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ABSTRACT 

The application of microsphere systems in drug preparations has seen a significant increase in recent years for various purposes. Microsphere 
systems can be utilized in a range of drug preparations, utilizing polymer types that are appropriate for the intended release target. Microspheres 
offer numerous benefits and can be used in various applications, including spacer applications, medication administration, and medical diagnostics. 
Microspheres have minimal negative effects, a more extended therapeutic effect, require fewer doses, and provide more consistent medication 
absorption. Additionally, they are adaptable, offer effective encapsulation, and are cost-effective. This overview was compiled to provide an up-to-
date summary of the latest developments in new drug delivery systems utilizing microsphere dosage forms. Literature from Scopus, ScienceDirect, 
and PubMed from 2019 to 2022 was searched to provide the latest information. The use of microsphere systems is categorized into various new 
drug delivery routes, including gastroretentive, colon, nasal and pulmonary, parenteral, ocular, and topical applications. 
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INTRODUCTION  

Microspheres are a form of drug delivery system using polymers. 
Polymer comes from the Greek word "meros", meaning large 
molecules with repeated arrangements connected by covalent 
bonds. Spherical particles, known as microspheres, have dimensions 
in the high nanometer to micron range [1]. Microspheres are 
adaptable objects with special qualities that make them useful for a 
variety of uses. Their process of synthesis enables customization and 
control over the material's size, shape, and composition. The choice of 
method for preparing microspheres is highly dependent on the type of 
polymer that adapts to the desired properties of the microspheres and 
the particular application to be used. Microsphere systems are often 
used to modify drug delivery systems. For example, galantamine 
pamoate microspheres developed using the solvent evaporation 
emulsion method could provide extended release of the drug for 24 d 
in vitro and the plasma drug concentration remained stable for 17 d in 
vivo when tested in rats [2]. Another study by Bolourchian and Bahjar 
[3] reported an extended-release diltiazem hydrochloride preparation, 
which was formulated in microsphere dosage forms using Eudragit RL 
and RS polymers by a similar method. Tilmicosin microspheres 
using gelatin polymers can also provide a sustained release effect 
that has the potential to be used in veterinary clinics [4]. Sodium 
bicarbonate formulated in ethyl cellulose microspheres also showed 
extended drug release for up to 40 h [5]. Microspheres can also be 
used to extend drug release in the stomach (i.e., a gastroretentive 
system). Amoxicillin trihydrate microspheres formulated using 
Sterculia foetida and pullulan polymers can form a mucoadhesive 
system in the stomach [6].  

The microsphere system can also be used to increase the 
bioavailability of drug preparations. Preparation of asenapine 
maleate (ASM) microspheres as an agent for schizophrenia therapy 
using poly(lactic acid-co-glycolic) can significantly increase the 
bioavailability of the drug [7]. Salbutamol sulfate microspheres 
made using cross-linked chitosan and carrageen an can increase 
their bioavailability 1.61 times compared to salbutamol tablets on 
the market [8]. Likewise, the biodegradable alginate microsphere 
formulation of doxorubicin with a high concentration of NaHCO3 can 
increase the cytotoxicity effect in vitro assays using hepatocellular 
carcinoma-derived cell lines [9]. Apart from being a drug delivery 
system, the microsphere system can also be used as a method to 
mask the unpleasant taste of drugs. Research on the manufacture of 
ibuprofen microspheres with octadecanol and glycerin 

monostearate as the ingredients shows that the release profile and 
flavor masking effect are strongly influenced by the preparation 
process in the preparation of ibuprofen microspheres [10]. 

