INTRODUCTION

Over the past years, rapidly evolving viral epidemics are posing a significant threat to global public health [1]. Numerous viral contagions, comprising of the H1N1 swine flu outbreak [2], the Ebola virus pandemic in West Africa [3], Zika virus [4], Acute Respiratory Distress Syndrome (ARDS), the Middle East Respiratory Syndrome (MERS) [5], and Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2), have been ascertained in the recent two decades [6]. The contemporary pandemic of Coronavirus Disease 2019 (COVID-19) impinges the respiratory system, cardiac tissues, hepatic cells, and renal cells, and ultimately culminates in multiple organ dysfunction (MOD). SARS-CoV-2 is constantly developing, and many variants have been identified and categorized. An early prototype of SARS-CoV-2 with a D614G mutation in the spike glycoprotein was discovered, and it was accompanied by a high transmission capacity that accelerated the global pandemic [6].

Presently, five major variants of concern have been identified and categorized. An early prototype of SARS-CoV-2 with a D614G mutation in the spike glycoprotein was discovered, and it was accompanied by a high transmission capacity that accelerated the global pandemic [6].

The replication of the Coronavirus virus (CoV) begins with the attachment to the host Angiotensin Converting Enzyme-2 (ACE2) through receptor-mediated endocytosis, followed by penetration into the host cells; genomic replication, components assembly, virion formation, and its release. The S proteins from the Omicron bind to ACE2 and invade the cell through the action of TMPRSS21 serine protease. The CoV protease 3CLpro (non-structural protein 5) is indispensable for viral RNA polyprotein cleavage and virus replication [12]. The dimeric structure of the 3CLpro proteins is actively engaged between the viral and host protein will furnish greater insights into viral pathogenesis. Conventional drug development protocols can take years and cost billions to introduce novel therapeutics to the market whereas, in silico drug designing is quick, efficient, and cost-effective to generate novel medications. Furthermore, a number of previous research has underlined the engagement of bioactive substances with SARS-CoV-2 proteins in combating the COVID-19 outbreak, which has inspired us to undertake the present research. In the current study, the COVID-19 library (https://pubchem.ncbi.nlm.nih.gov/#query=covid-19) from the
PubChem database to screen for the potent anti-covid molecules was utilized that can effectively address the 3CLpro-ACE2 complex to minimize the detrimental effects of ACE2 down regulation. The data and conclusions established from these docking and simulations studies have assisted in the identification of safe and effective ligands that could be ordained to develop novel anti-covid drugs.

MATERIALS AND METHODS

Work station

Linux Operating system was used to perform the docking calculations and dynamic simulations in the HP Z640 workstation with 64GB RAM and Nvidia 3080Ti graphics card followed by Xeon dual processors.

Retrieval of 3D structures of the ACE2 and 3CLpro proteins

The 3-dimensional structures of the proteins, ACE2 and 3CLpro, were retrieved from the RCSB PDB (Protein Data Bank) (https://www.rcsb.org/) in pdb format [24]. The protein structural data was constructed based on various experimentation methodologies like X-ray diffraction, NMR, electron microscopy, etc. In this study, the crystal structure of human ACE2 (PDB ID: 7U0N) was downloaded with a resolution of 2.61 Å. The antiviral protein 3CLpro (3CL-like protease) is a principal protein that potentially sunders the coronavirus polyprotein. The 3D structure of 3CLpro (PDB ID: 7W03) was retrieved having a resolution of 2.01 Å.

