3, luteolin and eriodictyol have 
moderate permeability, while nepetin has poor permeability. The 
value of protein plasma binding (PPB) affects the pharmacokinetic 
and pharmacodynamic properties of the drug [34]. The PPB 
value>90% indicates that the drug is strongly bound to plasma 
proteins, while the PPB value<90% indicates that the drug is weakly 
bound to plasma protein so that it can be well distributed to its 
target of action [35, 36]. Eriodictyol showed 100% binding to 
plasma proteins, so it was not possible to use as a drug compound 
because only free molecules (not bound to plasma proteins) could 
interact with the receptor. Nepetin, with the best affinity, has a PPB 
value of 92.9%, indicating that there are still 7.1% free molecules 
that can be delivered to the target receptor, ACE-2. 

The blood-brain barrier (BBB) value indicates the concentration of a 
drug that can penetrate the central nervous system (CNS) [37]. A 
BBB value<0.1 indicates that the drug has a low ability to penetrate 
the CNS (low absorption to the CNS), middle absorption to the CNS if 
the BBB value is in the range of 0.1-2.0, and high absorption to the 
CNS if the BBB value is>2.0 [38]. Luteolin and eriodictyol have a BBB 
value>2, which means that both compounds have a high potential to 

penetrate the CNS. Meanwhile, nepetin has an intermediate ability to 
penetrate the CNS with a BBB value of 0.1. The drug compounds for 
anti-COVID-19 are not designed to be targeted at the CNS but at the 
ACE-2 receptor, which is highly expressed in the lung epithelium. 
Therefore, the ability of drugs to penetrate the CNS needs to be 
prevented to avoid side effects on the CNS [39]. 

The toxicity profile was evaluated based on the mutagenicity and 
carcinogenicity parameters [40]. In table 3, luteolin, eriodictyol, and 
nepetin have the potential to cause mutations (mutagenic) and 
cancer (carcinogenic). These properties should not be exhibited by 
compounds that will be developed into drugs. 

The metabolic profile of a drug can be determined based on its 
inhibitory effect on cytochrome enzymes [41]. Cytochrome P450 
(CYP) enzymes play a crucial role in drug elimination through 
metabolic biotransformation [42]. CYP450 comprises five primary 
isoforms, namely CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 
[43]. Inhibiting the activity of these isoforms can cause drug 
interactions related to pharmacokinetics, leading to side effects or 
unwanted drug reactions due to reduced clearance and the 
accumulation of drugs or drug metabolites [44]. According to table 
4, luteolin inhibits CYP1A2, while eriodictyol inhibits both CYP1A2 
and CYP2C19. Meanwhile, nepetin was predicted to have no 
potential for inhibiting cytochrome P450 isoenzymes. 
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Table 4: Prediction profile of flavonoid compound metabolism test 

No. Compound name Inhibitor CYP 
1A2 2C9 2C19 2D6 3A4 

1. Luteolin Yes No No No No 
2. Eriodictyol Yes No Yes No No 
3. Nepetin No No No No No 

 

CONCLUSION 

Based on the studies, nepetin has the best interaction with the 
angiotensin-converting enzyme-2 (ACE-2) receptor, as indicated by 
the binding energy value (∆G) of -4.71 kcal/mol, an inhibition 
constant of 355.62 µM, and interaction with the important amino 
acid residues Asp30, His34, Glu35, and Thr27. The absorption, 
distribution, metabolism, and toxicity profiles of nepetin have been 
identified. Nepetin is predicted to be well absorbed in the human 
intestine, as indicated by the human intestinal absorption (HIA) 
value of 78.3%. While the Caco-2 cell permeability value of 2,467 
indicates that nepetin can be well absorbed in the intestine but has a 
low ability to penetrate membranes. The protein plasma binding 
(PPB) value of nepetin is 92.9%, and the blood-brain barrier (BBB) 
value is 0.1%, indicating that there are still 7.1% free molecules that 
could be delivered to the ACE-2 receptor and have an intermediate 
ability to penetrate the blood-brain barrier. Meanwhile, for toxicity, 
nepetin was predicted to be mutagenic and carcinogenic. In addition, 
it does not inhibit the five main cytochrome P450 enzyme isoforms 
and thus would not be involved in the inhibition of cytochrome P450 
(CYP450) enzyme activity. 
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