This review was conducted to look at development trends in 
research on the use of microspheres in various application routes 
from 2019 to 2022. A literature search was conducted based on 
publications indexed by Scopus, ScienceDirect, and PubMed related 
to the use of microspheres in drug administration. The journals 
obtained were then analyzed based on inclusion criteria, namely 
journals published from 2019 to 2022, which are journals in the 
pharmaceutical field and in English. The exclusion criterion for 
selecting a journal was that it was not a review journal. This 
research is expected to provide an overview of the development of 
the use of the microsphere system in various routes of drug 
administration. This review will provide an overview of 
considerations in formulating microsphere preparations. However, 
this review article is limited to only providing information regarding 
the considerations for selecting polymers for different application 
routes and the methods used to manufacture microspheres. 

Gastroretentive microspheres drug delivery 

A gastroretentive system is a form of delivery system that is formulated 
so that medicinal ingredients can last longer in the stomach. 
Modifications of the system using various types of polymers have been 
carried out to produce microspheres that can last longer in the 
gastrointestinal tract. The development of microsphere formulations for 
gastroretentive delivery systems was not only intended for 
gastrointestinal drugs but also for drugs with systemic effects such as 
pregabalin, gabapentin, furosemide, simvastatin, and alogliptin. In 
general, these microspheres are formulated to increase the residence 
time of drugs in the stomach to increase their bioavailability [11–15].  

The choice of polymer varies greatly, which also determines the 
method used for the preparation of microspheres. Polymers that can 
expand and float in gastric juices are typically selected for the 
gastroretentive system. The emulsion solvent evaporation method is 
the most widely used in formulation because of its ease in the 
manufacturing process. In this method, the polymer solution is 
dispersed in an organic solvent to form an emulsion, which is then 
evaporated to form microspheres. Several ionic-charged polymers 
have also been used to produce gastroretentive microspheres via the 
ionic gelation method, such as the Bletilla striata polysaccharide 
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formulation using alginate, famotidine using Mimosa pudica seed 
mucilage as a natural mucoadhesive polymer, famotidine using 
locust bean gum (LBG) and polyvinyl alcohol (PVA), amoxicillin 
trihydrate using semi-interpenetrating Sterculia foetida-pullulan, 
and pregabalin using pectin. The addition of a cross-linking agent 
has also been carried out to increase the bond strength between 
polymers to extend the drug release time [6, 13, 16-18].  

Flotation and swelling degrees are two of the most important 
parameters determining the success of gastroretentive microsphere 

formulations [13]. Several microsphere formulations for in vitro 
drug release followed the kinetics described by Higuchi and 
Korsmeyer Peppas and were diffusion-regulated. The non-fiction 
form of the in vitro drug release mechanism was governed by the 
polymer's expansion and contraction. Microspheres have the twin 
benefits of flotation and mucoadhesiveness to boost oral 
bioavailability and release medications in a regulated manner to 
lower the necessary frequency of administration, thus enhancing 
patient compliance [15, 17, 19]. 

 

Table 1: Summary of gastroretentive microspheres drug delivery 

No. Active substance Polymer Method References 
1 Itraconazole  Ethyl cellulose as a low-density polymer and Eudragit E100 as a 

release modifier 
Emulsion solvent diffusion-
evaporation  

[19] 

2 Bletilla striata 
polysaccharide 

Sodium Alginate Ionotropic gelation [16] 

3 Simvastatin  HPMC K4M as carrier polymer and Eudragit RSPO Spray drying  [11] 
4 Famotidine (FX) and 

clarithromycin (CLX) 
Thiolated polyacrylic acid (TPA)  Emulsion solvent evaporation  [20] 

