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ABSTRACT 

Objective: The aim of this study is to computationally repurpose FDA-approved drugs as potential inhibitors of the Plasmodium falciparum lactate 
dehydrogenase (PfLDH) by competing with the cofactor NADH. 

Methods: In this in silico study, we have virtually screened a library of FDA-approved drugs for structural similarity to the dihydro nicotinamide 
adenine dinucleotide (NADH). Then, the top hits were further assessed for clinical safety and by application of molecular docking and dynamics 
simulation.  

Results: Ligand-based virtual screening reports that the antibiotic Novobiocin has a good similarity to the cofactor NADH with a score of 0.7. Also, 
molecular docking study indicates that Novobiocin may has the ability to interact with PfLDH enzyme with a docking energy of-8.8 Kcal/mol. 
However, during molecular dynamics (MD) simulation, the mean ligand proximity root mean square deviation (RMSD) and binding energy for 
Novobiocin were 4.3 Angstrom and-37.45 Kcal/mol, respectively. These MD simulation parameters are inferior to those recorded for NADH 
molecule during 50 nanosecond intervals.  

Conclusion: The antibiotic Novobiocin may serve as a potential lead candidate toward the design of novel antimalarial agents. However, further 
evaluation of Novobiocin may be recommended to affirm its capacity against PfLDH enzyme. 
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INTRODUCTION 

Malaria is a life-threatening neglected disease caused by parasites of 
the genus Plasmodium. The global incidence of this infectious 
disease is estimated to be 247 million cases in 2021 across 84 
endemic regions (https://www.who.int/teams/global-malaria-
programme/reports/world-malaria-report-2022) [1, 2]. In human, 
malaria disease is caused by five species of the Plasmodium parasites 
but Plasmodium falciparum is considered the most pathogenic one 
with a high possibility of drug resistance [3]. The Plasmodium 
parasites is usually transmitted to human beings through bites of the 
infected female Anopheles mosquitoes [4]. When biting a human, 
these infected mosquitoes will inject the sporozoites form of the 
parasite into the host blood. Then, the sporozoites will travel into 
the host liver and start the asymptomatic asexual reproduction 
inside hepatocytes. Eventually, the malaria parasites will emerge 
into the merozoites form, which is then discharged into blood 
stream to infect red blood cells (RBCs). Once the malaria parasites 
invade RBCs, it will multiply, destroy these cells and generate more 
merozoites that infect other RBCs [5]. It is believed that the rupture 
of these infected RBCs will release malaria toxins into blood stream 
of the host. These released toxins will activate the liberation of pro-
inflammatory cytokines, resulting in the appearance of disease 
symptoms like fever, anemia and thrombocytopenia [6]. The signs 
and symptoms of malaria are generally non-specific and thus can 
complicate the clinical diagnosis of this disease. As such, different 
laboratory techniques are used to help in the diagnosis of suspected 
cases like microscopic examination of blood smear, serological tests 
and polymerase chain reaction (PCR) [7]. To successfully eradicate 
malaria in endemic regions, different tools must be employed like 
control of mosquito vectors, use of rapid diagnostic testing, 
deployment of effective drugs and vaccines. In this direction, the 
recent introduction of antimalarial vaccines like RTS, S/AS01 and 
R21/Matrix-M may boosts hopes towards elimination of this disease 
in endemic countries [8, 9]. Due to the frequent resistance to old 
antimalarial drugs like Chloroquine, it is now recommended in most 
regions to use artemisinin-based combination therapy (ACT) for the 
management of uncomplicated cases of Plasmodium falciparum 

