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ABSTRACT 

Objective: This research was conducted to find potential candidate compounds from one hundred thirty-seven Indonesian marine natural products 
capable of preventing SARS-CoV-2 with a computational approach.  

Methods: The physicochemical properties and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) profile of compounds were 
predicted using ADMETLab. The candidate compounds were filtered using AutodockVina. Molecular docking was carried out using AutoDockTools 
on the SARS-CoV-2 3-Chymotrypsin-like protease (3CLpro) and Papain-like protease (PLpro) that is essential for the SARS-CoV-2 life cycle. Also, 
AMBER22 was used to perform molecular dynamics simulations in this study. 

Results: Based on molecular docking results, Pre-Neo-Kaluamine has good activity against 3CLpro with a bond energy value of-10.35 kcal/mol. 
Cortistatin F showed excellent binding activity on PLpro, with energy value results of-10.62 kcal/mol. Acanthomanzamine C has dual targeting 
activity and interacts well with protein 3CLpro and PLpro with binding energy values ranging from 10 kcal/mol to 14 kcal/mol.  

Conclusion: The molecular docking results were corroborated by molecular dynamics simulation results and showed good stability of the 
candidate ligands, and we found that there were three potential compounds as protease inhibitors of SARS-CoV-2 including Pre-Neo-Kaluamine for 
3CLpro, Cortistatin F for PLpro, and Acanthomanzamine C which had dual targeting activity against both proteases. 

Keywords: Marine natural product, In silico, SARS-CoV-2, 3CLpro, PLpro, Virtual screening, ADMET prediction, Molecular docking, Molecular 
dynamic 
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INTRODUCTION 

At the end of 2019, there was an outbreak caused by a new variant 
of the coronavirus known as SARS-CoV-2, which caused a COVID-19 
pandemic in several countries around the world, and it became 
severe infections that increased rapidly and attacked the respiratory 
system causing pneumonia [1]. Several drugs are used to treat 
Covid-19, including corticosteroids, lopinavir-ritonavir, 
hydroxychloroquine, ivermectin, convalescent plasma, Janus-kinase 
inhibitors, and remdesivir [2]. Besides the therapeutic effects of 
these drugs, many side effects were also found, especially 
abnormalities in the immune system, respiratory disorders, signs of 
inflammation or liver cell damage, and side effects on the 
neurological system [3]. Based on the latest recommendations from 
WHO, the combination of nirmatrelvir and ritonavir has shown 
promising results in Covid-19 patients by inhibiting 3CLprotease 
from SARS-CoV-2. Still, it has side effects, such as severe drug 
interactions and contraindications to enzyme-inducing drugs. At 
first, the shortage of drugs and vaccines designed explicitly for 
Covid-19 treatment presented a significant obstacle. Therefore, we 
had to turn to repurposing antiviral drugs and utilizing convalescent 
plasma as the sole feasible solution [4]. Coronavirus has a protease 
enzyme system that helps its survival process: Papain-like Protease 
(PLpro) and 3 Chymotrypsin-like Protease (3CLpro). The PLpro 
enzyme processes polyprotein chains derived from viral RNA 
translation, producing functional viral proteins [5]. The 3CLpro 
enzyme has an essential role in viral genomic replication, so 
inhibiting this enzyme will significantly affect the blocking of the 
transcription and replication of coronavirus RNA [6]. Due to several 
side effects, discovering potential new compounds, such as Covid-19 
therapy with fewer side effects, is necessary. Dual targeting of these 
two proteases will result in more efficient Covid-19 treatment. The 
discovery of a new drug certainly takes a long time, and it costs a lot 
to prove a compound has efficacy after passing a series of tests. With 

the rapid development of technology, Computational techniques are 
made based on algorithms to produce predictive outputs on the 
relationship of chemical structure, physicochemical properties, and 
biological activities from the compound. In computational studies, 
computer-assisted software simulates the interaction between drug 
molecules and specific targets. This technique, known as molecular 
docking, is commonly used in drug discovery and design. It helps 
identify the best binding model for a ligand to a protein, screen an 
extensive library of compounds, rank them based on their binding 
affinity, and propose structural hypotheses about how the ligand 
inhibits the target [7].  

The drug discovery and development process has been accelerating, 
especially during the pandemic, to prevent and cure Covid-19. In the 
urgency of this pandemic, natural compounds have been chosen as 
sources to obtain potential compounds against coronavirus and 
become an alternative in developing and rapidly discovering 
medicinal compounds. Natural compounds are reported to have 
many biological activities that can effectively treat disease and play 
an essential role in finding and developing innovative drugs during a 
pandemic [5, 8]. Indonesian marine invertebrates produce potential 
secondary metabolites. Some of them are sponges, tunicates, and 
soft corals. The compounds produced have various activities, and 
one of the activities is antiviral [9, 10]. These secondary metabolites 
from Indonesian marine invertebrates can be explored and 
investigated further regarding their biological activity and potential 
as an antiviral for Covid-19 treatment. Several types of marine 
invertebrates were also reported to inhibit important proteases of 
SARS-CoV-2 based on studies [11]. In addition to considering the 
side effects of drugs that are already available, the target for 
discovering new drug compounds is also quite important to support 
the success of drug action on Covid-19. This research will focus on 
finding and identifying the dual targeting activity of secondary 
metabolites of Indonesian marine invertebrates against both SARS-
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CoV-2 protease targets, PLpro and 3CLpro through in silico analysis 
such as virtual screening with molecular docking method, 
physicochemical properties prediction, ADMET prediction, and 
molecular dynamic simulation. 

