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ABSTRACT 

COVID-19 can involve persistence, sequelae, and other medical complications that last weeks to months after initial recovery; these prolonged 
symptoms called as long-term covid-19 effect. Symptoms, signs, or abnormal clinical parameters persisting two or more weeks after COVID-19 
onset that do not return to a healthy baseline can potentially be long-term effects of the disease. SARS-CoV-2 affects the cardiovascular system and 
causes conditions such as myocarditis, arrhythmias, and myocardial injury. Vascular damage from COVID-19 has been affected directly by the SARS-
CoV-2 virus infection and indirectly by systemic inflammatory cytokine storm. This damage can be long-lasting and lead to various cardiovascular 
complications. Fas ligand (FasL)-Fas complex is a death factor that induces cell apoptosis. Fas and FasL have been detected in the endothelial wall, 
and it has been proposed that Fas-mediated apoptosis has a role in physiological and pathological cell turnover in the endothelial wall. High 
concentrations of inflammatory cytokines, such as cytokines storm induced by SARS-CoV-2 infection, are thought to increase the expression of FasL, 
which leads to an increase in the regulation of extrinsic apoptosis in endothelial cells leading to endothelial damage. This article summarises the 
current understanding of the long-term covid-19 effect on endothelial damage through extrinsic apoptosis Fas-FasL complex. 
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INTRODUCTION 

The COVID-19 pandemic, caused by the acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), is an ongoing and globally 
occurring pandemic with unprecedented morbidity and mortality. 
After recovering from COVID-19, most patients’ health will 
gradually improve within days or weeks and make a full recovery 
[1]. However, 40% of these patients still experience some 
unexpected side effects from COVID-19 remaining in their bodies 
even though they have recovered from COVID-19 for more than 
four weeks, this condition is referred to as post-COVID-19 
condition, long-term effects of COVID-19, or chronic COVID-19 [2, 
3]. Post-COVID-19 conditions are defined as any new, returning, or 

ongoing health problems that survivors may experience four 
weeks or more after being negative from the infection, these 
conditions are sometimes experienced by survivors who are at a 
mild level of Covid-19 severity [4]. Several factors determine the 
emergence of this post-Covid condition, such as the severity of 
COVID-19 infection and co-morbidities that increase the damage 
rate of COVID-19 infection. The COVID-19 disease, which initially 
only attacks the respiratory system, has now been recognized as a 
multi-organ disease [5]. Post-COVID-19 syndrome is found in 
various organ systems, including endothelial damage and damage 
to other organ systems such as lung organs, coagulation disorders 
in hematology, nerve, kidney, endocrine and gastrointestinal 
damage (fig. 1) [6]. 

 

 

Fig. 1: Overview of SARS-CoV-2 pathogenesis mechanism (created with BioRender.com) 
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The main pathophysiological process in severe and prolonged 
COVID-19 involves endothelial dysfunction [7, 8]. Systemic 
inflammation caused by viral infection can induce apoptosis in 
endothelial cells, resulting in endothelial dysfunction [9–11]. 
According to a study published in the European Society of 
Cardiology (ESC), COVID-19 infection can cause endothelial damage 
by activating inflammatory factors, leukocyte infiltration, 
thrombosis, platelet aggregation, increased production of reactive 
oxygen species (ROS), and increased apoptosis [12, 13]. This 
oxidative stress can induce excessive Fas/Fas ligand expression, 
thereby increasing apoptosis in endothelial cells [14] A study proved 
that under oxidative stress conditions, increased concentrations of 
Fas/Fas ligand [15, 16]. In addition, a study by [17] showed that high 
Fas levels correlated with an increased risk of cardiovascular 
disease. Induction of apoptosis as a systemic inflammatory response 
plays a vital role in endothelial damage; therefore, knowing the 
correlation between biomarkers that induce apoptosis after 
systemic inflammation is important to determine the risk of future 
cardiovascular events [18, 19]. Until now, there has been much 

research on the relationship between COVID-19 infection and its 
long-term effects. However, research on the relationship between 
Fas/FasL markers in COVID-19 survivors remains very limited. 
Knowing the role of Fas/FasL relation with currently available 
markers of systemic inflammation can be helpful for COVID-19 
survivors regarding the risk of endothelial damage, leading to an 
increased risk of cardiovascular disease. 