malaria [10]. Unfortunately, there have been several reports of 
Plasmodium falciparum resistance to artemisinin in southeast Asia 
and other endemic regions [11, 12]. Therefore, it is of interest to 
design and develop new antimalarial drugs to combat the threat 
imposed by multidrug-resistant malaria [13]. One of the potential 
molecular targets to develop new antimalarial drugs is the lactate 
dehydrogenase (LDH) enzyme of the Plasmodium parasites. This 
enzyme is the last enzyme in the glycolysis pathway and it is 
essential for the production of energy in the erythrocytic stage of 
Plasmodium parasites life cycle. During this anaerobic stage, the 
Plasmodium LDH enzyme catalyzes the conversion of pyruvate into 
lactate and regenerates nicotinamide adenine dinucleotide (NAD+). 
The LDH enzyme is found plentiful in all species of malaria parasites 
and it is considered to be distinct from its counterparts in bacteria 
and mammals [14, 15]. Interestingly, it has been found that 
chloroquine can act as a competitive inhibitor of the Plasmodium 
falciparum lactate dehydrogenase (PfLDH) enzyme. Crystallization 
studies refer to the ability of chloroquine to interact with PfLDH in 
the binding pocket of the dihydronicotinamide adenine dinucleotide 
(NADH) [16]. A comparative illustration for the interaction between 
either the cofactor NADH or chloroquine with the PfLDH enzyme can 
be observed in (fig. 1). As such, analogs of the cofactor NADH may 
have the potential capacity to inhibit PfLDH. In this direction, a 
previous study had virtually screened DrugBank library of 
compounds for analogs of NADH and the most similar compounds to 
NADH were then docked into PfLDH crystal. Based on the findings of 
this in silico study, the top three drugs with best binding energy 
(itraconazole, atorvastatin, posaconazole) were found to be effective 
both in vitro and in vivo against Plasmodium falciparum chloroquine 
resistant parasites [17]. According to the aforementioned facts, we 
have used the structure of NADH as a template to carry out a ligand-
based virtual screening of FDA-approved drugs library in order to 
identify potential inhibitors against PfLDH enzyme. Then, the best 
identical drugs to NADH were further assessed by both molecular 
docking and dynamics simulation to virtually validate its capacity as 
competitive inhibitors against PfLDH enzyme. Our aim in this study 
is to repurpose FDA-approved drugs as new potential inhibitors of 
PfLDH enzyme by applying multiple computational tools. 
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Fig. 1: A comparative representation for the binding between either NADH or chloroquine and the Plasmodium falciparum lactate 
dehydrogenase (PfLDH) enzyme (1LDG versus 1CET crystals) 

 

MATERIALS AND METHODS 

Setting up a methodological plan for the in silico study 

A summarized representation for the main steps of this 
computational study can be viewed in (fig. 2). As can be pointed 
out from this figure, the first step in this study was ligand-based 
virtual screening. In this step, a library of FDA-approved drugs 
was assessed for structural similarity to the cofactor NADH. Then, 

the clinical uses and safety were evaluated for those drugs with 
high similarity to NADH. In the next step, only those drugs with 
acceptable relative safety have been subjected to docking against 
PfLDH crystal. Finally, the drugs with the best docking energy 
(least energy of binding) were then submitted to molecular 
dynamics (MD) simulation for 20 and 50 nanoseconds. In this final 
stage, both ligand movement and binding energy were calculated 
throughout the simulation interval.  

 

 

Fig. 2: A schematic overview for the major steps of this virtual screening study 

 

Ligand-based virtual screening 

In this initial stage, we have employed FitDock-align tool accessible 
through DrugRep virtual screening server to carry out ligand-based 
similarity analysis. The FitDock is a hierarchical alignment tool with 
multiple features that can detect equivalent atom pairs between two 
compounds. The result of this screening process is usually ordered 
based on similarity score that can vary between 0 and 1, where 0 
means not identical and 1 means totally identical [18]. For this 
screening step, a library of 2,315 FDA-approved drugs was screened 
for similarity to the structure of NADH.  

Evaluation of clinical uses and safety 

Only those approved drugs with high similarity score were then 
submitted to an evaluation for clinical uses and safety profile. For 
this purpose, we have used the Medscape reference website to 
explore the uses and safety for each drug 
(https://reference.medscape.com/). Based on this online reference, 
only these drugs with acceptable safety profile were then submitted 
to the next step of molecular docking.  

Molecular docking 

For the docking step, we have used the 1-click docking tool available 
through the Mcule. com, an online drug discovery website 
(https://mcule.com/). The 1-click docking tool utilize both 
AutoDockTools and AutoDock Vina to perform docking process [19, 
20]. In this step, each selected drug was docked against the 
Plasmodium falciparum lactate dehydrogenase (PfLDH) enzyme 
crystal with PDB code 1LDG [21]. The employed docking coordinates 
were X: 33, Y: 25, Z: 35 and the grid box dimensions were 22*22*22 
Angstrom. Additionally, we have validated the accuracy of the 
applied docking procedure by redocking the co-crystalized NADH 
into PfLDH crystal. After that, the root mean square deviation 
(RMSD) was computed by using PacDOCK web server to compare 
the conformations of both the co-crystalized and the docked NADH 
[22]. For the output of this step, we have selected only those 
compounds with the best docking energy (least energy of binding) 
to undergo a molecular dynamics (MD) simulation study. Also, we 
have used UCSF chimera 1.15, PyMOL 2.4.1 (https://pymol.org/2/) 
and Discovery studio visualizer 21.1.0 (https://discover.3ds.com/ 
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discovery-studio-visualizer-download) to examine the docking 
orientation of the minimum binding energy pose for each drug-
target complex [23]. 

