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ABSTRACT 

Objective: The primary aim of this investigation is to comprehensively examine the detrimental effects of non-synonymous single nucleotide 
polymorphisms (nsSNPs) on the WISP3 gene. This objective will be accomplished through intricate evaluations encompassing protein stability 
prediction, amino acid conservation analysis, investigation of protein-protein interactions (PPI), scrutiny of post-translational modifications (PTM), 
and the utilization of bioinformatics tools to forecast the potential association between nsSNPs and various diseases. By implementing these 
sophisticated methodologies, we aim to unveil the intricate mechanisms by which harmful nsSNPs influence the functionality and pathological 
implications of the WISP3 gene. 

Methods: Retrieved rsIDs of SNPs from the dbSNP database and filtered using 5 in silico programs. Selected nsSNPs were subjected to further 
analysis i.e., protein stability and conservation analysis, solvent accessibility analysis, PPI and PTM analysis, prediction and evaluation of both native 
and mutant protein, and identification of cancer association and gene expression analysis. 

Results: The study found that seven (C122Y, C145Y, C52Y, C78R, C75G, N233K, and R245I) of the nsSNPs are potentially vulnerable due to their 
higher conservancy and ability to reduce protein stability. Two (D271N and Q56H) of the nsSNPs from the initial screening were found to be 
associated with colon adenocarcinoma. 

Conclusion: The study's findings could help researchers design experiments to validate the predictions and develop potential treatments for 
diseases associated with the WISP3 gene. 
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INTRODUCTION 

WISP3, also known as WNT1-inducible signaling pathway protein 3, 
is a gene that encodes proteins belonging to the CCN family of 
proteins. CCN family is named after its first three members: 
cysteine-rich protein 61 (CYR61/CCN1), connective tissue growth 
factor (CTGF/CCN2), and nephroblastoma overexpressed 
(NOV/CCN3), with WISP3 also called CCN6 being the sixth member 
of this family [1]. This gene is located on chromosome 6q22, which 
encodes a 354 amino-acid protein [2]. This gene is essential for 
normal postnatal skeletal growth and cartilage homeostasis. It 
is characterized by four conserved cysteine-rich domains: insulin-
like growth factor-binding domain (IGFBP), von Willebrand factor 
type C module (VWC), thrombospondin domain (TSP), and C-
terminal cystine knot-like domain (CTCK) [3] (fig. 1). 
 

 

Fig. 1: Schematic representation of the WISP3 protein 
 

Amino acid residue numbers are indicated above each domain. 
WISP3 contains a signaling peptide (SP) and four conserved 
cysteine-rich domains: IGFBP, VWC, TSP, and CTCK. 

Mutations in this gene are associated with a rare autosomal 
recessive skeletal disorder called progressive pseudo-rheumatoid 
dysplasia (PPD). PPD typically manifests in children between the 
ages of 3 and 8. The first symptoms are an unusual gait pattern, 
weakness, exhaustion, and rigidity in the knuckles and knees. Over 
time, the patients are often accompanied by symptoms 
including swollen finger and knee joints and a 
significant constriction of the region between the hip bones and 
knee joints [4]. It is overexpressed in a subset of colorectal cancers 

(CRCs) [5]. Also, loss of WISP3 expression is associated with 
inflammatory breast cancer, suggesting that this gene functions as a 
tumor suppressor in inflammatory breast cancer [6]. 

The most prevalent type of genetic variation in people is single 
nucleotide polymorphisms (SNPs). There are around 11.5 million SNPs 
in the human genome [7]. Non-synonymous SNPs (nsSNPs) are one of 
the types of SNPs present in the coding region, which accounts for 
changes in encoded amino acids. They are the key factors contributing 
to many Mendelian disorders. Identifying whether a single amino acid 
substitution will lead to a pathological effect or not is of great 
importance for the development of personalized medicines [8]. 

Various in silico approaches have been developed to speculate the 
deleterious influence of SNPs, including sequence-based and 
structure-based approaches. Sequence-based methods rely on 
analyzing features such as the conservation of amino acids across 
different species or the physicochemical properties of the mutated 
residue. In contrast, structure-based methods consider the three-
dimensional structure of the protein and analyze the potential 
impact of an SNP on protein stability, folding, or interaction with 
other molecules. In silico methods utilize computational algorithms 
and models to assess the potential impact of genetic variations on 
protein function and structure [9]. 