5 Famotidine  Mimosa pudica seed mucilage as a natural mucoadhesive polymer Ionic gelation  [17] 
6 Lafutidine Chitosan  Emulsion solvent evaporation [21] 
7 Famotidine Locust bean gum (LBG) and polyvinyl alcohol (PVA) Emulsion cross-linking [18] 
8 Lafutidine Eudragit Grades Emulsion Solvent Evaporation [22] 
9 Pregabalin  Ethyl cellulose (EC) and polyvinyl pyrrolidone (PVP)  W/O/O multiple emulsion  [12] 
10 Amoxicillin trihydrate  Sterculia foetida-pullulan-based semi-interpenetrating polymer  Emulsion crosslinking [6] 
11 Pregabalin  Pectin  Ionotropic Gelation  [13] 
12 Alogliptin  Cellulose acetate butyrate (CAB) and polyethylene oxide (PEO) Emulsion solvent evaporation  [14] 
13 Furosemide  Ethyl cellulose (EC) and hydroxypropyl methylcellulose (HPMC) Emulsion solvent volatilization  [23] 
14 Gabapentin  HPMC K100  Solvent evaporation [15] 
15 Nifedipine Poloxamer 407 and carbopol 934 Single emulsion cross-linking [24] 

 

Colon microspheres drug delivery 

The use of the microsphere system as an effort to target drugs for 
the colon is widely used. The choice of polymer type plays an 
important role. The polymers selected have to be able to survive 
through the upper gastrointestinal tract so that the drug can be 
delivered to the colon. In general, this system is developed for drugs 
that act locally in the colon or have limitations when they are in the 
gastrointestinal tract.  

This delivery system is used for some nonsteroidal anti-
inflammatory agents, such as flurbiprofen (a BCS II-class drug), 
which is used to treat ulcerative colitis. Ileocolonic flurbiprofen 
mucoadhesive microspheres are formulated to prevent gastric side 
effects but also improve patient compliance. Utilizing chitosan as a 
polymer, core microspheres were prepared using an emulsification-
crosslinking process. They were then coated with enteric coating 
polymers, such as Eudragit L100 and Eudragit S100, using an 
emulsion solvent evaporation process to create a colon-specific 
delivery system. The drug-loaded microspheres had a spherical form 
with a rough surface. The microspheres also showed a sustained and 
desired drug release profile in vitro [25]. 

The use of Eudragit class polymers, which are pH-sensitive, is the 
choice of various drug formulations for colonic delivery [26–28]. 
Mesalamine microspheres, intended to treat inflammation of the 
colon, have been previously prepared using the ionic gelation 
technique, which included the use of sodium alginate and pectin as 
release modifiers and calcium chloride as a crosslinking agent. 
Eudragit S100 has a coating polymer that aids in medication release 
at the desired location. In vitro drug release of mesalamine from the 
microspheres examined in pH 7.4 phosphate buffer using the USP 
dissolving device II showed a maximum release of 99.75% at a 
maximum time of 9 h [29]. 

Site-specific delivery of drugs to areas of the colon is of great interest 
for the local treatment of many colonic disorders, such as ulcerative 
colitis and colon cancer. The delivery system must be able to prevent 
hydrolysis and degradation of the drug. The use of jackfruit seed 
starch and its thiol derivatives as drug carriers for the large intestine is 
quite potential. A previous study reported the isolation of starch from 

jackfruit seeds using the water extraction method, followed by 
modification using the thioglycolic acid esterification procedure. 
Microspheres were then prepared using the thiolated starch using an 
ionic gelation process with ibuprofen as the model drug. Thiolated 
starch microspheres released the most drug at pH 7.4 in the presence 
of caecal content in rats for up to 24 h, compared to pH 1, 2, and pH 
6.8, which followed first-order release kinetics. These findings imply 
that using thiolated jackfruit seed starch as a long-term drug delivery 
carrier for the colon could be beneficial [30]. 

Another natural polymer that has potential as a delivery system 
through the colon is fenugreek seed mucilage and sodium alginate, 
which can be made into microspheres using the ionic gelation 
method. Its ability to survive gastric fluid conditions makes this 
polymer able to deliver 5-fluorouracil for the treatment of colon 
cancer [31]. The use of pectin and Na CMC polymers on 
progesterone microspheres showed pH-dependent swelling, 
insignificant drug release in the simulated gastric fluid, and a 
sustained release pattern in the simulated small intestinal fluid. 
These findings support the capacity of a novel carrier system to 
enhance the oral bioavailability of progesterone while maintaining 
clinical efficacy [32]. The use of pH-sensitive polymers such as 
alginate is also used in colonic delivery preparations. The choice of 
polymer will certainly affect the preparation method to be carried 
out, as in the case of ionically charged polymers, researchers 
generally use ionic gelation techniques to form strong cross-linked 
bonds between polymers [28, 33, 34]. 

