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ABSTRACT 

Objective: The present investigation explores the binding affinities of Irinotecan, which is a topoisomerase I inhibitor, against the targets such as 
AKT1, TNKS-2, MMP, EGFR, TNKS-1, and BRAF, which are the protein that was overexpressed by colorectal carcinogenesis.  

Methods: In this study, the drug structure was drawn by chemdraw software and explored for its anti-cancer potential by Schrodinger software 
against selected targeted proteins such as epidermal growth factor receptor (EGFR), matrix metalloproteinase (MMPs), serine/threonine protein 
kinase Ba (AKT1), BRAF, tankyrases 1 (TNKS-1, and tankyrases 2 (TNKS-2).  

Results: From the results of docking analysis, the targets with the maximum binding affinity towards the preselected drug Irinotecan were further 
subjected to ADME prediction by the QikProp module of Schrodinger Maestro version 2018.4. Molecular docking analysis  revealed that surface 
protein targets AKT1, TNKS-2, MMP, and EGFR have the highest binding affinity towards the selected topoisomerase I inhibitor Irinotecan when 
compared to TNKS-1 and BRAF targets. The higher docking score of Irinotecan with extracellular colorectal cancer target proteins was discovered in 
this investigation. 

Conclusion: Cancer is one of the most prevalent, lethal and risky malignant pathologies with an elevated prevalence and mortality rate worldwide. 
The current work will be more beneficial for rationalising the effective anticancer treatment according to the intensities of expression of the colon 
cancer target protein and for creating an optimum targeted drug delivery system of an anticancer agent to treat colon cancer.  
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INTRODUCTION 

Cancer is a physiological condition that develops as a consequence of 
the body's cells proliferating abnormally. Globally, cancer is 
widespread in mostly six organs: lung, breast, colorectal, prostate, 
stomach and cervical [1, 2]. Colorectal cancer (CRC), ranks among 
the most extensive and third most chief causes of death, driven on by 
some genetic changes in the colorectal mucosal lining and has 
emerged as a serious global health problem. In 2020, it is anticipated 
that there would be 1.93 million new cases of CRC diagnosed and 
0.94 million deaths globally [3, 4]. Despite variations in mortality 
rates, population growth and ageing are expected to cause the 
number of deaths from colon and rectal cancer to increase by 60.0% 
and 71.5%, respectively, in all countries through 2035. With an 
expected 2.4 lakh diagnoses by 2035, increased access to early 
detection services and specialised care is most likely responsible for 
the decreased mortality rates for colon and rectal cancer [5, 6]. Both 
changeable and immutable components are risk factors for Colon 
cancer (CC). Age and genetic predisposition are risk factors that 
cannot be modified; hence it is highly recommended to have people 
over 50 and/or with a family history of polyps and CRC examined 
[7]. Red and processed meat intake, alcohol use, and diets that are 
heavy in fat and low in fibre have all been related to an amplified 
risk of CC or CRC [8, 9]. Smoking, being overweight, and some other 
risk factors contribute to cancer development. Apoptosis usually 
stops damaged cells from becoming out of balance under normal 
physiological circumstances is avoided and control apoptosis [10]. 
FDA-approved drugs such as capecitabine, 5-fluorouracil, irinotecan, 
oxaliplatin, and trifluridine/tipiracil are commonly used anticancer 
drugs for chemotherapy [11-13]. Oxaliplatin (OX), irinotecan (IRI), 
and capecitabine are examples of medications used in multiple-
agent chemotherapy. Various chemotherapy regimens, either alone 
or in combination, are used as current treatments for CRC. Examples 
include FOLFOXIRI (5-FU/oxaliplatin/irinotecan), FOLFIRI (5-

FU/leucovorin/oxaliplatin), and FOLFOX (5-
FU/leucovorin/oxaliplatin). High-grade toxicity includes 
neurological diseases, gastrointestinal side effects, 
myelosuppression, neutropenia, anaemia, etc causes frequently 
necessitates dose restrictions or the termination of anticancer 
therapy [14-16]. The important drug targets for colon cancer include 
Epidermal growth factor receptor (EGFR) [17], Matrix 
metalloproteinase (MMP) [18, 19], Serine/threonine protein kinase 
Ba (AKT1) [20], BRAF [21, 22], tankyrases 1 and 2 (TNKS-1 and 
TNKS-2) [23, 24], Mitogen-activated protein kinase 3 (MAPK3) [25, 
26], Human tyrosine-protein kinase (C-SRC) [27, 28], Tumour 
suppressor p53 (TP53) [29-31], Glyceralde-3-phosphate 
dehydrogenase (GAPDH) [32, 33], poly (ADP-ribosyl) polymerase 1 
(PARP) [34, 35], inducible nitric oxide synthase (iNOS) [36-38], 
Checkpoint kinase 1 (Chk1) [39-41], and so on.  