In this study, we have attempted to identify the nsSNPs of the CCN6 
gene and their influence on the structure and function of the protein 
using various bioinformatic tools and public datasets and to identify 
various cancers associated with certain nsSNPs. This study is the first 
systematic and extensive in silico analysis of nsSNPs of the CCN6 gene, 
which will be helpful in future extensive studies in this regard. 

MATERIALS AND METHODS 

Retrieval of SNPs 

The SNPs of the gene CCN6 were retrieved from the dbSNP database 
(https://www.ncbi.nlm.nih.gov/snp/) [10], and the protein 
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sequence (UniProt ID: O95389) was obtained from UniProtKB 
(https://www.uniprot.org/) [11] in FASTA format.  

A total of 329 nsSNPs of CCN6 (Gene ID: 8838) were retrieved from 
National Center for Biotechnology Information (NCBI) dbSNP. 
Several bioinformatic tools were then used to carry out SNP analysis 
on the data. 

Identification and prediction of effects of deleterious SNPs 

In order to analyze the structural and functional effects of harmful 
nsSNPs in the CCN6 gene, SIFT, SNAP2, Align GVGD, PANTHER, and 
PolyPhen-2 were employed sequentially. 

SIFT (Sorting Intolerant from Tolerant) (https://sift.bii.a-
star.edu.sg/) is a sequence homology-based tool that determines 
deleterious (probability score<0.05) and tolerated (probability 
score>0.05) missense SNPs. It is a process with multiple phases that 
starts with a search for related sequences, continues with the 
selection of closely related sequences that might have properties 
similar to the query sequence, aligns these chosen sequences, and 
then determines normalized probabilities for each potential 
substitution from the alignment. The input query consisted of rsIDs 
collected from the dbSNP database [12]. 

SNAP2 (Screening for Non-acceptable Polymorphisms) 
(https://rostlab.org/services/snap/) examines a variety of sequence 
and variant features in order to distinguish between effective and 
neutral variants. The input query was protein sequence in FASTA format. 
The outcomes were calculated as a score that represents the likelihood 
that a specific mutation will alter the native protein's functionality with 
the level of precision that is anticipated. The score ranges from -100 
(strong neutral prediction) to +100 (strong effect prediction) and 
displays a heatmap of every potential replacement at each position [13]. 

Align GVGD (http://agvgd.hci.utah.edu/) is a web server that predicts 
whether an amino acid substitution is deleterious or neutral. This 
prediction sets a strong emphasis on the biophysical properties of 
amino acids and multiple sequence alignments of proteins. The input 
query was protein sequence in FASTA format and amino acid 
substitutions. It has several different classified variants (C0, C15, C25, 
C35, C45, C55, and C65), with C65 being the most likely to affect the 
function and C15 being the least probable [14]. 

PANTHER (Protein analysis through evolutionary relationship) 
(http://www.pantherdb.org/tools/csnpScoreForm.jsp) is a 
classification program based on molecular functions, interactions 
with other proteins, and evolutionary relationships. This tool 
computes position-specific evolutionary conservation (PSEC) scores 
by estimating the alignment of various proteins that are 
evolutionary-related. The input query given was plain protein 
sequence, amino acid substitutions, and human organism [15]. 

PolyPhen-2 (Polymorphism phenotyping v2) 
(http://www.pantherdb.org/tools/csnpScoreForm.jsp) was 
employed to investigate the potential impact of an amino acid 
substitution on the overall structure and function of the protein. 
Protein sequence, rsIDs, and information about amino acid 
substitution were provided as the input query to the server. The 
score can be between 0 and 1, with scores close to 0 being tolerated 
and scores close to 1 being detrimental. It carries out functional 
annotation of SNPs, maps coding SNPs to gene transcripts, extracts 
annotations and structural properties of protein sequences, and 
creates conservation profiles. Using a combination of all these 
properties, it then calculates the likelihood that the missense 
mutation will be harmful [16]. 

Determination of protein stability by MUpro  

MUpro (https://mupro.proteomics.ics.uci.edu/) is a set of machine 
learning programs to predict how single-site amino acid change affects 
protein stability. This tool determines the sign of protein stability 
changes and associated Delta G values upon mutation. The input query 
was plain protein sequence and amino acid substitution [17]. 

Estimation of conservation profile by ConSurf 

An amino acid's level of evolutionary conservation in a protein 
reflects an equilibrium between the need to maintain the structural 

integrity and function of the macromolecule and the amino acid's 
inherent propensity to mutate. ConSurf (https://consurf.tau.ac.il/) is 
a web server for identifying functional regions in macromolecules by 
examining the evolutionary dynamics of amino acid substitutions 
among homologous sequences. The evolutionary rate of an amino 
acid position is determined by either the empirical Bayesian method 
or the maximum likelihood method. The input query used was a 
protein sequence in FASTA format. The conservation score is 
represented using a color-coded scheme that ranges from 1 to 9, 
with 9 indicating highly conserved residue [18]. 