MATERIALS AND METHODS 

Protein and ligand structure preparation 

The crystal structures of SARS-CoV-2 main protease 3CLpro [12, 13] 
with PDB ID: 7RFW and the crystal structure of SARS-CoV-2 PLpro 
with PDB ID: 7TZJ [14, 15] were obtained from rcsb.org the Research 
Collaboratory for Structural Bioinformatics (RCSB) Protein Data 
Bank [16]. The protein structure was refined by filling in the missing 
residue using the Modeller program [17, 18]. Meanwhile, the 
structures of the 137 studied ligands were drawn using 
MarvinSketch 22.19, 2022, ChemAxon (http://www.chemaxon.com). 
In addition, co-crystal from 3CLpro (nirmatrelvir) and co-crystal 
from PLpro (3k, also known as N-[(3-fluorophenyl)methyl]-1-[(1R)-
1-naphthalen-1-ylethyl]piperi dine-4-carboxamide) were used as 
reference ligands which were separated from the protein structure 
using AutoDockTools [19] were saved in pdb format. 

Molecular docking method 

In this study, a molecular docking study was carried out using the 
Autodock Vina [20] accessed from PyRx [21] to screen 137 studied 
ligands and AutoDockTools to simulate molecular docking. Water 
molecules are removed before molecular docking, and polar 
hydrogen atoms are added so that the docking results are not 
affected by other particles in the protein's surrounding environment. 
After optimizing the protein and ligands, a grid box uses 40 x 40 x 40 
pts for docking with Autodock. The docking process with Autodock 
Vina uses a grid box with dimensions of 15 x 15 x 15 Å which is the 
result of the conversion of pts (multiplied by 0.375) with the center 
grid coordinates adjusted to the position of the co-crystal ligand of 
each protein, x = 9.9 y = 1.217 z = 20.552 for 3CLpro and x =-3.122 y 
= 4.041 z =-41.027 for PLpro. For the visualization, BIOVIA 
Discovery Studio Visualizer [22] software was used to provide 
information about the complex binding site from protein and the 
active residues from the compound. 

Physicochemical and ADMET prediction 

Prediction of the properties and characteristics of the studied 
ligands was carried out to see the physicochemical properties and 
how the studied ligands react to Absorption, Distribution, 
Metabolism, Excretion, and Toxicity (ADMET). The prediction of 
physicochemical and ADMET was using ADMETLab 2.0 [23]. Twenty 
studied ligands from the virtual screening results were converted 

into SMILES code using Marvin Sketch, and the SMILES code for the 
co-crystal ligands was obtained from the protein data bank. The web 
server-based ADMETlab 2.0 was accessed from 
admetmesh.scbdd.com/service/evaluation. Lipinski’s rule of five 
(Molecular Weight<500 Da, Log P<5, Hydrogen Bond Acceptor 
Number<10, Hydrogen Bond Donor Number<5) [24] was used as a 
reference parameter for having drug-likeness property. Topological 
Polar Surface Area<140 Å2, Absorption (Human Intestinal 
Absorption>30%), Distribution (Volume of Distribution 0.04–20 
L/kg), Metabolism activity from CYP3A4 and CYP2D6 enzymes, 
Excretion (T1/2>3h), and Toxicity (Carcinogenicity and AMES 
Toxicity) those are used as an assessment parameter to predict the 
drug-likeness of the studied compounds.  