Molecular dynamics (MD) simulation 

In this in silico study, two rounds of MD simulation were executed 
for 20 and 50 nanoseconds by using the YASARA Dynamics 20.12.24 
[24]. At first, The MD simulation was carried out for 20 nanoseconds 
for each ligand-enzyme complex with the least energy of binding. 
Then, the second round of MD simulation was performed for only 
those drugs with average proximity RMSD to enzyme binding pocket 
of no more than 4 Angstrom. Simulation results of NADH-PfLDH 
docking complex was used as a positive control for these two rounds 
of MD study. The detailed steps and options used for MD simulation 
in this study is similar to what we previously applied in our 
published articles [25–27]. Briefly, a concentration of 0.9% sodium 
chloride was used in this MD study and an additional concentration 
of either sodium or chloride ions was applied to guarantee 
neutralization of the drug-enzyme complex during simulation. Also, 
minimizations of steepest descent and simulated annealing were 
used to avoid any clashes in the simulation process. During this 
process, the following force fields were utilized: AM1BCC and GAFF2 
for ligand, AMBER14 for solute, TIP3P for water [28–30]. The 
objective of this MD study was to compute ligand proximity RMSD to 
the designated binding pocket of PfLDH enzyme during the 
simulation interval. Moreover, the binding energy of molecular 
mechanics Poisson Boltzmann surface area (MM-PBSA) was also 
calculated for each drug in this MD study. 

RESULTS AND DISCUSSION 

For the output of virtual screening based on similarity to NADH, we 
have only presented the top ten hits as seen in (table 1). In this table, 
the FitDock similarity score is arranged in a descending order that 
range between 0.735 and 0.693. This range of values indicates that 
these top hits have a good molecular similarity to the cofactor 

NADH. Therefore, these listed drugs should be considered for more 
assessment.  

The clinical uses of these ten drugs are also listed as a column in 
(table 1). And based on this column, we have decided to exclude 
those drugs used for hypertension, leukemia, acromegaly or muscle 
relaxation from further evaluation due to the possibility of serious 
adverse effects (https://reference.medscape.com/). As such, only 
three antimicrobials, one anti-migraine drug and one anti-asthma 
agent, were considered for the next step of molecular docking.  

For the molecular docking, initially, the accuracy of 1-click docking 
tool was evaluated by using the redocking (pose selection) method. In 
this method, the co-crystalized ligand is taken out of enzyme crystal 
and then docked into the same binding site. After that, the RMSD is 
calculated for any variation between native conformation and docked 
conformation of that ligand. It is a known fact that any RMSD value for 
conformations variation that falls between 1.5 and 2.0 Angstrom 
refers to good accuracy of the docking method. In other words, a 
precise docking method usually coincides with lower conformations 
difference RMSD [26, 31]. The redocking results of NADH molecule 
into PfLDH crystal can be seen in (fig. 3). Interestingly, the docking 
energy for NADH was-11.6 Kcal/mol while the computed RMSD value 
for the conformations change between docked and co-crystalized 
NADH was 1.422 Angstrom. This value of conformations change RMSD 
is less than 1.5 Angstrom and indicates a very good precision of the 
applied docking tool. Then, the docking method was applied to only 
those drugs that are similar to NADH and have an acceptable safety 
profile. The results of docking energy were listed in the last column of 
(table 1) where the lower energy of binding means better docking 
behavior. According to (table 1), the reported binding energy values 
were ranging between-7.4 and-10.8 Kcal/mol and this may indicate 
good binding affinity against PfLDH. However, the best docking 
energy-10.8 Kcal/mol was reported to the anti-migraine agent 
ergotamine, which is inferior to that calculated for NADH of-11.6 
Kcal/mol. 

  

Table 1: A tabular list for the ligand-based virtual screening of FDA-approved drugs; these drugs were listed based on their similarity 
score to the dihydro nicotinamide adenine dinucleotide (NADH) in descending order. This table also presents the clinical use for each of 

these listed drugs. For only those drugs with relative safety, the docking energy against the Plasmodium falciparum lactate 
dehydrogenase (PfLDH) enzyme was calculated. 