Preparation of proteins for protein-protein docking

The 3D crystal structures of the proteins, ACE2 and 3CLpro, were purified preceding docking by using DS Dodies wy Storoe (BIOVIA Discovery Studio-BIOVIA-Dassault Systèmes® (3ds.com)) to prepare both the proteins for docking. The free energy of the water molecules does not concomitant the crystallographic domiciliation. Therefore, the water molecules and the prebound ligands were removed from the crystal structures to avoid any alteration to the docking scores and to facilitate the binding with the ligands that were chosen for the study, respectively. To avoid the complexity of the protein structures, additional chains were removed from the protein structures while the A chain was retained for the analysis. The purified structures were optimized by the addition of polar hydrogen atoms [25] and validated using PROCHECK (PROCHECK home page (ebi.ac.uk)) [26] to generate the Ramachandran plot [27] and to evaluate the steric clashes and structure reliability.

Protein-protein docking of ACE2 and 3CLpro proteins

The cellular function and interactions between the ACE2 and 3CLpro proteins were evaluated through protein-protein docking using ChaSP 2.0 (https://cluspro.org/help.php) [28]. The ligands were rotated with 70,000 rotations and translated on the grid. All rotations were scored and the 1000 rotations with the least scores were selected for RMSD clustering. The 30 best models were screened after clustering and the charm minimization to eliminate the binding ligands was done. Among the top 10 models, the model corresponding to Cluster 0 was downloaded from the balanced category with respect to the lowest energy and weighted score. The docked 3CLpro–ACE2 protein complex was used for further analysis [29].

Collection of the ligand library

PubChem (https://pubchem.ncbi.nlm.nih.gov) is a database of chemical compounds that proffer particulars about their physiochemical properties, bioactivities, toxicity, etc. The substance, bioassay, and compound databases are concatenated with the PubChem database [21]. The Substance repository [22] incorporates chemical characterization of the small molecules. The Compound database [22] is the depot for chemical architecture generated from the Substance database while the data about the physiological and biochemical activity of the small molecules are stored in the BioAssay database [23]. In the current study, a library of 1,87,419 compounds was constructed from the PubChem database.

Pre-processing and virtual screening of the ligand library

The COVID library retrieved from PubChem entailed 1,87,419 compounds. These compounds were filtered based on physiochemical properties, the Lipinski rule of five [30], and toxicity parameters. The pre-processing filters necessitated the removal of small molecules with disagreeable physiochemical properties and toxicity values. The pre-processing was effectuated using the ChemBioServer 2.0 web tool (https://chembioserver.vi- sequencer.eu/) [31]. The library was initially processed using the Chemmine R package and its physiochemical properties were analyzed. The processed data were screened according to the Lipinski Rule of Five, Partition coefficient values (log P), Polar surface area (PSA), and other chemical properties [32]. The unwanted chemical structures and moieties were eliminated after filtering and 92,547 compounds were kept for further analysis. The advanced filtering section was utilized to implement toxicity screening which eliminated the toxic and carcinogenic structures from the processed library. The vdW screening enabled the removal of small molecules with steric clashes. In total, 18,642 compounds fulfilled the evaluation parameters and were appraised for molecular docking studies [31, 32]. The virtual screening of the pre-processed ligand library was achieved through PyRx (https://pyrx.sourceforge.io/) [33] to attain hit compounds with advantageous biological properties towards the docked protein complex of 3CLpro and ACE2. It took around 33-36 h to complete the virtual screening of the 18,642 compounds library. The pharmacokinetic properties of the top 10 covid library compounds were further examined with admetSAR 2.0 (http://immd.eust.edu.cn/admetSAR2/) [34].

Preparation of the ligands

The ligand library was uploaded in Structure Data Files (SDF) format using the Open Babel section in the navigation panel. SDF corresponds to flat chemical structures as multiple structures are compressed within a single file. The ligand preparation was achieved by energy minimization and the elimination of salts from the imported SDF files using the Open Babel tools [36]. Therefore, energy minimization was executed to attain proper 3-Dimensional structures with definite bond lengths. The energy minimized values indicate the universal force field values (uff) effectuated by the Open Babel package. These values are representative of the change implemented to the ligand moieties. Following energy minimization, the ligands were converted to PDBQT format.