Prediction of solvent accessibility by NetsurfP-2.0  

NetSurfP-2.0 (https://services.healthtech.dtu.dk/services/NetSurfP-
2.0) employs a convolutional and long short-term memory neural 
network architecture that was developed using protein structure 
solutions as training data. It predicts solvent accessibility, secondary 
structure, disorder, and backbone dihedral angles for each residue of 
the input sequences. The input query used was protein sequence in 
FASTA format [19]. 

Post-translational modification (PTM) analysis by MusiteDeep 

MusiteDeep (https://musite.net/) is an online tool that offers a 
deep-learning framework for predicting and visualizing protein 
post-translational modification (PTM) sites. A protein sequence in 
FASTA format was used as input. It provides the prediction for 
multiple PTMs simultaneously [20]. 

Analysis of protein-protein interactions  

Proteins and their functional interactions form the backbone of the 
cellular machinery. STRING (Search Tool for the Retrieval of 
Interacting Genes/Proteins) (https://string-db.org/) is a database of 
curated biological pathway knowledge and databases of physical 
interactions. In addition to implementing well-known classification 
schemes like Gene Ontology and KEGG, it also provides fresh, new 
schemes based on both hierarchical clustering of the association 
network itself and high-throughput text mining. The input query 
used was protein sequence in FASTA format [21]. 

Prediction and evaluation of the 3D structure of CCN6 protein 
and mutated protein 

I-TASSER (Iterative Threading ASSEmbly Refinement) 
(https://zhanglab.dcmb.med.umich.edu/I-TASSER/) is a hierarchical 
protocol for structure-based function annotation and automated protein 
structure prediction. With the aid of multiple threading alignments, 
iterative structural assembly simulations, and atomic-level structure 
refinement, it first creates full-length atomic structural models. Based on 
comparisons between the protein's sequence and structure profile, the 
biological functions of the protein, including its ligand-binding sites, 
enzyme commission number, and gene ontology terms, are then derived 
from databases of known protein functions. The FASTA sequence of 
CCN6 was the input file for this server [22]. 

SWISS-MODEL (https://swissmodel.expasy.org/) for homology 
modeling of protein structures, a fully automated server that uses 
the updated UniProtKB proteome to align targets with templates. In 
this instance, the FASTA sequence was used as the input query. The 
preferred Ramachandran plot region, QMEAN, and Molprobity score 
provided by this server can be used to validate the predicted 
structures [23]. 

PROCHECK and ERRAT were employed to evaluate the 
stereochemical quality of protein structure. PROCHECK 
(https://servicesn.mbi.ucla.edu/PROCHECK/) examines both the 
overall structural geometry and the geometry of individual residues, 
it assesses the stereochemical quality of a protein structure. ERRAT 
(https://servicesn.mbi.ucla.edu/ERRAT/) validates the statistical 
relationship of non-bonded interactions between various types of 
atoms based on typical atomic interactions and serves to validate the 
overall model quality. For both servers input query was predicted 
models in pdb format [24]. 

ProSA-web (https://prosa.services.came.sbg.ac.at/prosa.php) is 
another widely used tool for enhancing and validating experimental 
protein structures. The given input query was predicted models in 
pdb format [25]. 
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Point mutation was made in the native protein sequence at specific 
locations and I-TASSER was used for the structural analysis of the 
mutated protein. The mutated model was evaluated using the TM-
align tool (https://zhanglab.dcmb.med.umich.edu/TM-align/) 
compares protein structures based on superimposing the 
structures to assess structural similarity and computes the root 
mean square deviation (RMSD) and template modeling-score (TM 
score). TM-score ranges from 0 to 1, with 1 being a perfect match 
between two structures, 0.0<TM-score<0.30 means random 
structural similarity, and 0.5<TM-score<1.00 means both 
structures are in the same fold [26]. 

Identification of cancer associated with nsSNPs 

cBioPortal (https://www.cbioportal.org/) is a database of cancer 
genomics that facilitates data exploration and analysis through the use 
of a variety of visualization and analytical tools. To determine the 
relationship between the specific nsSNPs and cancer, the distribution 
of CCN6 gene mutations in the server was searched [27].  