 

 

Fig. 1: Structure of Irinotecan, (4S)-4,11-diethyl-4-hydroxy-9-
([4-piperidino-piperidino] carbonyloxy)1H-pyrano(3′,4′:6,7) 

indolizino (1,2-b) quinol-3,14, (4H,12H)-dione hydrochloride or 
7-ethyl-10-(4-[1-piperidino]1-piperidino) carbonyloxy 

camptothecin 

 

Irinotecan (IRT) is an alkaloid extract from the plant Camptotheca 
acuminata that is water-soluble and semi-synthetic in nature. 
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Chemically, irinotecan is irinotecan hydrochloride trihydrate (4S)-
4,11-diethyl-4-hydroxy-9-([4-piperidino-piperidino] carbonyloxy). 
1H-pyrano (3′, 4′: 6, 7) indolizino (1,2-b) quinol-3,14 (4H, 12H)-
dione hydrochloride or 7-ethyl-10-(4-[1-piperidino]-1-piperidino) 
carbonyloxy camptothecin. For the treatment of colorectal cancer 
which is resistant to 5-fluorouracil (5-FU), it has received FDA 
approval as a first-line chemotherapeutic medication [42-44]. IRT is 
transformed in living cells into the active metabolite 7-ethyl-10-
hydroxycamptothecine (SN-38), which attaches to the 
topoisomerase I-DNA complex, and prevents DNA strand breaks 
from being relegated, and causes cytotoxicity [43, 45, 46]. 

Molecular docking analysis is essential for discovering new drugs as 
well as determining how drugs interact with molecules and 
receptors. The primary goal of the current investigation was to use 
in silico docking analysis against the chosen targets to determine the 
degree of specificity of the chemical component irinotecan for its 
potential anti-cancer effect on colon cancer and to overcome the side 
effects of the drug by releasing IRT directly into the cancer cells. The 
colon cancer-specific marker proteins chosen for the present study 
are, among others, EGFR, MMP, AKT1, BRAF, TNKS-1, and TNKS-2. 
Schrödinger software was employed to carry out the investigation. 
The protein data bank (PDB) was used to mine these proteins. In 
addition to this, the Lipinski rule was used to predict the drug 
similarity and the ADME (absorption, distribution, metabolism, and 
excretion) characteristics of Irinotecan. The transmembrane 
glycoprotein known as the epidermal growth factor (EGF) receptor 
is a member of the tyrosine kinase receptor family. The binding of 
EGF to its cognate ligands might result in autophosphorylation and 
subsequent signal transduction pathways (cellular proliferation, 
differentiation, and survival) [47, 48]. Matrix metalloproteinases 
(MMPs) are proteolytic enzymes that are zinc-dependent 
metalloproteinases that have the potential to break down the 
proteins in the extracellular matrix (ECM) [24, 49-52]. AKT, or 
Protein Kinase B, is a protein kinase (PKB), a serine/threonine 
kinase that stops apoptosis, governs glycogen metabolism, and 
encourages the growth of cancer. AKT that has been phosphorylated 
and overexpressed is a therapeutic target for the management of 
malignant tumours [53]. AKT activation regulates apoptosis as well 
as the cell cycle, cell motility, and angiogenesis, which promote cell 
transformation and cancer [54]. The B-Raf proto-oncogene, 
serine/threonine kinase gene (BRAF), is a critical molecular genomic 
marker utilised in CRC diagnosis, prognosis, and therapy modalities 
[55]. The BRAF gene participates in the MAPK/ERK signalling 
pathway, which is crucial for the development of cancer and other 
diseases (RASopathies). This route influences crucial cell processes 
such as proliferation, senescence, apoptosis, differentiation, and 
growth [56, 57]. Tankyrases are members of the two-membered 
family of proteins known as poly (ADP)-ribose polymerases 
(PARPs): tankyrase 1 (TNKS-1) and tankyrase 2 (TNKS-2) [23]. 
Tankyrase exerts positive control on the Wnt/b-catenin signalling 
pathway, which is amplified in the early stages of colorectal cancer 
development [58]. 