Nasal and pulmonary microspheres drug delivery system 

Nasal and pulmonary drug delivery systems are starting to develop 
as an alternative route for delivering drugs that have problems when 
administered orally and for local treatment of the respiratory tract. 
These systems are generally used for drugs that have small doses. 
The use of the nasal and pulmonary microspheres utilizes the 
existing mucosa in the respiratory system. The use of mucoadhesive 
polymers helps increase the bioavailability of drugs delivered 
through the nasal and pulmonary systems.  

Chitosan polymer is one of the most widely used polymers in nasal 
and pulmonary delivery systems. Its non-toxic, biocompatible, 
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antibacterial, and biodegradable properties have been significantly 
proven in several studies applied in the biomedical and 
pharmaceutical fields. The amine group in chitosan determines 
various properties of chitosan, such as cationic properties, ability to 
control drug release, mucoadhesive properties, in situ gelation, 
antimicrobial properties, permeation enhancement, and so on. 
Chitosan microspheres as nasal and pulmonary preparations can 
increase the drug's residence time, which is longer in the nasal 
cavity, thereby increasing the effect of drug therapy locally and 
systemically [38–41]. Ethyl cellulose is a component in some 
chitosan microsphere formulations. The efficiency of drug 
entrapment and matrix drug release is anticipated to be influenced 
by this biopolymer, which is intended to be inert, food-grade, water-
insoluble, non-ionic, and nonreactive [42, 43]. To maximize 
bioavailability via the nasal route, several methodologies, such as 
applying mucoadhesive formulations that adhere to the mucous 
membranes, can address the problem of mucociliary clearance. 

Potential mucoadhesive polymers used include polylactic-co-glycolic 
acid, alginate, gellan gum, pectin, and hypromellose [44-49].  

Ciprofloxacin HCl microspheres based on carrageenan polymers as a 
dry powder inhalation dosage form have been previously reported. 
The microspheres were successfully prepared via the ionic gelation 
method and have been shown to improve drug bioavailability and 
release mechanisms in the pulmonary system [50]. In addition to 
local treatment in the nose, several current studies are also focusing 
on the manufacture of nasal mucoadhesive microspheres for drug 
delivery to the brain, such as rivastigmine microspheres using 
chitosan and ethyl cellulose polymers by solvent evaporation and 
donepezil microspheres with a carrier matrix based on mannitol and 
chitosan using spray drying, both intended for treating Alzheimer’s 
disease and a sprayable dexamethasone sodium phosphate 
formulation for regulating neuroinflammatory processes in patients 
with severe COVID-19 [41, 43, 51]. 

 

Table 2: Summary of colon microspheres drug delivery 

No. Active substance Polymer Method References 
1 Dicyclomine hydrochloride 

chitosan 
Ethylcellulose as a low-density polymer and Eudragit 
E100 as a release modifier 

Emulsion crosslinking and solvent 
evaporation  

[26]  

2 Ibuprofen  Thiolated jackfruit seed starch Ionic gelation  [30] 
3 Puerarin  Alginate Emulsification/internal gelation  [33] 
4 Flurbiprofen  Chitosan microspheres were coated with Eudragit L-

100 and Eudragit S-100 
Emulsion solvent evaporation  [25] 

5 Progesterone  Pectin and Na CMC  Ionic gelation  [32] 
6 Mesalamine  Sodium alginate and pectin Ionic gelation  [29] 
7 5-fluorouracil  fenugreek seed mucilage-sodium alginate  Ionotropic gelation  [31] 
8 Lactobacillus rhamnosus GG 