Molecular dynamic simulation 

The stability of the interaction between ligand and protein can be 
predicted by conducting molecular dynamics simulations. The 
simulation process was carried out using AmberTools22 [25]. Before 
the simulation, The macromolecule files obtained from molecular 
docking were protonated by adding hydrogen atoms using reduce, 
an AmberTools subprogram. The ligands from molecular docking 
were protonated by adding hydrogen atoms (make explicit) using 
OpenBabel [26]. The ligand was loaded with AM1-BCC and 
converted to mol2 format using the Antechamber subprogram. The 
tLeap from AmberTools program created topology and coordinates 
to check the protein and ligands, combine protein and ligands into a 
complex, add ionic charges to the complex (Na+or Cl-), and create a 
solvation complex. UCSF Chimera minimized the protein's energy 
with default parameters [27]. Molecular Modeling Tool Kit (MMTK) 
provides energy minimization of molecular models, a Chimera unit. 
Amber parameters were used for standard residues and 
Antechamber parameters for non-standard residues. Minimization 
The minimization stage was set at 1000 steepest descent and used 
100 conjugate gradients. The energy minimization process was 
carried out in two sets with the help of the pmemd. cuda sub-
program, the file with the. rst format was utilized in the next stage, 
heating at 300 K, and energy equilibration was performed in 150-
200 picoseconds to determine the system's stability [28]. The 
production stage was carried out for 100 ns with the pmemd. cuda 
subprogram. The equilibration stage was analyzed on temperature, 
density, and total energy parameters. In contrast, production yield 
analysis was carried out on several parameters such as Root Mean 
Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), 
and Molecular Mechanics Poisson-Boltzmann Surface 
Area/Generalized Born Surface Area (MM-PBSA/MM-GBSA) for the 
binding free energy from the complex between ligand and protein. 
The RMSD and RMSF graphics were visualized using QTgrace. 

 

RESULTS AND DISCUSSION 

Virtual screening 

Table 1: 20 ligands with the best binding affinity when docked with 3CLpro 

Ligand Binding affinity (kcal/mol) RMSD (Å) 
Acanthomanzamine A -11.51 0.88 
Acanthomanzamine B -10.33 2.89 
Acanthomanzamine D -10.3 4.1 
Mollamide B -9.95 0.76 
Naamidine H -9.55 1.38 
Pre-neo-kauluamine -9.52 0.7 
Acantholactam -9.41 6.12 
Lobozoanthamine -9.3 0.7 
Epi-tetradehydrohalicyclamine B -9.29 2.77 
Naamidine I -9.17 0.92 
Jaspamide Q -9.15 1.21 
Acanthomanzamine E -9.03 1.86 
Sagitol C -9.01 4.17 
Chloromethylhalicyclamine B -8.98 1.34 
Acanthomanzamine C -8.68 1.04 
Crambescidin -8.39 1.43 
Sarcofuranocembrenolide A -7.91 0.9 
Tetradehydrohalicyclamine B -7.8 1.78 
Chloroscabrolide A -7.77 0.98 
Sarcofuranocembrenolide B -7.51 2.54 
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Virtual screening is a computational approach by screening many 
compounds to obtain candidate compounds with potential activity 
against a target protein [29]. One hundred thirty-seven 
compounds from the review by Izzati et al. and Nurrachma et al. 
[9, 10] were virtually screened. We selected twenty ligands with 
the best binding affinity values for each target protein, namely 
3CLpro (table 1) and PLpro (table 2). Physicochemical properties 
and ADMET prediction were performed on screened compounds 

with RMSD values below 2 Å. Therefore, several compounds with 
RMSD values more than 2 Å on 3CLpro, i.e., Acantholactam (6.12 
Å), Acanthomanzamine B (2.89 Å), Acanthomanzamine D (4.1 Å), 
Epi-tetradehydrohalicyclamine B (2.77 Å), Sagitol C (4.17 Å), and 
Sarcofuranocembrenolide B (2.54 Å) were not processed to the 
next stage. While ligands from table 2, i.e., Cortistatin L (3.84 Å), 
Cortistatin K (3.68 Å), and (-)-Leptoclinidamine B (2.76 Å) were 
not processed to the next stage. 

 

Table 2: 20 ligands with the best binding affinity when docked with PLpro 

Ligand Binding affinity (kcal/mol) RMSD (Å) 
Acanthomanzamine A -11.51 0.88 
Acanthomanzamine B -10.33 2.89 
Acanthomanzamine D -10.3 4.1 
Mollamide B -9.95 0.76 
Naamidine H -9.55 1.38 
Pre-neo-kauluamine -9.52 0.7 
Acantholactam -9.41 6.12 
Lobozoanthamine -9.3 0.7 
Epi-tetradehydrohalicyclamine B -9.29 2.77 
Naamidine I -9.17 0.92 
Jaspamide Q -9.15 1.21 
Acanthomanzamine E -9.03 1.86 
Sagitol C -9.01 4.17 
Chloromethylhalicyclamine B -8.98 1.34 
Acanthomanzamine C -8.68 1.04 
Crambescidin -8.39 1.43 
Sarcofuranocembrenolide A -7.91 0.9 
Tetradehydrohalicyclamine B -7.8 1.78 
Chloroscabrolide A -7.77 0.98 
Sarcofuranocembrenolide B -7.51 2.54 
 

Table 2: Physicochemical and ADMET prediction results from the candidate of 3CLpro inhibitor 

Ligand name MW 
(Da) 

LogP HA HD Lipinski TPSA 
(Å2) 

HIA VD 
(L/Kg) 