CanSAR Black (https://cansarblack.icr.ac.uk/) is a comprehensive 
knowledgebase that combines data from various disciplines and 

employs artificial intelligence and machine learning techniques to 
produce predictions helpful in the drug discovery process [28]. 

Analysis of gene expression and overall survival rate 

GEPIA (Gene Expression Profiling Interactive Analysis) 
(http://gepia.cancer-pku.cn/), an interactive database, analyzes the 
RNA sequencing expression data. It provides dot plots or box plots of 
a gene’s expression profiles and survival analysis using the log-rank 
test. The gene name (CCN6) was used as input for both analyses, and 
a specific cancer name was selected [29]. 

RESULTS 

Retrieval of nsSNPs 

The dbSNP database was used to retrieve the SNPs for the human 
CCN6 gene. It contained 7156 SNPs in total, out of which 2 inframe 
deletions, 1 inframe insertion, 2 inframe indels, 6 initiator codon 
variants, 590 noncoding transcript variants, 5595 introns, 329 
nsSNPs (missense), and 125 synonymous. For this study, only 
nsSNPs of CCN6 were retrieved, which contributed to only 4.5% of 
all SNPs known in the human CCN6 gene (fig. 2). 

 

 

Fig. 2: SNP distribution in the CCN6 gene's various functional classes as found in the dbSNP database 

 

Identification and prediction of effects of deleterious SNPs 

Through the use of various tools like SIFT, SNAP2, Align GVGD, 
Polyphen-2, and PANTHER, in silico analysis of CCN6 SNPs obtained 
through dbSNP was carried out. Initial screening was done using SIFT, 
out of 329 nsSNPs it predicted 102 to be deleterious or tolerated, with 
the remaining nsSNPs not found. Among 102 nsSNPs, SIFT categorized 
the 52 nsSNPs as deleterious and 50 nsSNPs as tolerated. SNAP2, Align 
GVGD, PolyPhen-2, and PANTHER were used to filter the SIFT result. A 

total of 22 variants were significant according to SNAP2, while the 
other 15 had no effect. Align GVGD identified that out of 102 nsSNPs, 
20 SNPs as being most likely to be affected, and 16 nsSNPs as being 
less likely to be affected. PolyPhen-2 predicted 15 as potentially 
harmful and 18 as benign and PANTHER revealed that 18 nsSNPs were 
probably damaging and 19 residues were probably benign (fig. 3). 

16 significant nsSNPs were chosen based on the pathogenicity 
demonstrated in at least 4 out of 5 tools (table 1). 

 

 

Fig. 3: Deleterious nsSNPs predicted by SIFT, SNAP2, Align-GVGD, PANTHER, and PolyPhen-2 software 
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Table 1: Selected 16 significant nsSNPs evaluated by 5 in silico programs 

RsIDs Amino acid change SIFT SNAP 2 Align-GVGD Panther PolyPhen-2 
rs35914692 W50R Deleterious Effect Class C65 Probably damaging Probably damaging 
rs121908899 C145Y Deleterious Effect Class C65 Probably damaging Probably damaging 
rs121908899 C122Y Deleterious Effect Class C65 Probably damaging Probably damaging 
rs121908902 C78R Deleterious Effect Class C65 Probably damaging Probably damaging 
rs121908903 S334P Deleterious Effect Class C65 Probably damaging Probably damaging 
rs147337485 G83E Deleterious Effect Class C65 Probably damaging Probably damaging 
rs143511761 F348L Deleterious Effect Class C15 Probably damaging Probably damaging 
rs144622585 D105V Deleterious Effect Class C65 Probably damaging Probably damaging 
rs146519527 R245I Deleterious Effect Class C65 Probably damaging Possibly damaging 
rs149494426 T267I Deleterious Effect Class C65 Probably damaging Probably damaging 
rs199997447 C75G Deleterious Effect Class C65 Probably damaging Probably damaging 
rs201041023 N125K Deleterious Effect Class C65 Probably damaging Probably damaging 
rs371614814 N233K Deleterious Effect Class C65 Probably damaging Probably damaging 
rs372585876 L14P Deleterious Effect Class C65 Probably damaging  
rs372770731 G97R Deleterious Effect Class C65 Probably damaging Probably damaging 
rs377647286 C52Y Deleterious Effect Class C65 Probably damaging Probably damaging 

 

Determination of protein stability 

Based on the free energy change value (DDG value), the 16 nsSNPs that 
were chosen for analysis were examined by the MUpro server to 
determine the impact of point mutation on protein stability. The DDG 
value counts the energy shifts that occur between a protein's folded and 
unfolded states. Mutation is said to increase stability if the energy change 
is positive and vice versa. There were 16 variants, of which 14 (C122Y, 
C145Y, C52Y, C78R, N233K, R245I, C75G, D105V, F348L, G97R, N125K, 
S334P, L14P and W50R) were predicted to decrease protein stability 
and 2 (G83E, and T267I) to increase it (table 2). 