MATERIALS AND METHODS 

This article was compiled by conducting a literature search using the 
keywords “covid-19”, “long term effect”, and “endothelial damage”. 
The literature must fulfill the inclusion criteria, namely, the 
maximum literature publications from the last 10 y in English and 
discuss the long-term effect of COVID-19 specially the long-term 
effect of COVID-19 to endothelial cell damage. The search results 
were re-sorted according to the inclusion criteria. 10 publications 
met the inclusion criteria. The number of publications excluded was 
30 publications because they did not meet the requirements.

 

 

Fig. 2: Post-acute COVID-19 cycle affected several prominent organs in humans (created with BioRender.com) 

 

RESULTS 

Long-term effects of COVID-19 

Mild or moderate COVID-19 illness lasts about two weeks in most 
people [20, 21]. However, some patients suffer persistent health 
problems even after recovering from the acute phase of their disease 
[22–24]. Under this circumstance, there is no viable coronavirus left, 
and when tested, the person reports a negative result for coronavirus. 
This condition is called post-COVID syndrome, post-acute COVID-19, 
or long-term COVID by the National Institutes of Health [25]. People 
who suffer from this are called "long haulers". According to the most 
recent research, the condition is further break down into two groups: 
(1) subacute or ongoing symptomatic COVID-19, which includes 
symptoms and abnormalities that appear 4 to 12 w after acute COVID-
19, and (2) chronic or post-COVID-19 syndromes, which includes 
symptoms and abnormalities that last or appear longer than 12 w 
after acute COVID-19 and are not linked to an alternative diagnosis (fig. 
2) [26–28]. According to the Centers for Disease Control and 
Prevention (CDC), the most prevalent long-term symptoms include 
exhaustion, shortness of breath, coughing, joint pain, and chest pain. 
Other issues include cognitive issues, difficulties concentrating, 
sadness, muscle aches, migraines, a quick heartbeat, and sporadic 
fever [2, 29, 30]. In addition, the long-term effects of COVID-19 
infection are also felt by patients who have mild symptoms or even 
have no symptoms, the severity of the long-term effects of COVID-19 
infection is also found to be higher in adult female patients [31, 32]. 

Manifestation of COVID-19 long-term effects can be varied, among 
survivors. A meta-analysis study stated that there are 50 
manifestations of covid-19 infection long-term effects [33]. In a 
three-month follow-up study of COVID-19 survivors, pulmonary 

radiological abnormalities and functional impairments were 
detected in 71% and 25% of participants, although only less than 
10% had severe pneumonia [34]. Another study has also observed 
reduced lung diffusion capacity that correlated with radiological 
abnormalities in 42% of COVID-19 survivors at three-month post-
hospital discharges, regardless of initial disease severity [35]. 
Even six months after symptom onset, lung radiological 
abnormalities associated with persistent symptoms were still 
present in about half of COVID-19 survivors [36]. Many other 
studies have found radiological evidence of lung fibrosis lasting up 
to six months after hospital discharge among COVID-19 survivors, 
which correlates with initial disease severity. A separate study 
discovered that symptoms of long COVID persist even when 
pulmonary radiological and functional examinations improve [37].  