MATERIALS AND METHODS 

Preparation of protein 

Three-dimensional (3D) crystal structures of the proteins, namely, 
epidermal growth factor receptor (EGFR) (PDB code: 1M17), matrix 
metalloproteinase (MMPs) (PDB code: 2DDY), serine/threonine 
protein kinase Ba (AKT1) (PDB code: 3O96), BRAF (PDB code: 
4MNE), Tankyrases 1 (TNKS-1) (PDB code: 5ECE), and Tankyrases 2 
(TNKS-2) (PDB code: 6KRO) were recognised and imported from the 
Protein Data Bank (PDB) (http://www.rcsb.org/pdb/-
home/home.do). The resolutions of the target proteins are 2.60 Å 
(1M17), 2.31 Å (2DDY), 2.70 Å (Akt 1), 2.85 Å (BRAF), and 2.20 Å 
(Tankyrases 1) and were considered good for further analysis. 
"Protein preparation wizard" was used to import the proteins' 3D 
structures. Using the required modelling calculations of Schrodinger 
software, the protein was created in this manner. A protein structure 
with heavy atoms, metal ions, missing hydrogen atoms, water 
molecules, co-crystallised ligands, and incomplete and terminal 
amide groups may be found and extracted using the protein data 
bank. The wizard fixed the bond ordering, made formal adjustments, 
added the missing protons, treated the metals, and got rid of the 

water that extended past the heteroatom's 5th position. Using Epik, 
the potential ionisation states for the protein's ligand were 
produced, and the most stable state was chosen [59]. Using the force 
field OPLS-2005 and a restricted root mean square deviation 
(RMSD) tolerance of 0.3, the protein was then minimised under 
controlled conditions [60]. 

Receptor grid generation 

The "receptor grid creation" feature was used to create the grid over 
the ligands associated with an active site while keeping the ligands 
present in all proteins. The protein's active site is indicated by the 
centroid (cubical) shape that forms over the ligand [61, 62]. 

Ligand preparation 

Irinotecan chemical structure and formula (C33H38N4O6) were 
created using "Chemdraw" and then saved in SDF format (fig. 1). The 
ligand was then loaded into Schrodinger 2018's "LigPrep" module 
software. The molecule's 2D structure was changed into a low-
energy 3D structure [63]. These were added to by the creation of 
several structures with various ionisation states: tautomers, stereo-
isomers, and ring conformations. The ligand was also tuned for its 
shape and energy minimization. Ionisation and tautomeric states 
were produced in a pH range of 6.8 to 7.2 using the "EPIK" module. 
The optimal potentials for liquid simulations-2005 (OPLS-2005) 
force field was used to decrease the compounds, yielding a root 
mean square deviation (RMSD) value of 1.8 [64]. 

Molecular docking 

The formerly chosen receptor grid and ligand were used throughout 
the docking procedure, which was carried out using the Schrodinger 
"Glide" module [65, 66]. Using the Glide "Ligand docking" tool, the 
favourable contacts between the ligand molecules were rated. The 
extra precision (XP) form and force field of OPLS-2005 were used to 
perform the docking calculations. The docking postures were 
changed using a series of hierarchical filters, and the flexible docking 
mode was used to assess how well the ligand connected to the 
receptor. The strategy minimises steric collisions while emphasising 
advantageous metal ligation, hydrogen bonds, and hydrophobic 
interactions. The method's last phase involves rating the reduced 
postures using the Glide "Scoring function" and force field OPLS-
2005 minimization [67].  

“Lipinski's rule of five (Ro5)” and the analysis of 
pharmacokinetics (ADME) properties 

To prevent the failure of a molecule at the end of the drug 
development process, in silico analysis is a crucial method for early 
preclinical evaluation of a novel chemical entity. Using this method, the 
processes for expanding medicinal molecules are rationalised, and 
time and resources are greatly saved. Almost 40% of drug candidates 
fail owing to inadequate pharmacokinetic properties such as 
absorption, distribution, metabolism, and excretion (ADME) 
characteristics. In order to accurately predict the ADME properties of a 
freshly created molecule and to screen challenging drug candidates 
that shouldn't be explored further, high-throughput screening (HTS) 
techniques are used. Amazingly, using this technique, the failed 
chemical is changed to enhance its beneficial characteristics [68]. 