Molecular docking of the ligands with the 3CLpro–ACE2 protein complex

The PyRx software integrates AutoDock 4 and AutoDock Vina to accomplish docking. The AutoDock tools package [35] integrated with PyRx aids in the preparation of the input files. The Visualization ToolKit (VTK) [37] enabled the visualization of the docked structures within the PyRx interface whereas the map_client was beneficial in generating the 2D plots for the ligands and the target. The docking by PyRx assumes the 3D structures of the macromolecules as rigid that were converted to AutoDock PDBQT format for further analysis. The flexibility of the ligand by default has accounted for 9 conformational changes with different binding energies. The grid was generated and the prepared compounds were proceeded for docking. The docking results were downloaded as CSV files and analyzed with respect to binding affinity. The negative binding affinity stipulated that the ligands bind to the 3CLpro–ACE2 protein complex. The more negative the binding affinity, the better the binding [33].

MD simulation using desmond package

The MD (Molecular Dynamic) simulation was performed on the compounds with the lowest binding affinity and best physiochemical parameters. The significant hydrogen bond associations can be uncovered using simulation studies [38]. The docking calculation was further subjected to Desmond Schrodinger package 2019.2. The built-docked complex system was based on thermos dynamic stability using an OPLS force field (Optimized Potentials for Liquid Simulations) to mimic the water molecules employing the SPC (Simple Point Charge) water model. The repeating units were considered at a 10 Å distance and defined within the orthorhombic periodic boundary positions. NPT (Constant Number of atoms, Volume, and Temperature) ensemble
was used within the radius of the periodic boundary at 310K temperature and 1 Bar pressure. This was processed for 100 ns NPT formation simulation with specific frame intervals [39].

Normal mode analysis

Normal Mode Analysis (NMA) is a computer-based simulation approach for evaluating the movement patterns of atoms or molecules [40]. The NMA in this research was performed using the iMODS server (https://imods.iqfr.csic.es/). The iMODS server aids in the exploration of macromolecule functioning and generates readily accessible data on pathways that may be linked to the macromolecule in question or homologous structures.

NMA delivers better discernment about the allosteric and transition pathways associated with the biomolecules. The ICS (Internal Coordinate Space) algorithm was implemented to execute NMA pathways associated with the biomolecules. The ICS approach, the harmonic equivalence was expanded wherein, the dihedral angles were considered as the variables [41, 42]. In the ICS approach, Normal Mode Analysis (NMA) is a computer-based simulation technique that enables the viral entry and initiates its replication process. In the current study, 2 major proteins (3CLpro and ACE2) were docked together (fig. 1) to investigate the binding affinity of phytochemicals against the complex.

RESULTS

Molecular docking analysis between phytochemicals and the 3CLpro-ACE2 complex

Experimental studies have exposed that the Omicron virus enters the host cell when its viral protease, 3CLpro, binds directly to the cell surface of the host's ACE2 binding receptor. This interaction enables the viral entry and initiates its replication process. In the current study, 2 major proteins (3CLpro and ACE2) were docked together (fig. 1) to investigate the binding affinity of phytochemicals against the complex.

All the covid library compounds were docked in contrast to the target complex and ranked based on their binding score or dock score. All the compounds which possessed binding less than -8.0 kcal/mol, were considered representative drug candidates for Omicron infection. A total of 10 compounds were selected based on the binding interactions with the 3CLpro-ACE2 docked protein complex (table 1). Out of the 10 compounds, 1-(4-fluorophenyl)-N'-(4-methylphenyl)propane-1,3-diamine exhibited the best-docked score (-18.7 kcal/mol) with complex structure and was subjected to molecular dynamic studies to analyze the stability and binding free energies.

