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ABSTRACT 

Objective: This in silico study is aimed at identification of new possible inhibitors against Mycobacterium tuberculosis InhA enzyme by screening a 
library of FDA-approved drugs. 

Methods: In this in silico study, a library of FDA-approved drugs was screened by molecular docking against the monomer of enoyl-acyl carrier protein 
reductase to recognize potential inhibitors. Then, those best drugs with minimum docking energy were subjected to molecular dynamics simulation.   

Results: Out of the top ten docking hits, only revefenacin was able to maintain the closet proximity to InhA enzyme binding pocket during the two 
rounds of dynamics simulation. Analysis of molecular dynamics (MD) simulation data indicated that the antimuscarinic drug revefenacin has a 
ligand movement Root-Mean-Square Deviation (RMSD) that didn’t exceed 4 Angstrom. Also, in this MD study, revefenacin has a superior binding 
energy of -35.59 Kcal/mol as compared to -13.88 Kcal/mol for the other hit ergotamine. These favorable MD simulation records for revefenacin can 
be explained by its ability to continuously interact with enzyme binding pocket by two hydrogen bonds.  

Conclusion: We report that the antimuscarinic drug revefenacin may have the potential to inhibit the enoyl-acyl carrier protein reductase for  
Mycobacterium tuberculosis. However, these preliminary results must be further evaluated by in vitro and in vivo studies. 
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INTRODUCTION 

Tuberculosis (TB) is one of the earliest recognized infective diseases 
in human history that is caused by the aerobic bacillus bacterium 
called Mycobacterium tuberculosis [1]. This acid-fast pathogen can be 
transmitted by the inhalation of respiratory droplets that usually 
generated by the coughing of active TB patients [2]. Once the bacilli 
of Mycobacterium tuberculosis reach the respiratory alveoli, it will 
then get phagocytized by the resident alveolar macrophages. Some 
of these engulfed bacilli will continue to multiply inside 
macrophages, leading to the lysis of these innate immune cells. If the 
alveolar macrophages failed to eliminate Mycobacterium tuberculosis 
infection within one to two weeks, then local inflammation will 
recruit monocytes to the site of infection with subsequent 
establishment of specific T-cells mediated immune response. When 
immune cells are unable to eradicate infection by Mycobacterium 
tuberculosis, then the best strategy to prevent further spread of 
infection is by the formation of granuloma around mycobacterial 
bacilli [3]. It is estimated that in about 10% of Mycobacterium 
tuberculosis infection cases, immune cells will succuss to eliminate 
infection. However, in most infection cases, some mycobacterial 
bacilli will escape immune response and enter a latent and non-
replicating stage in lesion areas of the lung, leading to a latent 
tuberculosis infection (LTBI). These dormant bacilli can regain their 
ability to multiply and spread when immune system is disrupted, 
leading to active tuberculosis infection [4]. According to the 
estimates of World Health Organization (WHO), about one-quarter 
of world population is latently infected with Mycobacterium 
tuberculosis and 5-10 % of them will later develop active TB 
(https://www.who.int/news-room/fact-sheets/detail/tuberculosis) 
[5, 6]. In active TB cases, the immune cells will fail to contain 
mycobacterial infection and bacilli can spread through blood 
circulation and lymphatic channels into other distal parts of the 
body. This can result in a serious damage in lung and other parts of 
the body like the brain, spinal cord and bones. Usually, individuals 
with latent TB are asymptomatic and can’t transmit infection. On the 
contrary, actively infected patients can spread the infection to others 