Estimation of conservation profile 

All the 16nsSNPs were examined using the ConSurf web server to 
assess evolutionary conservation and identify potential structural 

and functional residues (fig. 4). Out of 16 nsSNPs, 8 (C122Y, C145Y, 
C52Y, C78R, G83E, N233K, R245I, and C75G) were found to be highly 
conserved with the conservation score 9, 6 (D105V, F348L, G97R, 
N125K, S334P, and T267I) were found to be moderately conserved 
with the score 8, 7 and 6, and 2 (L14P and W50R) were predicted as 
a variable with the score 4 (table 3). Among these 8 highly 
conserved residues, 4 (C122Y, C145Y, C52Y, and C75G) were found 
to be structural and buried, and the remaining 4 (C78R, G83E, 
N233K, and R245I) were functional and exposed.  

The output from MUpro and ConSurf was compared and examined 
to identify the most harmful nsSNPs. Based on this comparison, 
the 7nsSNPs (C122Y, C145Y, C52Y, C78R, C75G, N233K, and 
R245I) that were chosen as potentially harmful were analyzed 
further. 

 

 

 

Fig. 4: Conservation profile of CCN6 by ConSurf server 
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Table 2: Analysis of protein stability of high-risk nsSNPs by MUpro 

Mutation DDG (KJ/mol)  Stability 
C122Y -2.9313 Decrease 
C145Y -5.0108 Decrease 
C52Y -3.2857 Decrease 
C78R -4.1539 Decrease 
D105V -2.4221 Decrease 
F348L -1.0958 Decrease 
G83E  0.9351 Increase 
G97R -0.5008 Decrease 
L14P -7.4454 Decrease 
N125K -6.4003 Decrease 
N233K -5.5881 Decrease 
R245I -0.4975 Decrease 
S334P -2.4744 Decrease 
T267I  1.0029 Increase 
W50R -2.8828 Decrease 
C75G -6.7074 Decrease 

 

Table 3: Analysis of protein evolutionary conservation profile of high-risk nsSNPs by ConSurf 

Mutation Score Buried/Exposed Grade 
C122Y -1.279 b 9 
C145Y -1.279 b 9 
C52Y -1.278 b 9 
C78R -1.278 e 9 
D105V -0.444 e 7 
F348L -0.962 b 8 
G83E -1.026 e 9 
G97R -0.554 e 7 
L14P 0.746 b 4 
N125K -0.433 e 6 
N233K -1.288 e 9 
R245I -1.158 e 9 
S334P -0.721 b 7 
T267I -0.197 e 6 
W50R 0.706 e 4 
C75G -1.278 b 9 

 

Prediction of solvent accessibility 

NetSurfP evaluated the solvent accessibility and stability for the 7 
variants (C122Y, C145Y, C52Y, C78R, C75G, N233K, and R245I) (fig. 5). 
All seven variants and their respective wild variants were buried 
(table 4). Along with the buried or exposed information of the residue, 

Relative Surface Accessibility (RSA) and Absolute Surface Accessibility 
(ASA) value was given in the output. RSA is a measurement that 
compares a residue's actual solvent accessibility to its maximum 
accessibility. RSA values are relative and normalized. Whereas ASA 
values represent the actual surface area of residue that is accessible to 
solvent molecules without normalization [30]. 

 

 

 

Fig. 5: Solvent accessibility and stability prediction by NetSurfP-2.0 
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Table 4: Prediction of solvent accessibility by NetSurfP-2.0 

Mutation Class assignment RSA (%) ASA (Å) 
C122Y Buried 0.073 10.276 
C145Y Buried 0.024 3.31 
C52Y Buried 0.111 15.651 
C78R Buried 0.125 17.496 
N233K Buried 0.132 19.257 
R245I Buried 0.174 39.797 
C75G Buried 0.105 14.78 
 

