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ABSTRACT 

Objective: To demonstrate the efficacy and benefits of aporphine alkaloids from Nelumbo nucifera Gaertn. as anti-breast cancer agents. 

Methods: In this study, a combination of network pharmacology and molecular docking was used to investigate the pharmacological actions and 
underlying mechanisms of action of nuciferine, nor-nuciferine, and roemerine against breast cancer.  

Results: Fifty-five potential targets of compounds against breast cancer were identified. The Epidermal Growth Factor Receptor (EGFR), Mito-
gen-Activated Protein Kinase 8 (MAPK8), Janus Kinase 2 (JAK2), Inhibitor of Nuclear Factor Kappa B Kinase Subunit Beta (IKBKB), a nd Protein Ki-
nase C Epsilon (PRKCE) were identified as the top five targets of compounds against breast cancer. Molecular docking demonstrated that these 
compounds could bind spontaneously to the screened top 4 targeted proteins.  

Conclusion: The present study demonstrates that these compounds have pharmacological effects against breast cancer via a multi-target and mul-
ti-pathway manner. 
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INTRODUCTION 

Breast cancer is a prevalent form of malignancy among women 
worldwide and has emerged as a primary cause of mortality [1]. 
Breast cancer constitutes 24.2% of the total 8.6 million newly diag-
nosed cases among females and accounts for 15.0% of all 4.2 million 
cancer-related mortalities [2]. Over the past few decades, there has 
been a noticeable increase in the incidence of breast cancer in both 
developed and developing nations [3]. This trend is particularly 
evident in younger age groups [4]. Breast cancer has emerged as a 
significant health concern in Indonesia, surpassing other forms of 
cancer, with a prevalence of 16.6% [5]. This poses a serious threat to 
the well-being and survival of women in the country [6].  

Currently, contemporary medical practice predominantly employs 
surgical interventions, radiotherapy, chemotherapy, and hormone 
therapy as primary modalities for addressing breast cancer in pa-
tients [7]. Notably, the treatment objectives for breast cancer pa-
tients include preserving quality of life and extending life expectancy 
[8]. However, it is pertinent to mention that breast surgery is not 
typically considered a conventional treatment modality in most 
cases [9]. While chemotherapy has demonstrated efficacy in 
short-term treatment, prolonged treatment is often associated with 
unfavorable reactions and drug resistance, which can have a detri-
mental impact on patients' quality of life and physical and mental 
well-being [10]. Therefore, scholars are enthusiastic about discov-
ering viable alternative treatments [11]. 

Recently, there has been a growing focus on utilizing traditional 
medicine as a means of treating cancer [12]. This is primarily due to 
its noteworthy clinical effectiveness, minimal adverse effects, and 
ability to enhance overall quality of life [13]. Traditional Indonesian 
Medicine known as an anticancer agent is Seroja or Nelumbo nucif-
era Gaertn. Seroja, a member of the Nelumbonaceae family, is an 
aquatic plant that possesses medicinal properties in nearly all its 
constituent parts [14]. Many studies have reported the anticancer 

activity of various parts of Seroja in anti-pancreatic cancer, anti-liver 
cancer, anti-cervix cancer, anti-colon cancer, and anti-breast cancer 
[15, 16]. This activity was demonstrated by the secondary metabo-
lites of Seroja. The main compound found in all parts of Seroja is an 
aporphine alkaloid [17]. Pharmacological studies have shown that 
aporphine alkaloids possess diverse activities, such as metabolic 
regulation, antioxidation, anti-proliferation, anti-vascularization, 
apoptosis induction, and cell cycle arrest inhibition [15, 18]. The 
cellular targets of this phenomenon remain unknown. 

The present investigation utilized network pharmacology analysis to 
anticipate the potential therapeutic targets and signaling pathways 
of aporphine alkaloids for the treatment of breast cancer. Hopkins 
established network pharmacology in 2007, which has been demon-
strated as a potent approach for investigating the intricate and com-
prehensive activation mechanisms of natural products [19]. This text 
depicts the complex interplay between genes, proteins, and metabo-
lites in diseases and drugs. This is achieved by integrating various 
multidisciplinary concepts such as biochemistry, bioinformatics, and 
systematic biology [20]. These concepts align with the multifaceted 
characteristics of natural products [21]. The integration of network 
pharmacological prediction and molecular docking verification has 
emerged as a crucial approach to elucidate the primary molecular 
targets and underlying mechanisms of action of herbal medicines 
before conducting in vitro and in vivo experiments [22]. The aim of 
this study was to elucidate the molecular mechanisms underlying 
the anti-breast cancer activity of aporphine. alkaloids from Seroja 
using network pharmacology and molecular docking techniques.  