and experience clinical symptoms like continuous coughing, bloody 
sputum, fatigue, fever and chest pain [7]. For the effective 
management of TB cases, rapid and reliable diagnostic methods 
must be utilized. The frequently used methods for diagnosis of TB 
cases are clinical diagnosis, chest X-ray, microscopic identification, 
bacterial culture and immunologic tests like skin test [8]. Also, early 
and effective treatment is important in the management of TB to 
avoid the emergence of drug-resistant strains of Mycobacterium 
tuberculosis. The standard treatment regimen recommended by 
WHO for active pulmonary TB involves the administration of four 
antibiotics in combination for two months and these are: isoniazid 
(INH), rifampicin, ethambutol and pyrazinamide. After that, a 
combination of only isoniazid and rifampicin is used for another four 
months [9]. Unfortunately, this long and complex TB treatment 
regimen has led to issues like patient non-compliance with 
subsequent treatment failure [10]. The failure of treatment can lead 
to TB relapse and emergence of either multidrug-resistant 
tuberculosis (MDR-TB) or extensively drug-resistant tuberculosis 
(XDR-TB) [11]. Moreover, the only available tuberculosis vaccine is 
the Bacillus of Calmette and Guérin (BCG) vaccine, whose efficacy is 
controversial and can range between 0-80 % according to clinical 
trials [12]. Therefore, it is relevant to introduce new therapeutic 
agents that can reduce the current burden of public health threat 
imposed by TB. In this direction, one of the potential molecular 
targets to design new anti-tuberculosis agents is the mycolic acids 
(MAs) synthesis pathway. The mycolic acids are long chain fatty 
acids that are essential for the buildup and integrity of 
mycobacterium cell wall. These fatty acids can act as a permeability 
barrier and contribute to bacterial resistance against both host 
defense mechanisms and different antibiotics [13, 14]. In 
Mycobacterium tuberculosis, one of the key enzymes for the 
reduction stage of fatty acids production and biosynthesis of mycolic 
acids is the enoyl-acyl carrier protein (ACP) reductase (InhA). The 
InhA is an NADH-dependent reductase and is a well-known target 
for isoniazid (INH) [15]. As such, we have chosen in this in silico 
study the enoyl-ACP reductase of Mycobacterium tuberculosis as a 
molecular target to screen a library of FDA-approved drugs. This 
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virtual screening study is aimed at the identification of new 
potential inhibitors against Mycobacterium tuberculosis InhA 
enzyme.  

MATERIALS AND METHODS 

Setting up a virtual screening study plan 

The main steps and options applied in this in silico study are outlined in 
(fig. 1). As noted in this figure, both molecular docking and two rounds of 
dynamics simulation were employed to virtually screen a library of FDA 
approved drugs against Mycobacterium tuberculosis InhA enzyme. 

Molecular docking 

For this computational study, we have used the online drug 
discovery web server named DrugRep to virtually screen a library of 
2,315 FDA-approved drugs against chain A of enoyl-ACP reductase 
for Mycobacterium tuberculosis [16]. Initially, chain A only of the 
enoyl-ACP reductase (PDB: 1BVR) was extracted by using UCSF 
Chimera version 1.15 [17, 18]. Then, this extracted monomer of InhA 
enzyme was uploaded to the DrugRep server to perform a structure-

based virtual screening. It is worthwhile to mention that the 
DrugRep website utilizes both AutoDockTools version 1.5.6 and 
AutoDock Vina version 1.1.2 to prepare the uploaded target and perform 
the docking step, respectively [19, 20]. In this study, the used docking 
coordinates were X: 17.0, Y: 14.0, Z: 8.0 while the dimensions of grid box 
were 22*22*22 Angstrom. Moreover, the accuracy of this docking 
protocol was assessed by redocking the co-crystalized NAD+into chain A 
of enoyl-ACP reductase. Then, PacDOCK web server was used to 
compare the conformation of co-crystalized and docked NAD+by 
calculating the root mean square deviation (RMSD) [21]. Finally, we have 
selected the best 10 drugs with least docking energy for more 
assessment by molecular dynamics (MD) simulation. Additionally, the 
orientation of least binding energy pose for each drug-enzyme docking 
complex was visualized by using PyMOL version 2.4.1 
(https://pymol.org/2/) and protein-ligand interaction profiler (PLIP) 
[22]. It should be noted that during selecting the top 10 hits, we have 
removed anticancer, antihypertensive and psychoactive drugs from the 
results of this virtual screening as the use of these agents can be 
associated with unacceptable adverse effects. Thus, the repurpose of 
these drugs may be clinically inappropriate for tuberculosis patients. 