<table>
<thead>
<tr>
<th>Ligands</th>
<th>Binding affinity (kcal/mol)</th>
<th>Hydrogen bonding interactions</th>
<th>Hydrophobic interactions</th>
<th>Electrostatic interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>10061134</td>
<td>-16.1</td>
<td>GLN A: 552</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>10036127</td>
<td>-12.8</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>10166</td>
<td>-10.4</td>
<td>ASP A: 350</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>10112</td>
<td>-10.2</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Table 1: Interaction of amino acid residues of 3CLpro and ACE2 complex with ligands on the receptor surface

3D structure validation of ACE2 and 3CLpro by ramachandran plot

The proteins ACE2 and 3CLpro, PDB IDs: 7U0N and 7W03 respectively, were examined for their 3D protein structures and steric hindrance. The purified structure of 7U0N (ACE2) contained 597 amino acids (3 sheets, 2 beta hairpins, 1 beta bulge, 6 strands, 31 helices, 58 helix-helix interacts, 37 beta turns, 6 gamma turns, and 3 disulfides). The purified structure of 7W03 had 290 amino acids (3 sheets, 7 beta hairpins, 6 beta bulges, 14 strands, 10 helices, 7 helix-helix interacts, 24 beta turns, and 2 gamma turns) (fig. 2).
The Ramachandran plot revealed that the ACE2 protein has 491 residues in the most favored region, 44 residues in additionally allowed regions, one residue in the generously allowed region, and no residues in the disallowed region. The purified structure of ACE2 has 32 glycine and 27 proline residues. Whereas, the 3CLpro protein has 193 residues in the most favored region, 33 residues in additionally allowed regions, two residues in the generously allowed region, and no residues in the disallowed region. The purified structure of 3CLpro has 35 glycine and 5 proline residues (fig. 2).

Molecular interaction studies of the top 3 best compounds

The docking interactions were analyzed to ascertain the dominant interactions in the binding pocket of the protein. The hydrophobicity of the protein binding pocket is vital in determining the protein topology and stability as it helps to eliminate unwanted interactions with the non-structural water molecules. Good hydrophobicity was observed on the protein surface. It was noticed that the ligand 10038137 was interacting with GLU 406 and THR 445 by establishing hydrogen bonds (fig. 3). While the ligand 10036216 was majorly interacting with GLN 442 and THR 445 by establishing hydrogen bonds in the binding pocket of the protein (fig. 4). Similarly, the ligand 10061134 has established five hydrogen bonds with amino acids THRC347, ASP 350, TYR 385, ARG 393, and ASN 394 respectively (fig. 5).

Drug likeness of the selected top 10 compounds

The physicochemical properties of the selected 10 compounds were studied on the ChemBioServer 2.0. All the selected compounds were plant-based, and some of them obeyed Lipinski’s rule of five (table 2).
Fig. 5: 3D and 2D interactions of 10061134 with 3CLpro-ACE2 complex