MATERIALS AND METHODS 

Compound database 

The identification of aporphine alkaloid compounds derived from 
Seroja was accomplished through a comprehensive review of the rel-
evant literature. Three aporphine alkaloid compounds, nuciferine, 
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nor-nuciferine, and roemerine, were acquired. The database was que-
ried using the simplified molecular input line entry (SMILE) notation 

of the compounds sourced from the PubChem database, namely "nu-
ciferine, nor-nuciferine, and roemerine,” as the search terms.

 

 

Fig. 1: The framework of this study 

 

Pharmacokinetic prediction 

The molecular weight, log P, H-bond acceptor, H-bond donors, ro-
tatable bond, % intestinal absorption, Blood-Brain Barrier (BBB), 
toxicity, hepatotoxicity, and maximum tolerated dose (mg/kg/day) 
pharmacokinetic parameters of nuciferine, nornuciferine, and roe-
merine were acquired using the pkCSM tools, which can be accessed 
via https://biosig.unimelb.edu.au/pkcsm/[23]. 

Compound-target identification 

The canonical SMILE of the compounds was uploaded to the Swiss 
Target Prediction database 
(http://www.swisstargetprediction.ch/)[24]. The compound-target 
network was visualized using Cytoscape (3.9.0)[25]. 

Breast cancer target identification 

Breast cancer targets were retrieved by searching the GeneCards 
database (https://www.genecards.org/) and DisGeNET 
(https://www.disgenet.org/) were integrated using VENNY 
(https://bioinfogp.cnb.csis.es/tools/venny_old/index.html), and the 
intersecting targets were presented in a Venn diagram [26]. 
 

 

Fig. 2: Venn diagram representing the overlapping of breast 
cancer targets and compound 

Construction of protein-PPI network  

The Protein-protein interaction (PPI) network was constructed 
by uploading the genes to the STRING v_11.0 database 
(https://string-db.org/) [27]. The settings for building the PPI 
network were established in accordance with the “Homo sapi-
ens” model, and the confidence level of the interaction between 
the targets was set at 0.9 [28]. The network nodes represent 
proteins, and the edges reflect the protein-protein interactions. 
For core target protein identification, the Cytoscape data were 
sorted using these parameters, including degree, closeness cen-
trality, betweenness centrality, and clustering coefficient [26]. 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) analysis  

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) were analyzed using the ShinyGO database 
(http://bioinformatics.sdstate.edu/go/) with “homo sapiens” as a 
species with a False Discovery Rate (FDR) cutoff of 0.05 [29, 30]. 

Molecular docking 

The possible interactions between the compounds nuciferine, 
nor-nuciferine, and roemerine with the targets, including Epi-
dermal Growth Factor Receptor (EGFR, PDB ID 5hg8), Mito-
gen-Activated Protein Kinase 8 (MAPK8, PDB ID 3elj), Janus Ki-
nase 2 (JAK2, PDB ID 5aep), and Inhibitor of Nuclear Factor 
Kappa B Kinase Subunit Beta (IKBKB, PDB ID 4kik) were mod-
elled. Each protein was retrieved from the RCSB Protein Data 
Bank (https://www.rcsb.org/pages/policies). The interaction 
between each compound and its target was predicted using PyRx 
Virtual Screening Tools (version 0.8). All interactions between 
the target proteins and compounds were constructed using 
PyMOL 2.5 in the PDBQT format file. Finally, 2-dimensional visu-
alization of the interaction between compounds and target pro-
teins was investigated using Discovery Studio Visualizer 2021 
[31, 32].

https://biosig.unimelb.edu.au/pkcsm/
http://www.swisstargetprediction.ch/
https://www.genecards.org/
https://www.disgenet.org/
https://bioinfogp.cnb.csis.es/tools/venny_old/index.html
https://string-db.org/
http://bioinformatics.sdstate.edu/go/
https://www.rcsb.org/pages/policies
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Fig. 3: The network of compound and proteins target constructed using Cytoscape 3.9.0 

 

RESULTS 

Pharmacokinetic parameters of compounds 

The pharmacokinetic parameters of nuciferine, nornuciferine, and 
roemerine were determined using the pkCSM tools. This investiga-
tion was used to screen for interactions of the compounds with the 
human body. Ten parameters were used, as listed in table 1. These 
results indicate that nuciferine, nor-nuciferine, and roemerine are 
suitable compounds for consumption. 