No. Generic name Similarity score Clinical use Binding energy (Kcal/mol) 

1 Ponatinib 0.735 Leukemia - 
2 Atracurium 0.731 Skeletal muscles relaxation in surgery - 
3 Lanreotide 0.725 Acromegaly - 
4 Cefiderocol 0.717 Bacterial infection -7.4 
5 Rescinnamine 0.716 Hypertension - 
6 Novobiocin 0.701 Bacterial infection -8.8 
7 Ergotamine 0.699 Migraine -10.8 
8 Isavuconazonium 0.699 Fungal infection -7.8 
9 Zafirlukast 0.697 Asthma -9.1 
10 Candesartan 0.693 Hypertension - 

 

 

Fig. 3: Redocking of dihydro nicotinamide adenine dinucleotide (NADH) into the Plasmodium falciparum lactate dehydrogenase (PfLDH) 
enzyme 
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Regarding the molecular dynamics (MD) simulation study, the results 
of the first run of 20 nanoseconds MD simulation are summarized in 
(table 2). As observed in this table, the term ligand movement RMSD is 
usually used in MD studies to estimate the proximity of drug molecule 
to target binding site. In other words, a low ligand movement RMSD 
value can refer to stronger binding of drug to target site. Such a 
measurement can be generated through superposing the drug-enzyme 
complex on its reference structure during MD simulation [24, 32]. 

Based on the findings in (table 2), the least mean ligand movement 
RMSD was reported for the cofactor NADH followed by the antibiotic 
Novobiocin. Both NADH and Novobiocin were able to maintain a 
proximity to PfLDH binding site with mean RMSD value of less than 4 
Angstrom, therefore, only these two compounds were subjected to the 
second run of MD simulation for 50 nanoseconds. Additionally, the 
least average MM-PBSA binding energy was calculated to NADH 
followed by Novobiocin as can be noted in (table 2). 

  

Table 2: A summary of molecular dynamics simulation results for 20 nanoseconds interval 

No. Drug name Average MM-PBSA binding energy (Kcal/mol) Ligand movement RMSD (Å) 
Mean Minimum Maximum 

1 NADH (Control) -127.95 2.24 0.71 2.60 
2 Cefiderocol -25.67 7.51 1.13 12.35 
3 Novobiocin -35.53 3.88 1.17 5.46 
4 Ergotamine -19.26 4.63 0.79 8.69 
5 Isavuconazonium -19.43 6.54 0.90 13.89 
6 Zafirlukast -2.24 5.88 1.07 7.60 

MM-PBSA: molecular mechanics Poisson Boltzmann surface area; RMSD: Root mean square deviation; Å: Angstrom; NADH: Dihydronicotinamide 
adenine dinucleotide.  

 

For the extended 50 nanoseconds MD study, a detailed plot of ligand 
movement RMSD against simulation time can be seen in (fig. 4) for 
both NADH and Novobiocin. Again, the cofactor NADH was in a 
position to keep a more stable and closer proximity to PfLDH 
binding pocket as compared to the antibiotic Novobiocin. In this 
simulation run, the mean ligand movement RMSD values were 2.29 
and 4.30 Å for NADH and Novobiocin, respectively. Also, the average 
MM-PBSA binding energy were-125.00 and-37.45 Kcal/mol for 
NADH and Novobiocin, respectively. It is worth mentioning that the 
comparison of docking results for Novobiocin and NADH against 

PfLDH refers to the possibility of overlapping in the interactions 
region of these two compounds with target enzyme as can be seen in 
(fig. 5). Taken into account these results, it is predicted that the 
antimicrobial agent Novobiocin may have the potential to bind 
PfLDH enzyme. However, this binding capacity seems to be inferior 
to that reported for the cofactor NADH when comparing ligand 
proximity and MM-PBSA binding energy for these two compounds. 
Thus, it may be of interest to consider the antibiotic Novobiocin for 
more in vitro and in vivo assessments toward the development of 
new antimalarial agent.  

  

 

Fig. 4: A plot of ligand movement RMSD against the simulation interval of molecular dynamics study 

 

 

Fig. 5: A comparative illustration for the docking of either NADH or novobiocin against the Plasmodium falciparum lactate dehydrogenase 
(PfLDH) enzyme 
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CONCLUSION 

In this in silico study, we report that the antibiotic Novobiocin may 
have the ability to interact with the Plasmodium falciparum lactate 
dehydrogenase (PfLDH) enzyme. According to ligand-based virtual 
screening, this antibiotic has a good structural similarity to the 
cofactor NADH. Also, it displays an acceptable safety profile as 
mentioned in clinical references. Both molecular docking and 
dynamics simulation predict that Novobiocin may have a close 
proximity to PfLDH binding site with good binding energy. However, 
these calculated parameters of Novobiocin proximity and binding 
energy were lower than that computed for the cofactor NADH 
against PfLDH enzyme. As a result, it is recommended to consider 
Novobiocin for further in vitro and in vivo evaluations to develop a 
new drug against malaria parasites.  
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