Table 5: PTM sites predicted by MusiteDeep 

Residue Position Predicted PTM 
Glutamine (Q) 16 Pyrrolidone carboxylic acid  
Cysteine (C) 18 Palmitoylation  
Cysteine (C) 19 Palmitoylation  
Glutamine (Q) 22 Pyrrolidone carboxylic acid  
Threonine (T) 30 Phosphorylation  
Proline (P) 59 Hydroxylation  
Proline (P) 62 Hydroxylation  
Proline (P) 63 Hydroxylation  
Proline (P) 82 Hydroxylation  
Lysine (K) 169 Acetylation  
Asparagine (N) 178 Glycosylation  
Serine (S) 180 Phosphorylation  
Threonine (T) 222 Glycosylation  
Proline (P) 251 Hydroxylation  
Proline (P) 293 Hydroxylation  
Proline (P) 307 Hydroxylation  
Asparagine (N) 308 Glycosylation  
Cysteine (C) 335 Palmitoylation  
Cysteine (C) 337 Palmitoylation 
Cysteine (C) 341 Palmitoylation  
Seine(S) 349 Phosphorylation  
 

Post-translational modification (PTM) analysis 

PTMs are important in the folding and breakdown of proteins, in the 
regulation of gene expression, and in various biological pathways. 
The PTM predicted by MusiteDeep included pyrrolidone carboxylic 
acid, palmitoylation, phosphorylation, hydroxylation, acetylation, 
and glycosylation (table 5). 

Analysis of protein-protein interactions 

The interaction network of WISP3 was constructed using STRING 
(fig. 6), consisting of 11 nodes and 22 edges. The analysis predicted 
that WISP3 is associated with the following proteins: WNT1 (Wnt 
family member 1), COL10A1 (collagen type X alpha 1 chain), BMP4 
(bone morphogenetic protein 4), RHOC (ras homolog family member 
C), LRP6 (LDL receptor-related protein 6), VWF (von Willebrand 
factor), ITGB (integrin beta), EBLN2 (endogenous Bornavirus like 
nucleoprotein 2), MRAP2 (melanocortin 2 receptor accessory 
protein 2), and SPARC (secreted protein acidic and cysteine-rich). 

Prediction and evaluation of the 3D structure of CCN6 protein 
and mutated protein 

The three-dimensional structure of human CCN6 was first modeled 
using SWISS-MODEL. It provided 5 structures and all of them were a 
partial structure of our targeted protein based on the best-aligned 
template from the UniProtKB database. Due to the poor GMQE and 
QMEAN Z-Scores, none of the structures were validated. 

Hence, we used I-TASSER for the three-dimensional structural 
analysis of the CCN6 protein. The top 10 structural analogs in PDB 
were used as templates for modeling, of which the topmost template 
(PDB ID: 1W0R) covered 95% of the human CCN6 query sequence. 
The server provided the top 5 models for the targeted protein. The 
models' quality was assessed through additional analyses using the 
PROCHECK, ERRAT, and ProSA programs (table 6), and model 
number 1 was chosen as the best model (fig. 7). 

In our study, the best model (model number 1) included all seven of 
the investigated mutations (C52Y, C122Y, C145Y, C75G, C78R, 

N233K, and R245I). Using the I-TASSER web server, models for the 
native and mutated proteins were generated. Using Biovia Discovery 
Studio, the native and mutated models were both visualized. TM-
align, a program for aligning and comparing protein structures, was 
used to compare the structural analog. We received values for the 
TM-score and RMSD of 0.16734 and 5.02, respectively. 

 

 

Fig. 6: Protein-protein interaction network of WISP3 by STRING 
server 

 

Association of cancer with damaging nsSNPs 

All the SIFT-predicted nsSNPs were checked for cancer association 
in cBioPortal and canSAR black. The mutation profile in both web 
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servers revealed that D271N and Q56H are associated with colon 
adenocarcinoma (COAD). canSAR black also revealed that the 
severity of both mutations is moderate. 

Expression analysis of CCN6 gene 

The results of the box plot analysis by GEPIA showed that colon 
adenocarcinoma (COAD) is caused by the overexpression of the 
CCN6 gene (fig. 8). 

Survival analysis in COAD patients 

For analyzing patient survival in cases of colon adenocarcinoma 
(COAD), we used the GEPIA database. Based on the median level of 
CCN6 expression, the patients were divided into high-expression 
and low-expression groups. Compared to patients with lower CCN6 
expression, patients with higher expression in COAD reported longer 
survival times. 