Table 2: Physicochemical and drug-likeness properties of the active compounds

<table>
<thead>
<tr>
<th>PubChem ID</th>
<th>Molecular name</th>
<th>MW</th>
<th>LogP</th>
<th>HBA</th>
<th>HBD</th>
<th>TPSA</th>
<th>Violation</th>
<th>AMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>10038137</td>
<td>1-(4-fluorophenyl)-N’-(4-methylphenyl)propane-1,3-diamine</td>
<td>258.150</td>
<td>3.194</td>
<td>2</td>
<td>3</td>
<td>38.050</td>
<td>Accepted</td>
<td>77.48</td>
</tr>
<tr>
<td>10036216</td>
<td>(2S,3R,4R)-3-amino-5-methoxy-4-methyl-5-oxo-2-prop-1-en-2-ylpentanoic acid</td>
<td>215.120</td>
<td>0.067</td>
<td>5</td>
<td>3</td>
<td>89.620</td>
<td>Accepted</td>
<td>55.47</td>
</tr>
<tr>
<td>10061134</td>
<td>2-(2,6-dichloro-4-hydroxyanilino)-1,4-dihydroimidazol-5-one</td>
<td>258.990</td>
<td>1.997</td>
<td>5</td>
<td>4</td>
<td>84.400</td>
<td>Accepted</td>
<td>69.22</td>
</tr>
<tr>
<td>10017</td>
<td>2-fluoroethyl carbonochloridate</td>
<td>125.990</td>
<td>0.598</td>
<td>2</td>
<td>0</td>
<td>26.300</td>
<td>Accepted</td>
<td>23.06</td>
</tr>
<tr>
<td>10036127</td>
<td>5-bromo-3H-1-benzofuran-2-one</td>
<td>211.950</td>
<td>3.159</td>
<td>2</td>
<td>1</td>
<td>33.370</td>
<td>Accepted</td>
<td>43.69</td>
</tr>
<tr>
<td>10019</td>
<td>3-fluoropropan-1-amine</td>
<td>77.060</td>
<td>-0.087</td>
<td>1</td>
<td>2</td>
<td>26.020</td>
<td>Accepted</td>
<td>19.29</td>
</tr>
<tr>
<td>10218299</td>
<td>N-[3-chloro-4-[(3-fluorophenyl)methoxy]phenyl]-6-[3-(2-methylsulfonylethyl)amino]prop-1-ynyl]thieno[3,2-d]pyrimidin-4-amine</td>
<td>544.080</td>
<td>3.923</td>
<td>7</td>
<td>2</td>
<td>96.440</td>
<td>1 violation</td>
<td>141.83</td>
</tr>
<tr>
<td>10166</td>
<td>(1R,3S)-9-methoxy-1,3-dimethyl-3,4-dihydro-1H-benzo[g]isochromene-5,10-dione</td>
<td>272.100</td>
<td>3.497</td>
<td>4</td>
<td>2</td>
<td>58.920</td>
<td>Accepted</td>
<td>73.74</td>
</tr>
<tr>
<td>10112</td>
<td>Aragonite</td>
<td>59.990</td>
<td>-2.697</td>
<td>3</td>
<td>0</td>
<td>63.190</td>
<td>Accepted</td>
<td>6.77</td>
</tr>
<tr>
<td>10216432</td>
<td>2-[3-acetamido phenyl]-N-[[2S]-4-[3,4-dihydropheno]methyl]morpholin-2-yl)methyl]acetamide</td>
<td>417.190</td>
<td>1.792</td>
<td>6</td>
<td>2</td>
<td>70.670</td>
<td>Accepted</td>
<td>112.56</td>
</tr>
</tbody>
</table>

MW: Molecular Weight; HBA: Hydrogen bond acceptor; HBD: Hydrogen bond donor; TPSA: topological polar surface area; AMR: Atom Molar Refractivity; Accepted: Indicates that the drug follows all the five rules of Lipinski.

ADMET analysis using admetSAR 2.0

All the ADMET biological properties of covid library compounds were assessed using admetSAR 2.0. All the compounds showed significant human intestinal absorption and blood-brain barrier infiltration. None of the compounds observed any carcinogenic properties in their nature followed by a negative AMES test which can be seen in table 3.