Metabolism T 
1/2 

Carcinogenicit
y 

AMES 
toxicity 

Nirmatrelvir 499.2 1.5 9 3 Yes 131.4 >30% 0.66 CYP2D6 <3h No No 
Acanthomanzamine A 545.4 2.2 6 4 Yes 79.2 <30% 4.72 CYP2D6 >3h No No 
Acanthomanzamine C 562.3 3.8 6 2 Yes 72.46 >30% 2.97 CYP2D6 <3h No No 
Acanthomanzamine E 576.4 5.5 5 1 No 44.39 >30% 2.83 CYP2D6 <3h No No 
Chloromethylhalicyclamine B 431.3 1.9 2 0 Yes 3.2 <30% 0.9 CYP2D6 >3h No Yes 
Chloroscabrolide A 398.1 1.7 7 0 Yes 91.43 >30% 1.03 CYP3A4 >3h Yes No 
Crambescidin 346.3 3.7 5 2 Yes 50.67 >30% 1.18 CYP3A4 >3h Yes No 
Jaspamide Q 630.3 4.8 10 4 Yes 140 >30% 0.35 CYP3A4 >3h No No 
Lobozoanthamine 497.3 4.1 6 1 Yes 76.1 >30% 1.48 CYP3A4 <3h Yes No 
Mollamide B 696.4 3.9 12 5 No 161.9 >30% 1.56 CYP3A4 <3h No No 
Naamidine H 493.2 2.6 11 2 Yes 130.7 <30% 0.45 CYP3A4 >3h Yes No 
Naamidine I 506.2 2.7 11 3 No 131.4 >30% 0.5 CYP3A4 >3h Yes Yes 
Pre-neo-kaluamine 580.3 4.1 7 3 Yes 84.85 >30% 3.18 CYP3A4 <3h No No 
Sarcofuranocembrenolide A 388.2 3.9 7 1 Yes 99.11 >30% 0.63 CYP3A4 <3h Yes No 
Tetradehydrohalicyclamine B 379.3 3.9 2 0 Yes 7.12 <30% 1.48 CYP2D6 >3h Yes No 
 

Table 3: Physicochemical and ADMET prediction results from the candidate of PLpro inhibitor 

Ligand name MW 
(Da) 

LogP HA HD Lipinski TPSA 
(Å2) 

HIA VD 
(L/Kg) 

Metabolism T 
1/2 

Carcinogenicity AMES 
toxicity 

3k 390.21 4.29 3 1 Accepted 32.34 >30% 1.56 CYP2D6 <3h No No 
Cortistatin J 438.27 5.28 3 0 Accepted 25.36 >30% 3.36 CYP2D6 <3h No No 
Cortistatin G 458.33 5.61 3 0 Accepted 25.36 >30% 3.29 CYP2D6 <3h No No 
Nakijiquinone V 437.27 3.99 6 4 Accepted 101.7 >30% 1.13 CYP3A4 >3h No No 
Cortistatin F 478.39 5.61 3 0 Accepted 15.71 >30% 5.13 CYP2D6 <3h No No 
5-Benzoydemethyl-
aaptamine 

318.1 2.67 5 1 Accepted 71.78 >30% 0.52 CYP2D6 >3h Yes Yes 

Cortistatin E 480.41 5.99 3 0 Accepted 15.71 >30% 3.18 CYP2D6 <3h No No 
Cortistatin H 460.35 5.99 3 0 Accepted 25.36 >30% 3.04 CYP3A4 <3h No No 
Variabine A 322 0.58 8 2 Accepted 118.6 >30% 0.36 CYP2D6 <3h Yes No 
Ingenine D 331.14 2.67 6 2 Accepted 86.79 >30% 0.98 CYP3A4 >3h No Yes 
Ingenine C 275.12 2.93 5 2 Accepted 69.72 >30% 1.14 CYP3A4 >3h No Yes 
Preclathridine B 231.1 1.07 5 2 Accepted 63.03 >30% 1.99 CYP2D6 >3h Yes Yes 
Halioxepine 414.28 5.42 4 3 Accepted 69.92 >30% 4.74 CYP2D6 <3h No No 
Psammaplysin L 770.81 3.84 11 3 Rejected 133.5 <30% 1.61 CYP3A4 <3h Yes No 
Acanthomanzamine C 562.33 3.88 6 2 Accepted 72.46 >30% 2.97 CYP3A4 <3h No No 
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Physicochemical properties and ADMET prediction 

In the drug development and discovery process, drug properties 
such as pharmacokinetics and pharmacodynamics are crucial 
parameters for the efficacy of a drug [30]. These properties can be 
predicted with several online-based or offline-based programs using 
a computational approach [31]. Lipinski’s rule of five (MW<500 Da, 
Log P<5, HA<10, HD<5) is used as a reference parameter for having 
such an excellent drug-likeness property [24]. The result is shown in 
table 3 and table 4. In this study, ligands that rejected Lipinski’s rule 
of five and were predicted as toxic compounds were not processed 
further. Human Intestinal Absorption (HIA) was used to indicate a 
drug's absorption properties. Compounds showing less than 30% 
absorbance value are considered poorly absorbed [32]. 