The preferred filter, Lipinski's Rule of Five (Ro5), is more effective in 
predicting a molecule's bioavailability. According to the five 
requirements in 2004 (Lipinski), the molecular mass should be less 
than 500 daltons, there should be no more than five hydrogen bond 
donors and no more than ten hydrogen bond acceptors, and the "log 
P" octonal/water partition coefficient should be less than five. The 
Schrodinger 2018.1 "QikProp" tool was used to forecast Lipinski's 
Rule of Five (Ro5), and pharmacokinetic characteristics such as 
absorption, distribution, metabolism, and excretion (ADME) 
(Schrodinger, 2018) [69-71]. 

RESULTS AND DISCUSSION 

Using the sophisticated molecular docking programme "Schrodinger 
Maestro version 11," several target proteins in colon cancer and the 
ligand "Irinotecan" were studied on the active sites. The "LigPrep" 
tool from Schrodinger software was used to optimise the ligand 
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irinotecan, which was then used for docking experiments. The colon 
cancer proteins EGFR, MMP, AKT1, BRAF, TNKS-1, and TNKS-2 were 
made using the protein preparation wizard programme of 
Schrodinger. Schrodinger's receptor grid creation method was used 
to build the cube-shaped grid/active site area. The selected and set-

up Grid region or active site was designed to bind or interact with 
the target drug, "Irinotecan." The research rated the binding affinity 
of irinotecan for each of its target proteins. Binding orientations of 
Irinotecan with the crystal structure of EGFR, MMP, AKT1, BRAF, 
TNKS-1, and TNKS-2 was given in fig. 1-7. 

 

 

 

Fig. 2: Binding orientations of Irinotecan with the crystal structure of Epidermal growth factor receptor (EGFR) and its hydrogen-bond 
interactions with amino acids 

 

 

 

Fig. 3: Binding orientations of Irinotecan with the crystal structure of matrix metalloproteinase (MMPs) and its hydrogen-bond 
interactions with amino acids 
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Fig. 4: Binding orientations of Irinotecan with the crystal structure of serine/threonine protein kinase Ba (AKT1) and its hydrogen-bond 
interactions with amino acids 

 

 

Fig. 5: Binding orientations of Irinotecan with the crystal structure BRAF 

 

 

Fig. 6: Binding orientations of Irinotecan with the crystal structure of Tankyrases 1 (TNKS-1) 
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Fig. 7: Binding orientations of Irinotecan with the crystal structure of Tankyrases 2 (TNKS-2) and its hydrogen-bond interactions with 
amino acids 

 

Using schrodinger's GLIDE programme, molecular docking was done 
on all target proteins, including EGFR, MMP, AKT1, BRAF, TNKS-1, 
and TNKS-2. The predicted values of docking score, Glide evdw (Van 
Der Waals energy), ecoul (Coulomb energy), Glide energy, and the 
interacting residues (Hydrogen bond/-bond) were all carefully 
examined to ascertain the extent of interaction between the target 
proteins and Irinotecan. The study's findings indicated that the 
ligand "Irinotecan" docked well and made powerful binding with the 
active sites of all the proteins. The results for EGFR, MMP, AKT1, 
BRAF, TNKS-1, and TNKS-2 were labelled by the protein codes 
1M17, 2DDY, 3O96, 4MNE, 5ECE, and 6KRO, respectively (table 1). 
The protein targets such as EGFR, MMP, AKT1, BRAF, TNKS-1, and 
TNKS-2 found in this study is overexpressed is a therapeutic target 
for the management of malignant tumours (47-58). IRT attaches to 
the topoisomerase I-DNA complex and prevents DNA strand breaks 
from being relegated and causes cytotoxicity [43, 45, 46]. The 
current investigation found that irinotecan interacted well with all of 
the targeted proteins, with the order of binding being AKT1>TNKS-
2>MMP>EGFR>TNKS-1>BRAF. The docking scores of the proteins 
are as follows: -8.70,-7.62,-6.52,-5.68,-4.34, and-3.54. A high binding 
affinity option is the ligand with the lowest binding energy. In this 
investigation, AKT1 and TNKS-2 had greater binding affinities to 
Irinotecan than MMP, EGFR, TNKS-1, and BRAF proteins. AKT1, 
TNKS-2, MMP, EGFR, TNKS-1, and BRAF had Glide evdv values of-
60.46,-36.72,-47.15,-42.01,-42.47, and-34.44, respectively (table 1).  