Table 3: Pharmacokinetic studies using admetSAR web server

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Human intestinal absorption</th>
<th>Caco-2</th>
<th>Blood-brain barrier</th>
<th>Human oral bioavailability</th>
<th>MATE-1</th>
<th>AMES mutagenicity</th>
<th>Acute oral toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10038137</td>
<td>0.9856</td>
<td>0.5589</td>
<td>0.9913</td>
<td>0.9</td>
<td>0.88</td>
<td>0.55</td>
<td>1.905</td>
</tr>
<tr>
<td>10036216</td>
<td>0.9666</td>
<td>0.7329</td>
<td>0.9497</td>
<td>0.5714</td>
<td>0.98</td>
<td>0.74</td>
<td>2.789</td>
</tr>
<tr>
<td>10061134</td>
<td>0.9807</td>
<td>0.8599</td>
<td>0.9805</td>
<td>0.6857</td>
<td>0.66</td>
<td>0.76</td>
<td>1.559</td>
</tr>
<tr>
<td>10017</td>
<td>0.9593</td>
<td>0.5671</td>
<td>0.9936</td>
<td>0.5286</td>
<td>0.98</td>
<td>0.6100</td>
<td>4.512</td>
</tr>
<tr>
<td>10036127</td>
<td>0.9727</td>
<td>0.8968</td>
<td>0.908</td>
<td>0.5714</td>
<td>0.5714</td>
<td>0.5714</td>
<td>0.5714</td>
</tr>
<tr>
<td>10019</td>
<td>0.9197</td>
<td>0.8027</td>
<td>0.9968</td>
<td>0.8857</td>
<td>1.00</td>
<td>0.85</td>
<td>3.316</td>
</tr>
<tr>
<td>10218299</td>
<td>0.9583</td>
<td>0.8133</td>
<td>0.974</td>
<td>0.7143</td>
<td>0.78</td>
<td>0.52</td>
<td>2.122</td>
</tr>
<tr>
<td>10166</td>
<td>0.9956</td>
<td>0.7583</td>
<td>0.956</td>
<td>0.6714</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>10112</td>
<td>0.8126</td>
<td>0.6085</td>
<td>0.9914</td>
<td>0.9914</td>
<td>1.00</td>
<td>0.72</td>
<td>1.053</td>
</tr>
<tr>
<td>10216432</td>
<td>0.7944</td>
<td>0.7984</td>
<td>0.9878</td>
<td>0.5286</td>
<td>0.96</td>
<td>0.5</td>
<td>1.836</td>
</tr>
</tbody>
</table>

Molecular dynamic simulation of the best compound

Using the docked calculations, the (PubChem CID: 10038137) compound was subjected to Molecular Dynamic Simulation using Desmond Schrodinger 2019.2 GPU enabled package which indulges the stability of protein and provides insight with respect to simulation was equilibrated. The docked complex was pre-processed to identify and repair the missing residues. The complex was then prepared for simulation by applying OPLS force for 100 ns to analyze the stability and interactions.

The complex structure of the RMSD plot was shown in fig. 2. RMSD was performed and plotted for 3CLpro and ACE2 complex which were modulated during the 100 ns MD simulation. The complex structure was observed to be stable after 15 ns which can be seen in fig. 2. The average values of the ACE2-3CLpro complex were ~0.65 nm for 100 ns simulation which indicates the protein complex to be stable during the MD simulation.

RMSF (Root Mean Square Fluctuation) analysis was performed with the close and open conformation of the protein. Initial and final
conformations of the dynamics were analyzed using the PyMol software.

Binding free energy (MM/GBSA) of the protein complex

The complete binding energy of the complex with respect to MD simulation was $\text{-134.998} \pm 18.435 \text{kJ/mol}$ which exposed that the inhibitor has a higher affinity towards the 3Clpro-ACE2 complex.

A detailed representation of the protein-ligand interaction is depicted in fig. 6. The interaction diagram specifically depicts those interactions which were predominantly observed for at least more than 30% of the simulation time (100 ns). For the given complex the ligand has established significant interactions with the amino acids like ARG, ASP, ALA, VAL, and PRO.

The interactions of the protein and ligand are further assessed by the type of bond they establish. The protein's ligand contacts represent the interaction type. The ligands have interacted with the proteins through hydrogen bonds (green), water bridges (blue), and hydrophobic interactions (purple) as depicted in fig. 7. The stacked bar charts representing values greater than 1.0 indicates that the protein residues may make multiple contacts of the same subtype with the ligand.

The Protein RMSD graph provides information on the structural conformation of the protein throughout the simulation, while the ligand RMSD represents the stability of the ligand with respect to the protein and its binding pocket (fig. 8). The ligand RMSD values are significantly lower than the protein RMSD values, and these values indicate that the ligand has not diffused away from its initial binding site.