Compounds with absorbance values above 30% can be adequately 
absorbed in the human intestine. Poorly absorbed compounds were 
not continued in the next stage of this study. The Topological Polar 
Surface Area (TPSA) parameter indicates the amount of surface 
contribution of a compound tabulated based on its polar fragment. 
Based on Veber's rule, the optimal TPSA value of a combination is in 
the range of 0 to 140 Å232. Compounds with TPSA values above 140 
Å2 did not proceed to the next stage in this study. The volume of 
distribution (VD) shows the volume of the drug distributed in the 
blood plasma. The value of VD was calculated from the amount of 
drug in the body divided by the blood plasma concentration [33]. 
The optimum VD values are in the 0.04-20 L/Kg [32]. The predicted 
metabolic parameters used in this study were CYP3A4 and CYP2D6. 
CYP3A4 is an enzyme that metabolizes 30%-50% of marketed drugs. 
Similar to CYP3A4, CYP2D6 is responsible for the metabolism of 
more than 20% of drug biotransformation [34, 35]. The half-life of a 
drug involves the clearance and volume of distribution of a drug 
compound to estimate its excretion properties. Compounds with a 
half-life of more than 3 h indicate that the compound has a long half-
life. Compounds that were predicted to be carcinogenic were not 
selected for further analysis. In addition to the carcinogenicity 
toxicology parameter, the AMES parameter was also used as the 
endpoint for predicting the toxicity of the test compound. The 
mutagenic effect is related to the carcinogenicity of a compound 
because this effect affects the level of mutagenicity in humans. 
Compounds predicted to have mutagenic properties are not 
processed at the following testing stage [32]. 

Molecular docking simulation 

Validation of molecular docking 

The root mean square deviation (RMSD) was applied to confirm the 
validation of the docking method. The validation of a docking 

method can be seen from the RMSD value resulting from the re-
docking performed on the co-crystal ligand of the protein. The RMSD 
value states that the docking method's validity is at a value less than 
or equal to 2 Å. The smaller the RMSD value, it is assumed that the 
position of the co-crystal ligand before docking doesn’t move 
significantly so that the docking method can be carried out on the 
next studied ligand [36, 37]. Re-docking of the co-crystal ligand 3k 
from PLpro and nirmatrelvir from 3CLpro showed RMSD values of 
1.082 Å and 0.490 Å, respectively (fig. 1). It is shown that the 
docking method was valid for docking simulation for the ligand and 
the protein. 

 

 

Fig. 1: Overlay of co-crystal before docking (red) and re-docking 
co-crystal (yellow) position: (A) Co-crystal (3k) ligand from 

PLpro; (B) Co-crystal (nirmatrelvir) ligand from 3CLpro 

 

Binding energy and residue interaction 

After predicting the physicochemical properties and ADMET profile 
of the ligands, the selected ligands were docked to their respective 
receptors to observe further the interaction of the bond forms 
between the ligands and amino acid residues from the proteins. 
Table 5 shows the binding energy, Ki, and bond interaction between 
the amino acid residues from 3CLpro and the ligands. 

 

Table 4: Binding interaction between ligands with 3CLpro from molecular docking simulation 

Ligand Binding 
affinity 
(kcal/mol) 

RMSD 
(Å) 

Ki 
(nM) 

Residue interaction 
Hydrogen bond Electrostatic bond 

Nirmatrelvir -8.95 1.29 276.21 Phe140; Gln189; Glu166; Pro168; 
Thr190; Leu167; Cys145; His163. 

Met165; Met49; His41; 

Pre-neo-kaluamine -10.35 0.72 25.85 Thr190; Glu166; Asn142 Met49; Pr168 
Acanthomanzamine C -9.52 1.07 105.48 Glu166 His41; Leu27; Cys145 
Jaspamide Q -9.15 1.21 196.07 Met49; Glu166; Thr190; His41; Asn142; Asp187; Tyr54; Pro52; His164; Arg188; 

Leu167; Gln192; Ala191; Met165; Pro168; Met49; 

 

Binding energy from the studied ligands was more excellent than the 
reference ligand nirmatrelvir (-8.95 kcal/mol). The binding energy 
value of pre-neo-kaluamine, Acanthomanzamine C, and Jaspamide Q 
were-10.35,-9.52, and-9.15 kcal/mol, respectively. The inhibition 
constant (Ki) obtained from docking results means less Ki value 
means much great inhibition activity from the ligand. Nirmatrelvir 
showed activity as a peptidomimetic inhibitor of 3CLpro [38]. The 
nitrile function of nirmatrelvir’s structure is bound to the active 
catalytic site (cysteine and histidine residue) from 3CLpro [39]. The 
hydrogen from the carboxamide group of nirmatrelvir formed 
several hydrogen bonds between the Glu166, Cys145, His163, and 
Thr190 residues (fig. 2). 