Glide energy values f were-4.05,-3.18,-8.48,-9.05,-6.41, and-4.45. 
Following that, the glide energies of proteins such as AKT1, TNKS-2, 
MMP, EGFR, TNKS-1, and BRAF were calculated, and the results are-
38.87,-39.90,-55.63,-51.06, and-48.88, respectively. The target 
proteins amino acids in particular, displayed excellent interaction 
with Irinotecan via hydrogen bonding, pi-pi bonding, and polar 

interactions. Table 1 shows the hydrogen bonds and pi-pi 
interactions formed by target protein amino acids and Irinotecan. 
Each target protein's docking scores with "Irinotecan" were 
compared. Interestingly, the drug "Irinotecan" showed excellent 
binding interactions and affinities with all six proteins that are 
specific for colon cancer, with the following order of binding 
interactions: AKT1>TNKS-2>MMP>EGFR>TNKS-1>BRAF. By 
considering the ligand and certain target areas as flexible 
conformations, this approach was able to determine the binding free 
energy between each target and ligand. IRT demonstrated the least 
amount of binding energy to AKT1 of all the examined proteins. 
Additionally, compared to other targets, AKT1 is one of the targets in 
cancer research that has received the most attention. Several 
anticancer candidates that target AKT1, such as capivasertib 
(AZD5363), ipatasertib (RG7440), and MK-2206, are currently 
undergoing clinical trials [72]. MK-2206, one of these contenders, 
has demonstrated good outcomes in the treatment of people with 
colorectal cancer [73]. 

Evaluation of the docking programme 

The docking procedure's accuracy was demonstrated by the scoring 
function's analysis of the binding conformations of the ligand and 
target proteins based on their lowest energy positions. The 
experimental binding as measured by X-ray crystallography and the 
Glide/docking score are equivalent. The investigation's conclusions 
were calculated using hydrogen bonding interactions and the root 
mean square deviation (RMSD) between the anticipated and actual 
X-ray crystallographic conformations. By removing the co-
crystallised ligand from its active site, "Irinotecan" was docked with 
its binding site to demonstrate the extreme precision (XP) docking 
mode [73]. The docking scores of each target protein with 
"Irinotecan" were compared. Surprisingly, "Irinotecan" showed 
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substantial binding contacts with each of the six proteins believed to 
be responsible for colon cancer, and their interactions were 

conducted in the order shown below: AKT1>TNKS-
2>MMP>EGFR>TNKS-1>BRAF. 

  

Table 1: Irinotecan's molecular docking score, glide evdw (Van der Waals energy), ecoul (Coulomb energy), interacting residues, kind of 
interaction, and docking score were determined using schrodinger’s glide software (version 2018-1). Where the letters HB stand for 

hydrogen bonds and Pi-Pi for-bonds 

Compound Protein Docking score Glide evdw Glide ecoul Glide energy Interacting residues/type (HB/Pi-Pi) 
Irinotecan 1M17 -05.68 -42.01 -09.05 -51.06 LYS704, ASP831 and HOH 

2DDY -06.52 -47.15 -08.48 -55.63 HIS120, GLU121 and THR141/HIS124 and HIS130 
3O96 -08.70 -60.46 -04.05 -64.51 TRP80 
4MNE -03.54 -34.44 -4.45 -38.87 ASN78, LYS97, SER150, SER194, LYS192, LEU197 

and HOH 
5ECE -04.34 -42.47 -6.41 -48.88 LYS1195, TYR1203/PHE1188 
6KRO -07.62 -36.72 -3.18 -39.90 ARG1047 and TYR1071 

 

Lipinski rule and pharmacokinetic (ADME) parameters  

The ADME characteristics of the test drug "Irinotecan" were 
further evaluated using the QikProp module of the Schrodinger 
software. Examples of Lipinski characteristics include molecular 
weight, hydrogen bond donor (HBD), hydrogen bond acceptor 
(HBA), partition coefficient (QPlogP (O/W), and the rule of five. 
The expected values for each of these parameters were, 
accordingly, 586.68 (500), 1 (5), 12.75 (10), and 3.41 (5), and the 
rule of five is one (0) (table 2). Except for a tiny change with HBA, 
the estimated Lipinski values were below the limit stated in 
parentheses. 