Fig. 6: Bond interaction of ligands with amino acid residues, Negative charged (Orange), Hydrophobic (Green), Solvent exposure (Grey background), Charged positive (Purple), Water (Grey)

Fig. 7: Protein-ligand contacts, ASP_91, ALA_93, ARG_331, ARG_275, and VAL_544 showed the highest contact with H-bonds (Green), Hydrophobic interactions (purple), and water bridges (Dark blue)

Fig. 8: Protein-ligand RMSD graph, the RMSD evolution of the protein is depicted along Y-axis (left) and the ligand is represented along Y-axis (right)
The Root Mean Square Deviation (RMSD) (fig. 9) is used to measure the average change in displacement of a selection of atoms for a particular frame with respect to a reference frame. From the RMSD graph, it is evident that the ACE2-3CLPro-10038137 complex had lower RMSD as compared to ACE2-3CLPro and 10038137 individually. Furthermore, it was noticed that the ACE2-3CLPro complex was stabilizing with 10038137 ligands during the period. It was observed that the protein and ligand started to stabilize from approximately 40 ns and remained stable throughout the simulation without major fluctuations.

Root Mean Square Fluctuation (RMSF) (fig. 9) represents residual changes and the regions that highly fluctuate during the simulation showed the characterizing of local changes along the protein chain. As the ACE2-3CLPro complex had a significant number of secondary structure elements like loops and bulges, few fluctuations were observed in the protein complex.

Six parameters are employed to evaluate the properties of the ligand (fig. 10). The PSA (Polar Surface Area) analyzes the solvent-accessible area in a molecule contributed by Oxygen and nitrogen atoms. While the SASA (Solvent Accessible Surface Area) estimates the surface area of a molecule accessible by a water molecule. The MolSA (Molecular Surface Area) is equivalent to van der Waals’s surface area. The radius of gyration (rGyr) is the measure of ligand extendedness and the ligand RMSD is the measure of the deviation of the ligand with respect to the reference conformation. Intramolecular Hydrogen Bonds (intraHB) represent the number of internal hydrogen bonds within a ligand molecule.

Fig. 9: Protein RMSF, the peaks in the graphs indicate the area of the protein that fluctuates most during simulation. The N-and C-terminal fluctuate the highest whereas the secondary structures fluctuate the least.

Fig. 10: Ligand properties, the ligand properties are evaluated across six parameters: Ligand RMSD, radius of gyration, intramolecular hydrogen bonds, molecular surface area, solvent accessible surface area, and polar surface area.
Protein secondary structures like alpha-helices and beta-strands are monitored throughout the simulation. The plot %SSE summarizes the SSE composition for each trajectory frame throughout the simulation, and the plot at the bottom monitors each residue and its SSE assignment over time (fig. 11).

Normal mode analysis

Normal Mode simulation has been performed using iMODs (fig. 12) webserver to analyze the atom index (fig. 13), B-factor, Eigenvalues, and elasticity of the protein with respect to ligand complexity. 3CLpro and ACE2 complex has very good unwinding elasticity followed by covariance with eigenvalue = 2.630496e-05, respectively.

The normal mode analysis helps determine the degree of mobility of the protein structures. The deformability, B-factor, Eigenvalues, Variance, and residue index parameters determine the potential of the molecule to deform each residue. The B-Factor (fig. 1) describes the displacement of the atomic positions from an average mean square displacement. Higher flexibility of the macromolecules results in larger displacement, which eventually results in lower electron density. The positions of the atoms correspond to irregularities in the crystal structures. Greater B-factor values represent higher mobility and flexibility of the atoms in the crystal structure. The energy utilized to deform the protein structure is depicted by the Eigenvalues and the deformation energy is directly proportional to the motion stiffness (fig. 15). Lower eigenvalues represent a greater probability of deformation and the eigenvalues are inversely proportional to the variance-related to normal mode (fig. 16). The coupling between the residues may be related to correlated, uncorrelated, or anti-correlated motions which are represented by the covariance matrix (fig. 17). The atoms connected through springs are identified with an elastic network (fig. 18).