While the carbon atoms formed an alkyl bond with Met49 and a pi-
alkyl bond with Met165 and His41, pre-neo-kaluamine showed several 
interactions with amino acid residues of 3CLpro, including the 
hydrogen bonds between the hydrogens on the NH and OH groups in 
the ligand with the amino acid residues Thr190 and Glu166 (fig. 3). 

On the other side of the ligand, the hydrogen group on the CH 
molecule formed a hydrogen bond with Asn142. Other bonds 
between ligands and amino acids (Pro168, Met49) were pi-sigma, 
alkyl, and pi-alkyl Pre-neo-kaluamine did not bind to the catalytic 
site of 3CLpro (Cys145 and His41). Acanthomanza-mine C interacted 
with amino acid residues in the active catalytic site of 3CLpro (fig. 4). 
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Acanthomanzamine C created a bond with a pi-pi T-Shaped between 
the CH molecule from the structure and Cys145 and a pi-cation bond 

with His41 and CH molecule from the ligand structure, which is a 
critical amino acid in the catalytic site of 3CLpro. 

 

  

Fig. 2: Interaction between nirmatrelvir and 3CLpro after docking molecular simulation: (A) 2-Dimension visual interaction (B) 3-
Dimension visual interaction 

 

 

Fig. 3: Interaction between pre-neo-kaluamine and 3CLpro after docking molecular simulation: (A) 2-Dimension visual interaction (B) 3-
Dimension visual interaction 

 

 

Fig. 4: Interaction between Acanthomanzamine C and 3CLpro after docking molecular simulation: (A) 2-Dimension visual interaction (B) 
3-Dimension visual interaction 

 

 

Fig. 5: Interaction between Jaspamide Q and 3CLpro after docking molecular simulation: (A) 2-Dimension visual interaction (B) 3-
Dimension visual interaction 
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Other bonds were a hydrogen bond with Glu166 and a pi-Alkyl bond 
with Leu27 residue. Leu27, Residue Cys145, and His41 formed 
bonds with the benzene structure from the ligand. The benzene ring 
of a com-pound significantly increases the inhibitory properties due 
to the bulkiness of the benzene structure, which allows for many 
bonds to occur with the amino acids of the target protein [40]. 
Jaspamide Q interacted with amino acid residues in the catalytic 
active site of 3CLpro (fig. 5). 

Created a conventional hydrogen bond with a Met49 that interacts 
with NH molecules from Jaspamide Q, Glu166 interacts with NH and 
CO molecules simultaneously, and Thr190 interacts with CO 
molecules from the ligand. Also, several van der Waals bonds were 
formed between Asn142, Asp187, Tyr54, Pro52, His164, Arg188, 
Leu167, Gln192, Ala191, and Met165. His41 residue forms a Pi-
cation bond with a benzene structure from the ligand. Besides that, 
Met165 and Pro168 form Pi-Alkyl bonds. Table 6 shows the binding 
energy, Ki, and bond interaction between the amino acid residues 
from PLpro and the ligands 3k as a reference ligand has a-9.47 
kcal/mol binding energy value. 

The other ligands showed greater values than the reference ligand, 
i.e.,-9.82 kcal/mol (cortistatin J),-9.63 kcal/mol (acanthomanzamine 
C), and-10.62 kcal/mol (cortistatin F). The inhibition constant (Ki) of 
the ligands cortistatin J, acanthomanzamine C, cortistatin F, and 3k 

were 63.39, 16.41, 105.98, and 113,67 nM, respectively. Tyr268 and 
Gln269 are essential amino acid residues at PLpro catalytic sites 
where small molecules bind. Tyr268 and Gln269 are the main sites 
of the flexible loop, which can generate several backbone and side 
chain conformations [41]. The interaction shown in fig. 6 involved 
3k (co-crystal ligand of PLpro) forming hydrogen bonds with the 
amino acid residue Tyr268, an amino acid residue located at the 
catalytic site of PLpro. The hydrogen bond comes from the 
interaction between NH molecules in the 3k ligand structure. In 
addition, bonds were formed in the naphthalene structure of the 3k 
ligand, which were pi-sulfur bonds with Met208 residues, pi-anion 
bonds with Asp164, Pi-sigma Bonds with Tyr264, Amide-Pi Stacked 
bonds with Ala246, Pi-Alkyl bonds with Pro247, and Pro248. 

Cortistatin J formed several binding interactions with amino acid 
residues in the 3CLpro protein (fig. 7). Cortistatin J formed a 
hydrogen bond with the amino acid Leu162. Other bonds were Alkyl 
bonds with amino acids Pro248, Pro247, Tyr264, and Tyr268 which 
bind to the region of the ring-like ligand structure, and pi-pi T-
Shaped bond between the ring structure of the ligand and the amino 
acid residue Tyr268, which is the amino acid residue on the active 
site of PLpro. Compounds containing bonds with the Pi character 
group can provide a variety of beneficial steric and electronic 
properties [42]. 