Long COVID may involve other pathophysiology besides pulmonary 
lesions, such as lasting neurological complications [38, 39]. For 
instance, at three-month post-discharge, brain structural and 
metabolic abnormalities were reported among COVID-19 survivors, 
which correlated with persistent neurological symptoms such as 
memory loss, anosmia, and fatigue [40]. This finding is concerning 
because most participants had mild COVID-19 at baseline, implying 
that even mild COVID-19 can have long-term effects on the brain. 
Another study found 43 cases of severe brain diseases caused by 
COVID-19 (e. g., encephalopathies, delirium, hemorrhage, and stroke) 
[41]. There is also evidence of cardiac injury in long COVID [42]. A 
radiological study of 100 COVID-19 discharged patients discovered 
cardiac abnormalities and myocardial inflammation in 78% and 60% 
of participants, respectively, unrelated to initial COVID-19 severity 
[43]. In another study of 26 college athletes with asymptomatic SARS-
CoV-2 infection, 46% of them also presented with myocardial 
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inflammation [44]. Even at three-month post-hospital discharge, 
radiological abnormalities of ventricular remodeling were still evident 
in 29% of 79 COVID-19 survivors [45]. Cardiac symptoms such as 
chest pain, heart palpitations, and tachycardia commonly persist 
among COVID-19 survivors for up to six months [46–49]. Finally, long 
COVID may be associated with long-term organ damage. According to 
one preprint report, young adults, who are mostly free of risk factors 
for severe COVID-19, frequently develop long COVID with multi-organ 
impairment after a four-month follow-up. In particular, 66% of 
survivors had at least one radiological abnormality in the lungs, heart, 
liver, pancreas, kidneys, or spleen [48]. Similarly, another study 
involving modern-ate-to-severe COVID-19 patients has shown 
radiological evidence of lung, heart, brain, liver, and kidney 
impairments persisting f discharged COVID-19 patients found 
increased risks of new events of respiratory, diabetes, and 
cardiovascular diseases occurring within the subsequent 140 d 
compared to controls [50]. Therefore, future research on long COVID 
should consider possible extrapulmonary or multi-organ involvement 
that may be less obvious. Or at least 2–3 mo after hospital discharge 
[51]. Furthermore, a study of over 40,000 discharged COVID-19 
patients found increased risks of new events of respiratory, diabetes, 
and cardiovascular diseases occurring within the subsequent 140 d 
compared to controls [50].  

Pathophysiology of COVID-19 infection 

The inflammatory response mediated by COVID-19 infection is 
divided into primary and secondary responses [52, 53]. Like other 
CoVs, SARS-CoV-2 relies on the angiotensin-converting enzyme-2 
(ACE-2) receptor to enter the target cells [54–56]. Studies showed 
that ACE-2 is mainly concentrated on the surface of endothelial cells 
(ECs) and mucosal epithelial cells, such as the nasal and oral cavities, 
vascular endothelial cells, the lungs, and the intestinal tract [57, 58]. 
The primary inflammatory response usually occurs following viral 
infection before the appearance of antibodies [59]. Therefore, the 
response is thought to be driven by active viral replication, which is 
accompanied by virus-mediated downregulation and shedding of 
ACE-2; once the virus enters the ECs, it begins to translate, replicate, 
and directly induce endothelial cell injury and apoptosis [60–62]. 
The secondary inflammatory response begins with adaptive 
immunity and antibody neutralization. Furthermore, it has been 
reported that after acute infection, myocardial damage is 
exacerbated in patients with increased inflammatory activity, 
platelet activation, increased thromboxane synthesis, and impaired 
fibrinolytic function [63–65]. Furthermore, in COVID-19 patients, 
there is a cellular inflammatory storm induced by an imbalance in T-
helper (Th1) and Th2 responses, and levels of inflammatory 
mediators such as interleukin (IL)-4, IL-10, and IL-6 are elevated [66, 
67]. Plasma levels of IL-6 and IL-10 were higher in COVID-19 
patients than in controls in research involving 123 patients. 
Furthermore, CD4+and CD8+T lymphocytes were decreased in 
individuals with severe COVID-19 infection compared to patients 
with mild infection [68, 69]. In these patients, inflammatory factors 
and cellular inflammatory storms have been linked to the heart 
failure process. C-reactive protein (CRP) levels in COVID-19 patients 
are elevated, indicating inflammation. This data from COVID-19 
participants demonstrates that cytokine storms are closely 
connected to illness severity and associated with inflammatory heart 
disorders. In patients with severe COVID-19 infection, there is an 
increase in plasma concentrations of pro-inflammatory factors, such 
as IL-1β, interferon-γ, monocyte chemotactic protein-1, interferon-
inducible protein-10, and Th1 activation, tumor necrosis factor-α 
(TNF-α), and granulocyte colony-stimulating factor (G-CSF) [70–72]. 
About 12% of COVID-19 patients are found to have cardiac muscle 
injuries. Aside from infection with the SARS-CoV-2 virus, other 
comorbid diseases and risk factors such as increasing age, gender, 
obesity, and cancer can all increase the risk of cardiovascular 
disease. The SARS-CoV-2 virus can attach to the angiotensin-
converting enzyme 2 (ACE2) receptor in heart tissue, causing 
inflammation of the heart's myocardial muscle [73, 74]. In COVID-19 
patients, however, cardiovascular disorders are common indirectly 
due to the systemic inflammatory response and immune system 
dysfunction during disease development. COVID-19 manifestation 
can cause various complications related to cardiovascular disease, 
either directly or indirectly [75, 76]. 