 

Table 6: Scores of different structural assessment tools for the predicted models from I-TASSER 

Model number I-TASSER C-score PROCHECK ramachandran plot (%) ProSA Z-score ERRAT score 
01 -2.66 51.7 -3.48 84.39 
02 -3.17 44.3 -1.68 51.29 
03 -3.22 51 -4.17 65.92 
04 -4.32 43 -0.14 72.56 
05 -3.91 39.3 -1.69 77.08 
Mutated model-1 -2.04 53.2 -0.7 71.42 
 

 

(a)        (b) 

Fig. 7: Homology models from I-TASSER server; (a) Mutated Model-1; (b) Model-1 
 

 

Fig. 8: Boxplot analysis of CCN6 gene expression in case of COAD 
for both tumor (red) and normal (grey) samples 

 

 

Fig. 9: Overall survival for COAD 

DISCUSSION 

WISP3 encodes Wnt1-inducible signaling protein 3, a secreted protein 
that is cysteine-rich and multidomain and whose paralogous CCN 
family members have been linked to a variety of biological processes, 
including the development of the skeleton, the vascular, and the 
nervous system. Progressive pseudo-rheumatoid dysplasia (PPD) is 
brought on by loss-of-function WISP3 mutations in humans. The 
identified variant (Chr6: 112382301; WISP3:c.156C>A p. Cys52*) will 
result in premature termination of the WISP3 protein [3]. Also, 
overexpression of this gene is associated with colorectal cancer. 

SNPs represent the most frequent type of DNA variation in humans. 
nsSNPs, together with SNPs in regulatory regions, have been found 
to have the greatest influence on phenotype [31]. In our analysis, 
some nsSNPs are related to a disease condition, but others are not 
associated with any change in phenotype and are regarded as 
neutral. Unraveling their clinical significance will result in significant 
advances in the field of medical genetics.  

In silico analysis of harmful SNPs from large datasets has recently 
become extremely significant due to the presence of harmful SNPs in 
several oncogenes [32]. In silico methods are beneficial for 
predicting the effects of SNPs because they can efficiently analyze 
large datasets of genetic variations and provide predictions for SNPs 
that have not yet been experimentally characterized. Moreover, 
these methods can provide insights into the molecular mechanisms 
underlying the effects of SNPs, which can help design experiments to 
further validate the predictions. 

In this study, we used five prediction tools (SIFT, SNAP2, Align-
GVGD, Polyphen-2, and PANTHER) to analyze the data to obtain a 
comprehensive picture of the pathogenic SNPs of the CCN6 gene. 
Due to the fact that each algorithm relies on a different set of 
parameters, we chose 16 nsSNPs (table 1) that were identified in 
this study as high-risk and predicted to be harmful by at least 4 out 
of 5 tools. The SNPs prediction accuracy can be improved by 
combining a variety of computationally based techniques. 

A protein's structural stability has a significant impact on its 
function, activity, and regulation. Protein degradation, misfolding, 
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and aggregation are all caused by decreased protein stability, which 
ultimately results in dysfunction [33]. MUpro was used to assess the 
impact of the 16 harmful nsSNPs mentioned above on the stability of 
the WISP3 protein. Out of these 16 nsSNPs, 14 made the protein less 
stable and may affect protein dysfunction (table 2). 

The severity of a harmful mutation can be estimated using a 
protein's evolutionary conservation profile. nsSNPs located in highly 
conserved regions are more likely to be functionally important, and 
mutations that affect these residues are more likely to have 
deleterious effects than nsSNPs located in variable regions [34]. We 
examined the 16 most harmful nsSNPs' potential effects using the 
ConSurf web server. ConSurf provides evolutionary conservation 
data with predictions of solvent accessibility for locating structural 
and functional sites. Additionally, highly conserved residues are 
classified as structural or functional depending on where they are 
present in the protein core or protein surface. 8 out of 16 nsSNPs 
had a high conservation score, according to ConSurf (table 3). 

We concluded that 7 of these 16 nsSNPs (C122Y, C145Y, C52Y, C78R, 
C75G, N233K, and R245I) are potentially vulnerable due to their 
higher conservancy and capacity to reduce protein stability. 
Additionally, we used NetsurfP to examine how these seven high-
risk nsSNPs affected the structure of the CCN6 protein. It makes 
predictions about the protein's secondary structure and solvent 
accessibility. It depicted all the variations as being buried (table 4). 

Proteins may undergo reversible or irreversible chemical changes 
after translation, which is one of the last stages in protein biosynthesis, 
that is, post-translational modification (PTM). PTM increases the 
genome's coding capacity and produces highly varied and expansive 
proteomes. MusiteDeep was employed to predict PTM sites in the 
CCN6 gene. It predicted a total of 21 PTM sites which included 
pyrrolidone carboxylic acid, palmitoylation, phosphorylation, 
hydroxylation, acetylation, and glycosylation (table 5). 