(LGG)  
Eudragit® S100  Spray drying [27] 

9 Fluorouracil and Oxaliplatin  Alginate and guar gum polymers for Fluorouracil. 
Alginate and chitosan polymers for Oxaliplatin. Coated 
with Eudralgit s100 

Ionotropic gelation  [28] 

10 Epigallocatechin gallate  Chitosan (CS) and Gum acacia (GA)  Water-in-oil emulsion crosslinking  [35] 
11 Curcumin and 

Epigallocatechin gallate 
Chitosan (CS) and Gum acacia (GA)  Water-in-oil emulsion crosslinking  [36] 

12 Meloxicam Sodium alginate and Eudragit-coating Ionotropic gelation [37] 
13 Piroxicam  Pectin and Zein  Ionic Gelation  [34] 
 

Table 3: Summary of nasal and pulmonary microspheres drug delivery 

No. Active substance Polymer Method References 
1 Levofloxacin Poly (lactic-co-glycolic acid) Modified Double Emulsion Solvent Evaporation 

Method With Premix Membrane Homogenization 
[44] 

2 Sildenafil Citrate  Sodium Carboxymethyl Cellulose, Sodium 
Alginate, And Sodium Hyaluronate  

Spray-Drying  [45] 

3 Ciprofloxacin HCl  Carrageenan Ionic Gelation  [50] 
4 Melatonin Pectin and Hypromellose  Spray-Drying  [46] 
5 Lurasidone HCl Chitosan and Eudragit L 100 Spray-Drying  [52] 
6 Tetanus toxoid  Trimethyl chitosan  Ionic gelation  [53] 
7 Ropinirole hydrochloride  Alginate Spray-Drying  [54] 
8 Astragalus polysaccharide  Chitosan  Spray-Drying  [38] 
9 Granisetron  Chitosan  Emulsification cross-linking [39] 
10 Donepezil Hydrochloride Gellan gum  Spray-Drying  [47] 
11 Mometasone furoate Poly (lactic-co-glycolic acid) Solvent evaporation [55] 
12 Meloxicam Chitosan Spray-Drying  [40] 
13 Lercanidipine Bovine serum albumin Solvent Evaporation  [56] 
14 Domperidone Chitosan-ethyl cellulose Solvent Evaporation  [42] 
15 Dexamethasone sodium 

phosphate  
Pectin and Hypromellose  Spray-Drying  [51] 

16 Rivastigmine Ethylcellulose and Chitosan Solvent Evaporation  [43] 
17 Naloxone  Lactose monohydrate Modified spray drying [57] 
18 Exenatide  Poly (lactic-co-glycolic acid) Double emulsion (w/o/w) solvent evaporation  [48] 
19 Donepezil Chitosan and mannitol-based  Spray-Drying  [41] 
20 Vitamin D3 Poly (lactic-co-glycolic acid) Solvent extraction [49] 
21 Hydrocortisone sodium 

succinate 
Chitosan and HPMC Orifice ionic gelation [58] 

 

Parenteral microspheres drug delivery system 

In recent years, microsphere dosage forms have also been used for 
parenteral delivery systems. Microspheres are used as a depot system 

to obtain a controlled drug delivery system for parenteral 
preparations. For instance, glatiramer acetate (GA) microspheres have 
been previously developed to prevent the recurrence of multiple 
sclerosis. This drug is generally used through repeated subcutaneous 
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injections every day or twice a week due to the fast clearance of the 
drug in the body. For this reason, a parenteral microsphere system 
was developed in the form of an implant using poly (lactic-co-glycolic 
acid) polymer to release the drug continuously and gradually so that 
the patient does not need to be injected repeatedly [59]. Human 
chorionic gonadotropin hormone microspheres have also been 
formulated for a similar purpose to treat fertility problems in women 
and increase sperm count in men [60].  