COVID-19 infection induces extrinsic apoptosis leading to 
endothelial cell damage 

 

 

Fig. 3: SARS-CoV-2 induces Fas-FasL mediated cell apoptosis 
(created with BioRender.com) 

 

Endothelial dysfunction is characterized by a decrease in 
vasodilation, a proinflammatory state, and a prothrombotic state. It 
has been linked to nearly every type of cardiovascular disease, 
including hypertension, coronary artery disease, chronic heart 
failure, peripheral vascular disease, diabetes, chronic renal failure, 
and severe viral infections. Free radicals can disrupt the NO balance, 
cause endothelial damage, and make the endothelium overly porous, 
allowing toxins to penetrate human tissues [77]. During the 
inflammatory process induced by different risk factors such as 
hypertension, oxidized LDL (oxLDL), and diabetes, there is an 
increase in the production of interleukin-1 (IL-1), interleukin-6 (IL-
6), TNF-α and C-reactive protein (CRP) that generate the endothelial 
proinflammatory phenotype characterized by an increase in E-
selectin, vascular cell adhesion molecule-1 (VCAM-1) and 
intercellular adhesion molecule 1 (ICAM-1) expression [78, 79]. 
Some studies suggest that Long-COVID-19 symptoms may be due to 
persistent endothelial dysfunction [80]. In fact, the SARS-CoV-2 
infection of endothelial cells at vascular smooth muscle cells (VSMC) 
is associated with changes in cell morphology and endothelial cell 
apoptosis that could persist several weeks after the acute infection 
[81]. Besides direct infection, the presence of inflammatory 
cytokines as an immune response to infection, such as IFNγ, IL-1β, 
or IFNα, can also increase cell death. In vitro studies showed that 
exposure to pro-inflammatory cytokines in VSMC cells significantly 
increased apoptosis and cell death [82] Cell apoptosis is induced by 
intrinsic and extrinsic factors; in this case, extrinsic factors play a 
significant role in cell death. Fas, one of the main death receptors of 
the apoptosis extrinsic pathway, activates apoptosis when binding 
with its ligand. Then, a death signal is generated that will activate 
caspase-8 and then will activate caspase-3 leading to cellular 
damage by extrinsic apoptosis (fig. 3) [83] Fas is ubiquitously 
expressed. In contrast, expression of Fas ligand (FasL), is usually 
restricted to inflammatory cells (T cells, B cells, and macrophages) 
and tissues that routinely encounter inflammatory cells. Another 
study from 43 Caucasian COVID-19 patients showed an increase of 
Fas in circulating CD4 and CD8 T cells [84]. Expression of Fas and 
FasL has been detected in normal and diseased vessel walls, and it 
has been proposed that Fas-mediated apoptosis in endothelial cells 
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contributes to atherogenesis, atherosclerotic plaque instability, 
arteriopathy, and the acute inflammatory response to cytokines. 
Several recent studies have examined the role of Fas-mediated cell 
death in blood vessels. A study has demonstrated the susceptibility 
of vascular cells to Fas-mediated cell death and the expression of Fas 
regulatory components by vascular smooth muscle cells and 
endothelial cells. For example, it has been shown that VSMC 
undergoes apoptosis both in vitro and in vivo after infection with 
adenovirus [85]. In addition, oxidative stress, and inflammation due 
to viral infection can also increase the expression of FasL in T cells, 

thereby increasing the extrinsic induction of cell apoptosis [84]. 
Inflammatory activation and dysfunction of the endothelium are 
vital events in the development and pathophysiology of 
atherosclerosis and are associated with an elevated risk of 
cardiovascular events. There is great interest in further 
understanding the pathophysiologic mechanisms underlying 
endothelial dysfunction and atherosclerosis progression, and to 
identifying novel biomarkers and therapeutic strategies to prevent 
endothelial dysfunction, atherosclerosis, and risk of developing 
cardiovascular disease (CVD) and its complications.