Identification of drug targets in breast cancer 

The experimental procedure is illustrated in fig. 1. Targets in 
breast cancer were searched in the GeneCards Human database 
and DisGeNet using “breast cancer” as keywords. After removing 
duplicates among these databases, 18467 breast cancer targets 
were identified based on the relevance score (fig. 2). The targets 
of each aporphine alkaloid were obtained from Swiss Target 
Prediction. The identified predicted targets included 100 targets 
of nuciferine, nor-nuciferine, and roemerine. The 55 intersecting 
targets of aporphine alkaloids and breast cancer are shown in a 
Venn diagram (fig. 2) and listed in table 1. Furthermore, a com-

pound-target network plot was constructed using Cytoscape 
3.9.0 (fig. 3). 

Analysis of target protein-protein interaction (PPI) network 

The 55 intersecting targets were imported into the STRING database, 
and the potential relationships among them were investigated. A PPI 
network with a confidence score of 0.9 was constructed (fig. 4.). 
STRING database analysis revealed that the average node degree, 
defined as the average number of interactions of a protein in a net-
work, was 3.93, and the local clustering coefficient, defined as the 
wellness of the connected nodes in a network, was 0.651. The inter-
actions between the targets comprised 30 nodes and 59 edges, with 
each edge representing an association between nodes. Cytoscape 
analysis revealed one main cluster associated with the PPI network 
(fig. 4). According to the scores of degrees, closeness centrality, be-
tweenness centrality, and clustering centrality, signal transducer 
and activator of Epidermal Growth Factor Receptor (EGFR), Mito-
gen-Activated Protein Kinase 8 (MAPK8), Janus Kinase 2 (JAK2), 
Inhibitor of Nuclear Factor Kappa B Kinase Subunit Beta (IKBKB), 
and Protein Kinase C Epsilon (PRKCE) were identified as the top five 
intersecting targets of aporphine alkaloid and breast cancer interac-
tion (fig. 4).

 

 

Fig. 4: Protein-protein interaction (PPI) analysis. (A) Protein-protein interaction network of nuciferine, nornuciferine, roemerine, and 
breast cancer targets obtained from STRING v_11.5 and imported into Cytoscape. (B) The top 5 targets in the PPI network as ranked using 

the cytoHubba plug in network analyzer. The higher degree value is represented by colors ranging from red to yellow 

A B 
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Table 1: Pharmacokinetic parameters of nuciferine, nornuciferine, and roemerine 

No Parameters Compounds 
Nuciferine Nornuciferine Roemerine 

1 Molecular weight 295.382 281.355 279.339 
2 Log P 3.4559 3.1137 3.1674 
3 H-bond acceptor 3 3 3 
4 H-bond donors 0 1 0 
5 Rotatable bond 2 2 0 
6 % Intestinal absorption 96.604 93.767 96.771 
7 BBB (log BB) 0.418 0.743 0.321 
8 Ames toxicity No No No 
9 Hepatotoxicity No No No 
10 Max. tolerated dose (mg/kg/day) -0.23 -0.575 -0.456 

 

 

Fig. 5: Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The biological processes 
(A), cellular component (B), molecular function (C), and KEGG terms (D) distributed in the ordinate and the degree of enrichment were 

analyzed. The size of the dots represents the gene count. The blue-to-red represents the low-to-high value of the enrichment 

 

Gene ontology (GO) and Kyoto Encyclopedia of genes and ge-
nomes (KEGG) pathway analysis 

GO enrichment analysis was conducted to analyze the impact of the 
targets in breast cancer. The classification of GO was based on three 
criteria: biological processes, GO molecular function, and GO subcel-
lular localization (fig. 5). First, data with the candidate target and 
KEGG pathway analysis were interpreted using the ShinyGO data-
base. The top seven biological processes of aporphine alkaloids were 
identified by false discovery rate (FDR) and sorted by fold enrich-
ment, including positive regulation of mucus secretion, positive 
regulation of peptide hormone secretion, peptidyl-serine phosphor-
ylation, positive regulation of cellular protein localization, pep-
tidyl-serine modification, Mitogen-Activated Protein Kinase (MAPK) 
cascade, and peptidyl-amino acid modification (fig. 5). Molecular 
function was mainly enriched in protein serine/threonine kinase 
activity, protein serine kinase activity, protein kinase activity, phos-
photransferase activity, alcohol group as acceptor, kinase activity, 
transferase activity transferring phosphorus-containing groups, 
protein kinase binding, adenosine 5’-triphosphate (ATP) binding, 
adenyl ribonucleotide binding, and adenyl nucleotide binding (fig. 
5). Finally, subcellular localization includes multivesicular body 
internal vesicles, basal dendrites, Cluster of Differentiation 40 
(CD40) receptor complex, IkappaB kinase complex, membrane raft, 