Poly (lactic-co-glycolic acid) is the most commonly used polymer in 
microsphere formulations for parenteral applications. Due to their 
simplicity in fabrication and capacity to release the active 
component over several weeks to months by adjusting formulation 

aspects, poly (lactic-co-glycolic acid) microspheres are attracting 
more and more interest in this field. Due to their vast superiority to 
conventional formulations, delivery carriers provide numerous 
intriguing options for management and successful treatment. The 
most dependable and well-liked delivery technology for parenteral 
controlled-release depot injections is the microparticulate drug 
delivery system [61]. The routes of administration for the parenteral 
microsphere preparations are generally intramuscular and 
subcutaneous, wherein the tissues are generally used for energy 
storage (muscle) and release of other tissues (adipose tissue). The 
tissue is composed of a lipid bilayer, so the drug released in the 
tissue will likely interact with the existing lipids and fatty acids, 
affecting the partition of the drug and the speed of drug release [62]. 

 

Table 4: Summary of parenteral microspheres drug delivery 

No. Active substance Polymer Method References 
1 Leuprolide Acetate Poly (lactic-co-glycolic acid) Solvent evaporation [63] 
2 Leuprolide Acetate Poly (lactic-co-glycolic acid) Solvent evaporation [64] 
3 Curcumin  Alginate Emulsification/gelation  [65] 
4 Regorafenib Poly (lactic-co-glycolic acid) Emulsion-Solvent Evaporation [66] 
5 Celecoxib, Clotrimazole, Erythromycin, 

Ibuprofen, Indomethacin, Itraconazole, 
Lopinavir and Ritonavir 

Poly (lactic-co-glycolic acid) Solvent Evaporation  [67] 

6 GnRH agonist leuprolide acetate Poly (lactic-co-glycolic acid) Double emulsion solvent evaporation  [61] 
7 Flurbiprofen, Lidocaine, or Risperidone Poly (lactic-co-glycolic acid) or 

Ethylcellulose 
Solvent Evaporation  [68] 

8 Flurbiprofen, Lidocaine, or Risperidone Various grades of poly (lactic-co-
glycolic acid) or Ethylcellulose  

Solvent Evaporation  [62] 

9 Aripiprazole Polycaprolactone O/W Emulsion Solvent-Evaporation [69] 
10 Bovine serum albumin (BSA)  Poly (lactic-co-glycolic acid) Double emulsion solvent evaporation [70] 
11 Paliperidone palmitate Poly (lactic-co-glycolic acid) Oil in water (O/W) emulsion solvent 

evaporation 
[71] 

12 Ivermectin  Polycaprolactone Solvent Evaporation  [72] 
13 Human Chorionic Gonadotropin (hCG) 

hormone  
Poly (lactic-co-glycolic acid) A modified double emulsion solvent 

evaporation  
[60] 

14 Glatiramer acetate  Poly (lactic-co-glycolic acid) Emulsification [59] 

 

Ocular microspheres drug delivery system 

The primary goal of incorporating microspheres into ocular 
preparations is to address issues with traditional aqueous eye drop 
formulations, such as the quick removal of the medication from the 
eye. There are various techniques for manufacturing pharmaceuticals 
in microparticulate dosage forms for intraocular and topical delivery. 
Microspheres are designed to stick to the ocular surface for a lengthy 
period, improving the bioavailability of the encapsulated drug [73–75]. 
Erodible microparticulates, swelling mucoadhesive particulates, pH-
responsive microparticulates, nanoparticles and latex systems, and 
ion-exchange resins are a few methods used to formulate medications 
in microparticulate dose form for intraocular and topical delivery. It 
has been established that infections of the posterior segment can be 
treated by injecting bioerodible microparticles into the vitreous humor 
[76]. However, there are several drawbacks to employing 
microspheres in ocular medication delivery systems, including the 
danger of corneal abrasion and injury and inadequate drug release. 
For instance, the use of microsphere suspensions in the eye may result 
in partial drug release, and the size of the microparticles should not be 
greater than 10 µm to avoid irritation and harm to the cornea through 
ocular abrasion [77].  