Fig. 11: Protein secondary structure, in the plot, alpha helices are represented by orange lines while the beta-strands are represented by blue lines.

Fig. 12: Normal mode simulation obtained using iModS.

Fig. 13: Atom index at 10ns.
Fig. 14: B-factor or mobility, the main-chain deformability is a measure of the capability of a given molecule to deform at each of its residues.

Fig. 15: Eigen values, the eigenvalue associated with each normal mode represents the motion stiffness. Its value is directly related to the energy required to deform the structure. The lower the eigenvalue, the easier the deformation.

Fig. 16: Variance associated with normal mode, in the graph, the colored bars in red represent the individual variances and the green bars represent the cumulative variances.

Fig. 17: Covariance map, the coupling between the pair of residues is associated with (correlated (red), uncorrelated (white), or anti-correlated (blue) motions.)
DISCUSSION

The Omicron variant marks the start of a new phase of the COVID-19 outbreak. The novel Omicron strain with increased infectivity was initially discovered in South Africa in November 2021 [6]. Additional research indicates that the Omicron variant did not evolve from the previously identified variants, as indicated by various discrepancies in their genomic composition. They could be the result of silent evolution in a population with limited sequencing, long-term evolution in one or a few individuals with chronic infection, or evolution in other species, particularly rodents [11]. In contrast to previous SARS-CoV-2 strains, which primarily infiltrate the pulmonary organs and produce fatal sickness, the Omicron strain predominantly affects the respiratory system and induces milder symptoms [8]. SARS-receptor-binding CoV's domain interacts with human ACE2, which is present in pharyngeal surface cells and lung epithelial cells. This binding causes a fusion of the human S protein with the human cell membrane, culminating in genetic material infiltration into the cell. SARS-CoV-2 embeds the spike surface glycoprotein. The S protein’s RBD adheres to the receptor on the host cell and facilitates viral invasion and migration. The discharge of the spike fusion peptide, which is synthesized when the host protease cleaves the S protein, permits viral permeation [16, 17]. ACE2 is mostly concentrated in the alveolar epithelial cells and is responsible for lowering the surface tension of these cells, thereby preventing alveolar cells from collapsing. ACE2 is imperative to corroborate adequate gaseous exchange across the lungs. An impairment of these cells would culminate in death. Cellular kinases can participate in the different phases of the virus’s life cycle and provoke ARDS. The Omicron virus predominantly affects the respiratory system and provokes ARDS. The most apparent aspect of ARDS is the cytokine storm that advances with the release of cytokines. The pernicious immune response induces ARDS, pulmonary collapse, and organ damage that affects the hepatic, cardiac kidney, and central nervous system, which ultimately culminates in death. Cellular kinases can participate in the different phases of the virus’s life cycle and therefore, the kinase has been proposed as potential moderators of various viral infections [20, 47]. Numerous kinases are involved in the development of CoV, related complications, including asthma, inflammation, and fibrosis. To combat pulmonary viral infections, kinase inhibitors deploy immediate antiviral effects as well as anti-inflammatory, cytokine-suppressive, and anti-fibrotic properties, which are beneficial in the management of CoV symptoms [48, 49].

In the present study, the compound, with PubChem CID: 10218299,
ACE2 - Angiotensin-Converting Enzyme 2, RAS - Renin-Angiotensin System, ANG – Angiotensinogen, ARDS - Acute respiratory distress syndrome

AUTHORS CONTRIBUTIONS
Sarvesh Galgale, Susha D, and Sameer Sharma have performed the experimental procedures, while Rida Zainab, Pradeep Kumar A, and Nithya M have worked on the research process and the review of literature.

CONFLICT OF INTERESTS
The author declares that they have no competing interests.

REFERENCES