membrane microdomain, receptor complex, focal adhesion, 
cell-substrate junction, and synapses (fig. 5). Furthermore, the KEGG 
pathway analysis suggested that the predicted targets were compo-
nents of the pathways involved in oncogenesis, particularly in the 
Programmed Death Ligand 1 (PD-L1) expression and Programmed 
Death 1 (PD-1) checkpoint pathway in cancer, Forkhead Box O 
(FoxO) signaling pathway, microRNAs in cancer, Ras signaling 
pathways, and pathways in cancer (fig. 5). 

Compounds-target interaction analysis by molecular docking 

Among the 55 targets of nuciferine, nornuciferine, and roemerine in 
breast cancer, four potential targets, including EGFR, MAPK8, JAK2, 
and IKBKB, were investigated for possible interactions with nu-
ciferine, nornuciferine, and roemerine. The aporphine alkaloids 
were molecularly docked using PyRx Virtual Screening Tool, and 
their interactions with the highest affinity for each target are pre-
sented in fig. 6, and table 2. The major binding interactions included 
hydrogen bonding and van der Waals interactions. The binding en-
ergy score during docking indicates the affinity of a component for 
the target protein. Here, all the binding energy scores analyzed were 
less than 0, suggesting high-affinity interactions among the targets 
and the aporphine alkaloids (nuciferine, nornuciferine, and roe-
merine) (table 2) [33, 34].

A B 
  

C D 
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Fig. 6: Molecular docking between nuciferine, nornuciferine, and roemerine with EGFR, MAPK8, JAK2, and IKBKB. Hydrogen bonds were 
displayed in green and Van der Waals interactions were displayed in light green 

 

Table 2: The molecular docking results of nuciferine, nornuciferine, and roemerine 

Compounds Molecular docking 
Binding energy (kcal/mol) Chemicals bond 

EGFR MAPK8 JAK2 IKBKB EGFR MAPK8 JAK2 IKBKB 
Nuciferine -7.3 -9.2 -9.2 -7.5 Van der waals 

(LEU844 dan GLN791) 
Hydrogen 
(MET111) 

Hydrogen (PHE1031 
and LYS999) 

Hydrogen (VAL241 
and GLN278) 

Nornuciferine -7.7 -9.1 -9.3 -6.9 Hydrogen (MET793) 
and Van der waals 
(LEU718 and LEU792) 

Hydrogen 
(ASN114 and 
ILE32) 

Hydrogen (PHE1031 
and LYS999) 

Hydrogen (VAL241 
and GLN278) 

Roemerine -8.6 -10.0 -9.9 -8.0 Hydrogen (LEU718 
and GLN791) 

Van der waals 
(VAL40) 

Hydrogen (PHE1031 
and LYS999) 

Hydrogen (VAL241 
and GLN278) 

 

DISCUSSION 

The utilization of network pharmacology-based evaluations facili-
tates comprehensive investigations of the interactions between 
potential drug candidates and diverse network factors [35]. The 
integration of multidisciplinary concepts from biological systems 
and polypharmacological models has led to the emergence of potent 
tools for drug target identification [36]. In addition to identifying 
novel drugs and their corresponding targets, this tool facilitates the 
investigation of potential target regions and repurposing of estab-
lished drugs for a variety of ailments [37]. The present study deline-
ates the molecular mechanism underlying the interaction between 
nuciferine, nornuciferine, and roemerine, which are aporphine alka-
loids derived from Seroja. 