In the creation of controlled drug delivery systems for ocular 
preparations, biodegradable polymers are frequently used. As the 
polymer breaks down at the target spot, these microspheres release 
the medication. The device eventually vanished, avoiding the need 
for surgery to remove it. Polymers have been utilized to create 
injectable particles and ocular implants. One of the most commonly 
utilized biodegradable polymers in ocularly controlled drug delivery 
systems is poly (lactic-co-glycolic acid). In an aqueous environment, 
like the eye, poly (lactic-co-glycolic acid) progressively breaks down 
and transforms into water-soluble by-products. This characteristic 
guarantees that the microspheres are evacuated from the implant 
site and cleansed by the body through metabolic pathways, ensuring 

their effectiveness and safety. The ability to gradually release 
medications or therapeutic agents, which eliminates the need for 
repeated injections or administrations, makes this attribute crucial 
in ocular microsphere formulations [78–80]. Chitosan microspheres 
that are loaded with levofloxacin make it a possible platform for 
prolonged drug release for use in treating eye infections [81].  

The synthesis of multi-loaded poly (lactic-co-glycolic acid) 
microspheres combining two neuroprotectant drugs with a solid-in-
oil-in-water (S/O/W) emulsion solvent extraction-evaporation 
approach demonstrated consistent in vitro releases over 91 d [82]. 
Another study assessed the in vivo tolerability of dexamethasone-
loaded microspheres (Dx-MS) made by evaporating solvent from an 
oil-in-water (O/W) emulsion [83]. Dx-MS may offer an alternative to 
intravitreal injections for long-term back-of-the-eye conditions [83]. 
MsDexafibro injection of biodegradable poly (lactic-co-glycolic acid) 
microspheres co-loaded with dexamethasone and fibronectin has 
been used to develop an animal model for chronic glaucoma [76]. 
Optical coherence tomography detected increasing neuro-retinal 
deterioration in both eyes, with higher levels in the injected eye [80]. 
Semi-interpenetrating polymer microspheres are potential ocular 
delivery systems for the regulated administration of timolol maleate 
for the treatment of glaucoma [84]. 

Topical microspheres drug delivery system 

Microsphere systems in topical preparations are indeed not very 
common. Drugs can be delivered to particular target locations on the 
skin using microspheres as carriers. The microspheres can be used 
to encapsulate pharmaceuticals, enabling controlled release and 
extended pharmacological action. Drugs can be released 
continuously from microspheres over a long period of time. The 
therapeutic drug levels in the skin can be maintained and treatment 
effectiveness can be increased by the controlled release of 
medications from microspheres. By enhancing drug penetration into 
the skin and boosting drug bioavailability, microspheres can 
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improve the therapeutic efficacy of topical therapies. They can also 
serve as bulking agents or fillers, giving the skin structural support 
and volume. The stability of active components in topical treatments 
can be improved via microsphere compositions. Drugs can be 
shielded from oxidation, deterioration, and other environmental 
effects by being encapsulated within microspheres, preserving their 
potency over time [87].  

Microspheres can be used to maintain the stability of active 
substances such as glutathione, which is easily oxidized in its native 
form. Glutathione microspheres have been previously prepared 
using alginate by the ionotropic gelation process method. All release 
patterns were determined to follow Higuchi's diffusion model in 
kinetic analysis designs [88].  

With 20–25% of the world's population affected, dermatophytosis (a 
topical fungal infection) is the fourth most prevalent disease in the 

past ten years. To treat this infection in a controlled manner, 
graphene-ketoconazole nanohybrid (Gn-keto) microspheres using 
the polymethacrylate derivative Eudragit (ERL100 and ERS100) 
were created and studied. The formulated Gn-keto microspheres 
demonstrated synergistic antifungal action against a subset of 
topical fungal infections, indicating a critical function for graphene in 
fungi [89]. Microsphere topical preparations have also been used to 
increase the effectiveness and potency of antibiotics [90–93].  