 

Manifestation of long-term effects of covid-19 on cardiovascular disease 

 

Fig. 4: Overview of COVID-19 effect on cardiovascular disease (created with BioRender.com) 

 

Infection from Covid-19 can cause various disorders that lead to a 
decrease in the performance of the heart organ, coupled with risk 
factors such as age, hypertension, and diabetes (fig. 4). The effects of 
COVID-19 infection on the heart can be through various factors such 
as the presence of systemic inflammation which causes 
thromboembolism and acute coronary syndrome with a prevalence 
rate of 1% and a mortality rate of 23%, can be through direct 
infection which causes inflammation of the heart muscle with a 
prevalence reaching 36%. and mortality reaches 60% and is also due 
to side effects in the treatment of COVID-19 infection [75, 76]. This is 
also confirmed by a study conducted by [86] out of 650 post-covid 
patients admitted to the hospital around half of the total patients 
suffer from various symptoms of cardiovascular disease such as 
positive echo chest pain, shortness of breath, and angina. 

Acute coronary syndrome 

COVID-19 can affect the heart, causing damage to vital life-
sustaining organs. Thus, cardiac damage is associated with 
morbidity and mortality. COVID-19 infection results in chronic 
damage/injury and acute cardiac injury to the cardiovascular system. 
Myocardial damage caused by COVID-19 infection increases the 
difficulty and complexity of treatment in this patient population. The 
risk of in-hospital death in patients with severe COVID-19 can be 
predicted by markers of myocardial injury, and is associated with 
older age, inflammatory response, and cardiovascular comorbidities. 
Information about the exact mechanism by which COVID-19 can 
cause myocardial injury is still unclear. However, the mechanism put 
forward by experts in the field regarding myocardial injury caused 
by direct infection with COVID-19 causes systemic inflammation, 
myocyte damage, myocardial interstitial fibrosis, coronary plaque 
destabilization, and hypoxia. In some patients suffering from COVID-
19, it is known to increase cardiac troponin I (cTnI) levels [87]. It 
has been reported that 10 out of 138 (7.2%) patients with COVID-19 
had acute myocardial injury during infection, and those admitted to 
the ICU tend to develop cardiac complications and show an increase 
in high-sensitivity troponin I level. cTnI was significantly increased 

in patients suffering from severe COVID-19 infection compared to 
individuals with moderate forms of the disease. The current study 
shows that 11.8% of deceased COVID-19 patients who initially did 
not have CVD subsequently developed appreciable cardiac damage, 
accompanied by elevated cTnI levels or cardiac arrest during their 
hospitalization. Further validating the above statistics, another 
study of 99 COVID-19 patients showed that 11% of patients who 
died had no previous chronic heart disease [88]. Worsening causes 
of death in COVID-19 patients with cardiovascular events (CVDs) 
have been suggested to be the sudden onset of inflammation, and 
the events and accumulation of lactic acid. In addition, patients who 
have been diagnosed with ACS and COVID-19 infection often display 
a poor prognosis. Nonetheless, these patients’ lower cardiac function 
reserve may be due to myocardial necrosis or ischemia. In addition, 
patients with the pre-existing cardiovascular metabolic disease may 
be at increased risk for developing an acute state, along with 
accompanying comorbidities, and significantly affect the prognosis 
for COVID-19 patients. On the other hand, COVID-19 itself can 
exacerbate damage/injury to the heart. In fact, at least 8.0% of 
patients with COVID-19 suffer acute cardiac injury [89–91].  

Cardiac arrhythmias 

It is indicated that cardiac arrhythmias are associated with COVID-19 
patients. Arrhythmias can be caused by electrolyte and hemodynamic 
disturbances due to high inflammatory stress in patients with COVID-
19. Acute ventricular arrhythmias and myocarditis may appear as the 
first clinical manifestations. In addition, electrolyte imbalances caused 
by the interaction of COVID-19 with the Renin-angiotensin-
aldosterone system (RAAS) can contribute to hypokalemia, resulting 
in an increased risk of arrhythmias [92]. One study demonstrated the 
presence of arrhythmias in 44 of 170 patients with cardiac injury in a 
retrospective cohort study involving 1284 patients with severe 
COVID-19 [93]. In addition, Guo et al. reported that malignant 
ventricular arrhythmias had a higher prevalence in the group with 
elevated troponin levels compared those with normal troponin levels 
[94]. 
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Myocarditis 