 

Table 6: Binding interaction between ligands with PLpro from molecular docking simulation 

Ligand Binding affinity 
(kcal/mol) 

RMSD 
(Å) 

Ki 
(nM) 

Residue interaction 
Hydrogen bond Electrostatic bond 

Cortistatin F -10.62 1.68 16.41 Glu167 Leu162; Pro248; Pro247; Tyr264; Tyr273; Tyr268 
Acanthomanzamine C -9.63 1.96 105.98 Tyr268; Gln269 Leu162; Tyr264; Asp164 
Cortistatin J -9.82 0.32 63.39 Leu162 Tyr264; Tyr268; Pro248; Pro247 
3k -9.47 1.48 113.67 Tyr268 Tyr264; Pro248; Pro247; Ala246; Met208; Asp164 

 

 

Fig. 6: Interaction between 3k and PLpro after docking molecular simulation: (A) 2-Dimension visual interaction (B) 3-Dimension visual 
interaction 

 

 

Fig. 7: Interaction between Cortistatin J and PLpro after docking molecular simulation: (A) 2-Dimension visual interaction (B) 3-
Dimension visual interaction 
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Cortistatin F created hydrogen bonds with Glu167 amino acid 
residues (fig. 8). Other formed bonds were Alkyl and Pi-Alkyl bonds 
with amino acid residues Leu162, Pro248, Tyr268, Tyr273, and 

Pro247. In addition, the pi-sigma bond was formed between the 
Tyr264 amino acid residue and the CH molecule in the structure of 
the Cortistatin F. 

 

 

Fig. 8: Interaction between cortistatin F and PLpro after docking molecular simulation: (A) 2-Dimension visual interaction (B) 3-
Dimension visual interaction 

 

Acanthomanzamine C formed hydrogen bonds with residues Gln269 
and Tyr268 that interact with the NH group of Acanthomanzamine C 
(fig. 9). These two residues are key residues that occupy the active 

site of the PLpro receptor. Other bonds were pi-pi T-shaped with 
Tyr264 residues, Pi-Anion bonds with Asp164 residues, and Pi-Alkyl 
bonds with Leu162 residue. 

 

 

Fig. 9: Interaction between Acanthomanzamine C and PLpro after docking molecular simulation: (A) 2-Dimension visual interaction (B) 3-
Dimension visual interaction 

 

Molecular dynamic simulation 

Molecular dynamics simulations provide a stable interaction 
between the behavior of proteins and other small molecules in detail 
so the interaction stability can be appropriately described [43]. With 
the accuracy and accessibility of simulation, followed by 
experimental structural data, it can be used well and help practical 
work that requires a lot of time and effort [44]. The molecular 
dynamics simulation stages were carried out to observe 
conformational changes formed between ligands and 
macromolecules (proteins). The process of molecular dynamics was 
broadly divided into two phases, namely the equilibration process, 
where the state of the ligand was analyzed at a constant temperature 
of 300 K, as well as the total energy and density. The production 
process was carried out for 100 ns by analyzing RMSD, RMSF, the 
total energy of MM-PBSA/GBSA, and the hydrogen bond. 

Analysis of system equilibration 

Temperature contained in the two protease systems was gradually 
increased until 300 K at the end of the equilibrium simulation, which 

lasted up to 140 ps. Temperature is one of the analytical parameters 
in the equilibrium simulation to check whether the temperature 
contained in the system can maintain its stability. The total energy is 
one of the analytical parameters in checking the equilibrium system 
before starting the production stage. The total energy is expected to 
remain stable, and no significant fluctuations will occur. The 
following process matches the density value, which is expected to be 
stable at approximately 1.00 g/ml. The density was stabilized at 
about 1.00 g/ml for both systems, representing the density of water 
as a solvent. 

Analysis of the production stage 

After completing a thorough check of the system equilibrium, the 
production stage of molecular dynamics simulation was carried out. 
The production stage lasted for 100 ns, during which RMSD, RMSF, 
total energy of MM-PBSA/GBSA, and hydrogen bonds were analyzed. 
Fig. 10 shows the fluctuation of the RMSD (Root Mean Square 
Deviation) ligand value during the simulation process. All ligands 
fluctuated in the initial 1-10 ns to find a stable location. RMSD values 
of several ligands range from<2 Å to 4 Å. 
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Fig. 10: Trajectory analysis and visualization of the root mean square deviation (RMSD) results in a 100 ns simulation: (A) Candidate 
inhibitor with target protein 3CLpro (B) Candidate inhibitor with target protein PLpro 

 

The protein 3CLpro, nirmatrelvir, acanthomanzamine C, and 
jaspamide Q achieved stability at 2 Å to 3 Å. As for the pre-neo-
kaluamine, it fluctuated quite significantly between 3 Å to 3.5 Å. In the 
PLpro protein, the 3k ligand has better stability than other ligands. 3k 
was stabled at 2 Å. The cortistatin F and cortistatin J fluctuated until 
they stabilized at 2.5 Å to 3 Å. At the same time, the 
acanthomanzamine C ligand fluctuated significantly between 10 ns to 
30 ns and reached stability at 3 Å. Although RMSD values seem pretty 

stable at the beginning of the simulation, the ligand fluctuated to seek 
conformational stability. Besides referring to the RMSD analysis, RMSF 
parameters also need to be considered to see fluctuations in the 
flexible amino acid residues of the target protein. The graph in fig. 11 
shows the evaluation results of the target protein amino acid residues 
during the simulation process. Most of the amino acid residues of the 
protein did not experience significant fluctuations. It indicated no 
significant change in the protein structure during the simulation. 