A key component of understanding cellular processes is the network 
of protein-protein interactions. In addition to providing an easy-to-
use platform for interpreting the structural and functional 
characteristics of proteins, STRING plays a crucial role in filtering 
and evaluating functional genomics data. This database was used in 
the current study to show how the WISP3 protein interacts with 
other proteins that may be involved in various pathways and whose 
disruption may lead to disease. 

Since the human CCN6 protein had no PDB ID, structural prediction 
techniques were used to estimate the protein's three-dimensional 
structure. Utilizing SWISS-MODEL, the three-dimensional structure 
of human CCN6 was first modeled. It offered 5 structures, all of 
which were fragments of the protein that was our target. This 
resulted in model 1 (with the highest GMQE score of 0.09) being 
identified as the best structure among the five. None of the 
structures were validated due to the inadequate GMQE and QMEAN 
Z-scores and low coverage.  

Then we used the automated protein structure prediction tool I-
TASSER, which generated the top 5 models using the FASTA 
sequence of the protein as an input file. The server's confidence 
score (C-score), which ranges from-5 to 2, gives a preliminary 
assessment of the caliber of the projected models. The models with 
the highest value are those that are most compatible. As a result, 
model 1 (with the highest C-score of-2.66), was chosen as the best 
structure. To create higher-quality targeted protein structures, 
experimental models must be validated. To be certain of it, several 
computational tools, including PROCHECK, ERRAT, and ProSA were 
used. Given that the Ramachandran plot displays the torsion angles 
of the predicted models' protein backbones, it is given the highest 
priority among all the verification matrices. PROCHECK divides the 
Ramachandran plot into four regions: the core, allowed, generously 
allowed, and disallowed region. These regions are used to determine 
the stereochemical quality of a specific protein structure [35]. Based 
on the average assessment of all validation software, Model-1 was 
chosen as the CCN6 protein's best structure (table 6). 

Point mutations were introduced in the native protein sequence at 
specific locations and provided to I-TASSER. It generated five 

models, among which model 1 was chosen as the best, as it 
contained all 7 mutations. PROCHECK, ProSA, and ERRAT programs 
were used to verify its structure, it gave scores that were slightly 
different from model 1 of native protein (table 6). The structures of 
mutant and wild-type were compared using the TM-align program. 
The TM-score and RMSD values we received indicate random 
structural similarity between the two structures. 

A protein mutation causes genomic instability, which can result in a 
variety of cancers. Different cancer prognostic tools were employed to 
investigate these correlations. The types of cancers connected to CCN6 
are listed in the Cancer genomics database cBioPortal. According to this 
database, 30 different cancers are associated with the CCN6 gene due to 
various anomalies. D271N and Q56H were found to have mutation 
profiles in the web server that were related to colon adenocarcinoma 
(COAD). The same was also revealed by CanSAR Black, and both 
mutations are of moderate severity. Low levels of CCN6 expression were 
observed in metastasizing breast cancer cell lines, suggesting that this 
gene may function as a tumor suppressor [36]. 

The TCGA and GTEx data are used in the interactive web application 
GEPIA, which analyses gene expression in tumors and normal 
samples. We performed a box plot analysis of CCN6 gene expression 
in COAD, the result showed that colon adenocarcinoma is caused by 
the overexpression of the gene (fig. 8). Also, a survival curve was 
plotted, which plots the survival probability (percentage) against 
time, and provides an essential summary of the data needed to 
determine measures i.e., the median survival time. According to this 
analysis, COAD patients with low CCN6 levels had shorter survival 
times (fig. 9). Strong in vivo research is, however required in the 
future to confirm the association of a nsSNP with a particular cancer. 

CONCLUSION 

The functional SNPs in the CCN6 gene have never been thoroughly 
and systematically analyzed in silico before this study. Due to their 
presence in the highly conserved region and capacity to affect 
protein stability, we identified seven nsSNPs (C122Y, C145Y, C52Y, 
C78R, C75G, N233K, and R245I) as potentially harmful. The CCN6 
gene products function as a tumor suppressor by limiting cell 
proliferation in a variety of cellular mechanisms. As a result, changes 
to this gene have been linked to a variety of diseases, including 
cancers. Two of the nsSNPs (D271N and Q56H) were found to be 
associated with colon adenocarcinoma. However, to characterize 
how these polymorphisms affect the protein's structure and function 
and to create effective, personalized treatment options, extensive 
experimental validation is required. 
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