Myocarditis refers to heart muscle inflammation due to various 
communicable and non-communicable diseases. Viral etiology 
remains a significant cause of myocarditis in the United States and 
has been documented as a complication in patients infected with 
enteroviruses, including coxsackievirus, parvovirus B-19, H1N1 and 
members of the coronavirus group, including MERS. The precise 
pathophysiology of SARS-CoV-2-associated myocarditis is still 
elusive at this time; proposed mechanisms may include systemic 
immune system-mediated and direct viral infection-induced [95]. In 
immune-mediated myocarditis, the immune response is innate and 
may contribute to myocardial injury with sequelae of dilated 
cardiomyopathy. Autoimmune-mediated myocarditis may develop 
in response to the release of cryptic antigens from cardiac myocytes 
that are normally sequestered from the immune system after virus-
mediated injury. There is also evidence to support the hypothesis 
that molecular mimicry involving epitopes shared among viral 
capsid proteins, cardiac myosin, and other unidentified proteins on 
the surface of cardiac myocytes stimulates autoimmune reactions. 
When viruses evade the innate immune system, they replicate and 
manufacture viral proteins that cause direct myocardial injury by 
promoting cellular apoptosis and necrosis ([96]. SARS-CoV-2 likely 
causes myocarditis in humans via a pathway like other viral 
pathogens; in the case of COVID-19, the SARS-CoV-2 virus uses spike 
protein to bind to ACE2, allowing cells to open and viral material to 
enter. Intracellular SARS-CoV-2 can interfere with the formation of 
granular stress so that the virus can replicate and damage cells. Then 
the antigen-presenting cell (APC) will carry antigen from the sars-cov-
2 virus to T lymphocyte cells, which in turn CD8 T cells migrate to 
cardiomyocytes and cause myocardial inflammation through a 
cytokine storm. In a cytokine storm, proinflammatory cytokines are 
released into the circulation, T lymphocyte activation increases and 
releases more cytokines. This result introduces a positive feedback 
loop of immune activation and myocardial damage [97]. 

Potential biomarkers 

Endothelial dysfunction and inflammation play a central role in long 
covid-19 and CVD progression. Several biological markers can be 
used to determine the long-term effects of COVID-19, especially on 
endothelial damage and the progression of cardiovascular disease. A 
systemic review Identified from 28 studies representing six 
biological classifications, 113 biomarkers were significantly 
associated with long COVID: (1) Cytokine/Chemokine (33.6%); (2) 
Biochemical markers (21.2%); (3) Vascular markers (17.7%); (4) 
Neurological markers (5.3%); (5) Acute phase protein (4.4%); and 
(6) Others (17.7%). Compared with healthy control or recovered 
patients without long COVID symptoms, 79 biomarkers were 
increased, 29 were decreased, and 5 required further determination 
in the long COVID patients. Up-regulated Interleukin-6, C-reactive 
protein, and tumor necrosis factor-alpha might be the potential 
diagnostic biomarkers for long COVID-19 [98].  

High-sensitivity C-reactive protein (hs-CRP) 

CRP is a systemic inflammatory mediator and a central acute phase 
reactant produced mainly by hepatocytes after cytokine stimulation, 
such as IL-1, IL-6, and TNF-α. CRP down-regulates synthase 
endothelial nitric oxide (eNOS) transcription in ECs, resulting in 
decreased NO release. Several clinical trials have consistently reported 
that CRP levels are associated with endothelial dysfunction. Higher hs-
CRP plasma levels were associated with coronary endothelial 
dysfunction, suggesting it is an independent marker of abnormal 
coronary vasoreactivity in patients with non-obstructive coronary 
disease [99]. Recently, high hs-CRP levels correlate positively with IL-6 
and LDL-cholesterol and increased risk of long COVID symptoms. A 
study of 120 adult post-COVID-19 patients showed that COVID-19 
survivors have higher CRP and D-dimer levels [100]. Another study of 
1207 patients showed that elevated CRP was associated with an 
increased mortality risk after recovery from COVID-19 [101]. 

Interleukin-6 (IL-6) 

Interleukin-6 is an important cytokine involved in many different 
immunological processes, such as the major regulator of acute phase 

response proteins and plays a crucial role in COVID-19 symptoms 
progression [102]. A cohort study of 317 patients diagnosed with 
COVID-19 showed that subjects with long COVID symptoms have 
higher IL-6, IL-10, and IL-4 [103]. 