  

 

Fig. 11: Visualization and analysis results of root mean square fluctuation (RMSF) during the simulation for each residue number of (A) 
3CLpro and (B) PLpro 

 

 

Fig. 12: Number of hydrogen bonds from candidate ligand to target protein: (A) 3CLpro (B) PLpro during 100 ns simulation 
 

The last parameter analyzed was the hydrogen bond between the 
candidate ligand and the target receptor. Hydrogen bonds are essential 
in molecular systems as a significant non-covalent structural force, 

mainly determined by electrostatic properties. Hydrogen bond 
formation occurs when a hydrogen atom is effectively shared between 
a donor atom and another acceptor atom. The general rule used to 
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determine the probability of hydrogen bonding was based on FON, 
meaning hydrogen bonded to F, O, and N atoms could act as hydrogen 
bond donors, and F, O, and N atoms could act as hydrogen bond 
acceptors. Hydrogen bond analysis was carried out with the VMD 
program to process the topology and coordinates of candidate ligands 
so that hydrogen bonds could be analyzed. According to Bakker and 
Hubbard, several essential parameters in the shielding of hydrogen 
bonds were the donor and acceptor atoms being separated by a 
distance of 3.5 Å and the angle having to be more than 100 °. Even so, 
there were variations between the distance and the angle of each type 
of hydrogen bond that could form, but most studies used 120° as a 

parameter of the hydrogen bond angle [45]. The graph visualizes the 
number of hydrogen bonds formed in fig. 12. 

The results showed a correlation between the calculation results of 
MMGBSA and MMPBSA derived from molecular dynamics 
simulations (table 7). The table shows that the Pre-neo-kaluamine 
has a higher binding energy value (-70.17 kcal/mol and-59.63 
kcal/mol) than other ligands. Nirmatrelvir as a reference ligand 
showed binding energy values of-46.30 kcal/mol and-42.36 
kcal/mol. In the PLpro protein, all ligands correlated with the 
previous molecular docking simulation results. 

  

Table 7: MM-generalized born surface area and MM-poisson boltzmann surface area binding energy calculation results 

Protein Ligand MMGBSA (kcal/mol) MMPBSA (kcal/mol) 
Mean (± SEM) Mean (± SEM) 

3CLpro Nirmatrelvir -46.30 (± 0.374) -42.36 (± 0.464) 
Pre-neo-kaluamine -70.17 (± 0.378) -59.63 (± 0.524) 
Jaspamide Q -23.36 (± 0.337) -21.29 (± 0.420) 
Acanthomanzamine C -14.11 (± 0.276) -10.09 (± 0.464) 

PLpro 3k -11.62 (± 0.409) -10.81 (± 0.391) 
Cortistatin F -23.67 (± 0.502) -19.27 (± 0.540) 
Cortistatin J -17.49 (± 0.213) -16.20 (± 0.244) 
Acanthomanzamine C -13.29 (± 0.371) -13.58 (± 0.372) 

 

Cortistatin F (with binding energy values-23.67 kcal/mol and-19.27 
kcal/mol) has a better binding energy value than the others, even if 
it compares with the 3k as a reference ligand (with binding values-
11.62 and-10.81 kcal/mol). Acanthomanzamine C interacts well with 
protein 3CLpro and PLpro, with binding energy values ranging from-
10 kcal/mol to 14 kcal/mol. 

CONCLUSION 

Main protease (3CLpro) and papain-like protease (PLpro) are two 
critical non-structural proteins in the transcription process of SARS-
CoV-2, so they were chosen as targets of the candidate compounds in 
this study. Several secondary metabolite compounds from 
Indonesian marine natural products have the potential to inhibit 
3CLpro and PLpro. Based on the molecular docking simulation 
results between candidate compounds and 3CLpro protein, Pre-neo-
kaluamine had the best inhibitory potential with values of-10.35 
kcal/mol and Ki 25.85 nM. In the PLpro protein, Cortistatin F has the 
best binding energy value of-10.62 kcal/mol with a Ki of 16.41 nM. 
Also, we found that acanthomanzamine C is a ligand with dual 
targeting activity and shows a good interaction with protein 3CLpro 
and PLpro with binding energy values ranging from-10 kcal/mol-14 
kcal/mol. All ligands showed better results than reference ligands. 
Molecular dynamics simulations also showed the stability of the 
ligand with calculated values that correlate with the molecular 
docking simulation results.  
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