In the current study, a sunscreen cream containing Benzophenone-3 
microspheres was created, and an effort was made to administer the 
sunscreen agent from the cream's microspheres in a continuous 
release way. The consistency of sunscreen cream is uniform; it 
applies smoothly, spreads and extrudes well, and is milky white. 
According to in vitro drug release research, cream-containing 
microspheres at 1% and 2% follow zero-order release kinetics, 
meaning the release rate is constant [94]. 

 

Table 5: Summary of ocular microspheres drug delivery 

No. Active substance Polymer Method References 
1 Bevacizumab Poly(d, l-lactide-co-

glycolide)/poly (cyclohexane-1,4-
diyl acetone dimethylene ketal) 

Solid-In-Oil-In-Water (S/O/W) Emulsification [73] 

2 Dexamethasone (DX), Melatonin (MEL) And 
Coenzyme Q10 (Coq10) 

Poly(lactic-co-glycolic acid) Oil/Water emulsion solvent extraction-
evaporation 

[85] 

3 Levofloxacin  Chitosan  Spray-drying technique  [81] 
4 Sunitinib malate  Poly(lactic-co-glycolic acid) Emulsification method. [74] 
5 Atorvastatin Calcium-Poly-Ε-Caprolactone  Methylcellulose (MC) and 

Polyvinyl Alcohol (PVA)  
Solvent evaporation  [75] 

6 Glial cell-line-derived neurotrophic factor-
GDNF and Tauroursodeoxycholic acid-TUDCA 

Poly(lactic-co-glycolic acid) Solid-in-oil-in-water (S/O/W) emulsion 
solvent extraction-evaporation technique  

[82] 

7 Dexamethasone  Poly(lactic-co-glycolic acid) Oil-in-water (O/W) emulsion solvent 
evaporation technique 

[86] 

8 Dexamethasone and fibronectin  Poly(lactic-co-glycolic acid) Water-in-oil-in-water emulsion method 
including dexamethasone in the organic phase 
and fibronectin in the inner aqueous phase 

[80] 

9 Timolol Maleate Psyllium (PSY) and polyvinyl alcohol 
(PVA) 

Emulsion cross-linking method  [84] 

 

Table 6: Summary of topical microspheres drug delivery 

No. Active substance Polymer Method References 
1 Glutathione  Alginate  Ionotropic gelation method by aerosolization [88] 
2 Graphene–ketoconazole 

nanohybrid (Gn-keto)  
Polymethacrylate derivative Eudragit 
(ERL100 and ERS 100)  

Spray-drying technique  [89] 

3 Nisin  Sodium alginate-gelatin Ionotropic gelation  [90] 
4 Usnic Acid  Eudragit Solvent evaporation [95] 
5 Metronidazole  Chitosan and alginate Ionotropic-gelation technique, [91] 
6 Acyclovir  Polyvinyl Alcohol (PVA)  Quasi-emulsion diffusion  [92] 
7 Benzophenone-3  Gelatin Emulsion cum thermal gelation technique  [94] 
8 Clarithromycin Ethylcellulose Quasi-emulsion solvent diffusion [93] 
 

CONCLUSION 

Microspheres can be used in a variety of drug delivery methods, 
including gastroretentive, colon, nasal and pulmonary, parenteral, 
ocular, and topical administration. The polymer used is largely 
dictated by the delivery system to be used, and in general, the 
preparation of microspheres is highly dependent on the 
characteristics of the active substance and the type of polymer. 
Research on microspheres in recent years has focused mostly on the 
applications of microspheres in nasal and pulmonary delivery 
systems, with the least attention given to the use of microspheres in 
topical delivery systems. In the future, deeper studies can be carried 
out to evaluate the characteristics of the microspheres in each drug 
delivery system. 
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