High-sensitivity troponin-I (hs-troponin I) 

Troponin is a marker of myocardial injury, but it is also found to be 
raised in several conditions. Recent reports demonstrated high 
troponin levels in patients affected by COVID-19. A cohort of 416 
positive patients reported that 86 patients had evidence of 
myocardial damage, as indicated by an increase in troponin levels 
[104]. Those patients with higher troponin levels had also increased 
in-hospital mortality. In the long-term effect of COVID-19, hs-
troponin I can be used as a risk stratification for cardiovascular risk 
in the general population who have tested negative for COVID-19 
infection [105]. WOSCOPS (West of Scotland Coronary Prevention 
Study) showed that an increase of hs-troponin I can predict 
cardiovascular risk at both 5-and 15-year follow up [106]. Also, 
another study showed that hs-troponin I provided 35% 
reclassification improvement for predicting future cardiovascular 
disease when added to the Framingham score [107]. ARIC study 
(Atherosclerosis Risk in Communities) suggests that hs-troponin I 
can be used as a CVD risk prediction and divided the concentration 
into three categories for men and women, low risk (<6/4 ng/l); 
moderate risk (6-12/4-10 ng/l); and high risk (>12/10 ng/l) [108]. 

Tumor necrosis factor-α (TNFα) 

TNF, a prototype inflammatory cytokine, plays a crucial role in 
mammalian immunity and vascular inflammation. Decreased eNOS 
expression and NO bioavailability are mainly associated with TNF-α-
induced endothelial dysfunction. The interaction between TNF-α 
and TNFR (TNF receptor) 1 induces the expression of EC adhesion 
molecules (ICAM-1, VCAM-1, and E-selectin), resulting in increased 
leukocyte adhesion to the endothelial surface and enhanced 
transendothelial migration. Besides, TNF-α affects EC anticoagulant 
properties through TF (tissue factor), which contributes to thrombin 
generation, fibrin clot formation, and intravascular fibrin deposition. 
Besides favoring coagulation, TNF-α impairs fibrinolysis through 
suppressed tissue-type plasminogen activator (tPA) expression via 
NF-κB and p38 MAPK signaling pathways. Furthermore, TNF-α 
increases the rate of EC apoptosis in a concentration-and time-
dependent manner. Low concentrations of TNF-α contribute to 
ischemic preconditioning protection, while high concentrations of 
TNF-α aggravate myocardial dysfunction, MI, myocardial 
hypertrophy, fibrosis, and apoptosis. Given the crucial role of TNF-α, 
blocking TNF signaling by biologics (infliximab, etanercept, 
adalimumab, golimumab, and certolizumab pegol) that directly bind 
to either TNF or TNFR is an effective therapeutic approach for 
inflammatory diseases. However, their efficacy in treating CVD 
remains unknown [109, 110]. 

The pathogenesis of SARS-CoV-2 infection can be divided in 2 ways: 
direct damage to organs and indirect damage caused by cytokine 
storm. This infection can cause lasting effects even after the patient 
has tested negative, which is called as long-term effect of COVID-19. 
One of these long-term effects is endothelial damage caused by 
direct endothelial cell infection and increasing endothelial cell 
apoptosis infection due to a cytokine storm. Cytokine storm 
increases the expression of Fas and Fas ligand; these proteins play a 
role in the mechanism of extrinsic apoptosis. This causes damage to 
the endothelial cells, leading to cardiovascular disease. This 
endothelial damage can be identified by increasing several blood 
markers such as interleukin-6, high sensitivity C-reactive protein, 
hs-troponin I, and tumor necrosis factor-alpha (fig. 5). 

This review presents the current understanding of long covid and its 
correlation with endothelial damage. Infection of long covid can 
induce an extrinsic apoptosis through the Fas-Fas ligand complex; 
this causes VSMC death and leads to CVD progression. The long 
covid symptoms, pathophysiology, extrinsic apoptosis pathway, and 
the after effect of COVID-19 infection to CVD have been discussed. 
However, much remains to be clarified about long COVID. Hence, 
future research might be interested in finding the clear pathway of 
long COVID to endothelial damage (fig. 6).
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Fig. 5: General pathological and biomarker  of the cardiovascular  disease complication mediated by COVID-19 (created with biorender .com) 
 

 

Fig. 6: The current mechanism and correlation of Covid infection and endothelial damage (created with BioRender.com) 
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