A previous study demonstrated that aporphine alkaloids, namely 
nuciferine, nornuciferine, and roemerine, exhibit antiproliferative 
effects in AGS and DU-145 cells [15]. Nuciferine inhibited the growth 
of MDA-MB-231 and MCF-7 cells in the context of breast cancer by 
inducing apoptosis and inhibiting proliferation through cell cycle 
arrest [38]. However, the molecular mechanisms underlying this 

effect remain unknown. Elucidating the molecular mechanisms of 
aporphine alkaloids can enhance their anti-breast cancer activity. 
This study identified potential targets of compounds that overlap 
with breast cancer targets, such as Epidermal Growth Factor Recep-
tor (EGFR), Mitogen-Activated Protein Kinase 8 (MAPK8), Janus 
Kinase 2 (JAK2), and Inhibitor of Nuclear Factor Kappa B Kinase 
Subunit Beta (IKBKB). Based on Gene Ontology (GO) and Kyoto En-
cyclopedia of Genes and Genomes (KEGG) analyses, these targets are 
important for the advancement of breast cancer [39-42]. 

EGFR expression has been detected in a range–14-91% of individu-
als diagnosed with breast cancer and has been associated with an 
unfavorable prognosis [43]. Activation of EGFR triggers the activa-
tion of various pathways, such as RAS/RAF/ERK, PI3K/AKT, and 
STAT3 [44]. These pathways have been found to play a crucial role 
in regulating the growth and progression of cancer [45, 46]. The 
MAPK8 pathway is crucial in breast cancer and is similar to the 
EGFR protein [47]. MAPK8, also called c-Jun NH-2 terminal kinase-1 
(JNK1), belongs to the MAPK gene family [48]. The pathway above 
has been documented to be active in the process of apoptosis in 
cases of breast cancer [49]. JAK2 is a member of the MAPK family 

 Nuciferine Nornuciferine Roemerine 
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and has been detected in breast cancer [50]. Proteins involved in the 
JAK-STAT pathway have been shown to undergo modifications in 
breast cancer. These alterations can occur through various  mecha-
nisms, such as downregulation of phosphortyrosine-specific phos-
phatases, elevation of the JAK/STAT activating ligand IL-6, activation 
of other upstream oncogenic pathways such as ErbB1 or 
PI3K/mTOR, and downregulation of STAT3 negative regulators such 
as suppressor of cytokine signaling 3 [51-53]. The most recent pro-
tein identified as a target of nuciferine, nor-nuciferine, and roe-
merine was IKBKB. IKBKB has been identified as a constituent of 
NF-KB signaling, and its heightened activity has been observed in 
breast cancer [54]. In certain instances, upregulation of IKBKB has 
been observed to result in a reduction in the responsiveness of can-
cer cells to chemotherapy [55]. 

The present study employed molecular docking analysis to investi-
gate potential targets for their interactions with nuciferine, 
nor-nuciferine, and roemerine. The results of our study support our 
initial hypothesis, as the compounds in question exhibited strong 
binding affinity for the designated targets. It is probable that these 
compounds effectively hindered the functions of EGFR, MAPK8, 
JAK2, and IKBKB, which are known to promote tumor growth 
[56-58]. Furthermore, there is a dearth of information pertaining to 
aporphine alkaloids, namely, nuciferine, nornuciferine, and roe-
merine, in various databases. Thus, the present findings represent 
an inaugural report on this subject. Further clarification is required 
regarding the interactions between drugs and their respective tar-
gets, and it is imperative to validate the pharmacokinetic profile, 
safety, and efficacy of drugs. This study has provided scientific in-
sights into this compound, indicating its potential for use in an-
ti-cancer drug research and development for clinical purposes. 

CONCLUSION 

The present study described the potential activity of aporphine alka-
loids from Seroja as anti-breast cancer agents through network phar-
macology and molecular docking tests, which illustrated that these 
compounds are suitable for development as oral drugs because the 
parameters were correct, including toxicity tests. Taken together, 
using a combination of network pharmacology and molecular docking, 
we demonstrated that nuciferine, nornuciferine, and roe-merine as 
aporphine alkaloids can suppress breast cancer via modulation of 
Epidermal Growth Factor Receptor (EGFR), Mitogen-Activated Protein 
Kinase 8 (MAPK8), Janus Kinase 2 (JAK2), an Inhibitor of Nuclear Fac-
tor Kappa B Kinase Subunit Beta (IKBKB). This study confirmed that 
roemerine has the lowest binding energy compared with nuciferine 
and nornuciferine against EGFR, MAPK8, JAK2, and IKBKB. We rec-
ommend continuous efforts to demonstrate the anti-breast cancer 
activity of roemerine through in vitro and in vivo tests. 
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