Aqueous solubility (QPlogS), predicted IC50 for HERG K+channel 
blockage (QPlogHERG), blood and brain partition coefficient 
(QPlogBB), qualitative human oral absorption (PHOA), and 
gastrointestinal system barrier and cell permeability in nm/s 
(QPPCaco) were all calculated. The following values are equivalent: -
6.5 (-6.50 to 0.50),-7.01 (-05),-1.32 (-03 to 1.20), 65 (>80 high, 25 
poor), and 68 (>500 high, 25 poor) (table 3). The levels of irinotecan 
were within the permitted range and did not exceed the limit 
according to the pharmacokinetic characteristics of the drug. The 
complete experiment's findings demonstrated that irinotecan 
complied with all ADME and Lipinski's rule requirements and 
exhibited a consistent interaction with the target protein. 

 

Table 2: The values that the lipinski rule-based QikProp module of schrodinger predicted for irinotecan. Molecular weight, abbreviated 
as M. W., the HB-Hydrogen bond, and the expected octanol/water partition coefficient logP together with the HB-Hydrogen bond and 

QPLogP (O/W) 

Factors of lipinski rule of 5 
Name of the compound M. W. (<500) HB-Donor (<05) HB-Acceptor (<10) QPlogP (O/W) (<05) Rule of 5 (00) 

Irinotecan hydrochloride 586.68 01 12.75 03.41 01 

 

Table 3: Irinotecan’s ADME values were predicted using a schrodinger QikProp module. Where QPlogS stands for aqueous solubility, 
QpHERG for expected IC50 for blocking HERG K+channels, QPlogBB for predicted blood and brain partition coefficient, PHOA for 

predicted oral absorption, and QPPCaco for predicted gut-blood barrier and cell permeability in nm/s, respectively 

Pharmacokinetic (ADME) properties 
Compound QPlogS  

(-06.50 to 0.50) 
QpHERG 
(<-05) 

QPlogBB 
(-03 to 01.20) 

PHOA 
(>80 high,<25 poor) 

QPPCaco 
(>500 high,<25 poor) 

Irinotecan  -06.5 -07.01 -01.32 65 68 

 

CONCLUSION 

The current work used Schrodinger Maestro to examine the 
molecular interactions and pharmacokinetics of Irinotecan with the 
chosen proteins AKT1, TNKS-2, MMP, EGFR, TNKS-1, and BRAF. Both 
binding affinity and ADME features were examined using 
Schrodinger's GLIDE and QikProp programmes. The results of the 
investigation showed that the individual proteins had strong 
hydrogen bonds, polar bonds, and pi-pi bonds with each other for 
binding. Interestingly, the expected scores for Irinotecan using 
Lipinski's rule and pharmacokinetic (ADME) characteristics were 
within satisfactory limits. As a result, the drug Irinotecan efficiently 
and at a low energy level inhibits the target colon cancer proteins 
AKT1, TNKS-2, MMP, EGFR, TNKS-1, and BRAF. Irinotecan's 
interactions with the six proteins were more energetic in the 
following order: AKT1>TNKS-2>MMP>EGFR>TNKS-1>BRAF. 
Additionally, compared to MMP, EGFR, TNKS-1, and BRAF proteins, 
the proteins AKT1 and TNKS-2 had higher binding affinities to 
irinotecan. In this current study, we identified the higher docking 
score of irinotecan with extracellular colorectal cancer target 
proteins. This study is recommended for the continuous effort of 
researchers towards the selected extracellular colorectal cancer 
target proteins that are most suitable with irinotecan hydrochloride 
as a candidate for pharmaceutical formulation. 

DISCLAIMER 

The products selected in this study are those that are often and 
predominately used in our nation and field of study. Because we 
don't aim to use these items as a venue for any lawsuit but rather for 
the development of knowledge, The authors and the product's 
makers have no financial ties to one another. Additionally, the study 
was not paid for by the production business; rather, the writers paid 
for it themselves. 

LIST OF ABBREVIATIONS 

AKT1-Serine/threonine protein kinase, TNKS–tankyrases, MMP-
Matrix metalloproteinase, EGFR-Epidermal growth factor receptor, 
and BRAF, Irinotecan-IRT, Checkpoint kinase 1-Chk1, inducible 
nitric oxide synthase–iNOS, GAPDH-Glyceralde-3-phosphate 
dehydrogenase, MAPK3-Mitogen-activated protein kinase 3, PARP-
poly (ADP-ribosyl) polymerase 1, TP53-Tumour suppressor p53, 
IRT-Irinotecan, ADME-Absorption, distribution, metabolism, 
excretion, HBD-hydrogen bond donor, HBA-hydrogen bond acceptor, 
RMSD-root mean square deviation.  
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