 

 

Fig. 1: An outline for the main steps and options of the applied virtual screening study 

 

Molecular dynamics (MD) simulation study 

After molecular docking, YASARA Dynamics version 20.12.24 was 
utilized to carry out two rounds of molecular dynamics simulation 
for 20 and 50 nanoseconds intervals [23]. In the first round of MD 
simulation, the drug-enzyme docking complex with least energy 
binding pose for each of the top 10 hits was submitted to undergo 20 
nanoseconds simulation. After that, only those drugs with maximum 
proximity RMSD to enoyl-ACP reductase binding pocket of less than 
4 Angstrom were submitted to the second round of 50 nanoseconds 
simulation. Again, the ligand maximum proximity RMSD to the 
enzyme active site was calculated to validate results of MD simulation 
second round. In addition, the binding energy of molecular mechanics 
Poisson-Boltzmann surface area (MM-PBSA) was computed for each 
drug by using AMBER14 force field [24]. For this MD study, the 
detailed procedure and applied options are identical to what we have 
used in our previously published studies [25–27]. Concisely, NaCl was 
employed in this simulation with a concentration of 0.9%. Also, an 
excess concentration of either Na+ or Cl̄  ions was applied to the 
simulation environment to ensure the neutralization of the drug-
enzyme complex. This MD simulation was carried out with the help of 
the following force fields: AM1BCC and GAFF2 for the ligand, 
AMBER14 for the solute, TIP3P for water [24, 28, 29]. Moreover, any 
probability of clashes in this simulation was prohibited through the 
reduction of the steepest descent and simulated annealing.  

RESULTS AND DISCUSSION 

Before starting the virtual screening study, the precision of the 
followed docking protocol was assessed first by using the redocking 
method. In this method, the co-crystalized NAD+ was removed from 
chain A of InhA enzyme and docked again into the same binding 
pocket by using similar procedure and options to those applied in the 
virtual screening project. Then, the native conformation of NAD+ was 
aligned with the docked conformation and RMSD value was calculated 
to estimate the variation degree between these two conformations. It 
is well-known that a lower RMSD value for conformations variation 
reflects good accuracy of docking protocol. According to literatures 
review, a precise docking protocol is usually coincided with a 
conformations difference RMSD between 1.5 and 2.0 Angstrom [30]. In 
this study, the alignment of NAD+ native conformation with the docked 
one can be observed in (fig. 2). As seen in this figure, the computed 
RMSD value for conformations difference was 1.58 Angstrom. Thus, 
the applied docking protocol for this study is deemed to be accurate. It 
should be pointed out that the docking energy of NAD+ into chain A of 
enoyl-ACP reductase was -9.4 Kcal/mol. 

An overview for the results of molecular docking and dynamics 
simulation study for the best 10 drugs can be observed in (table 1). 
Based on findings in this table, the docking energy for these drugs is 
ranging between -12.1 and-9.6 Kcal/mol. interestingly, the first three 
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hits in (table 1) with least binding energy are anti-migraine 
medications. Also, two of the hits listed in (table 1) are penicillin 
antibiotics and these are carindacillin and sultamicillin. According to 
several published studies, many of the listed drugs in (table 1) may 
have activity against viruses like SARS-CoV-2 and West Nile virus [31–
36]. Moreover, based on an in vitro study, the anti-asthma drug 
zafirlukast may have antituberculosis activity. In this study, zafirlukast 
was able to inhibit the growth of Mycobacterium tuberculosis by 
causing a dysregulation in the expression of several genes inside 
bacteria [37]. However, the maximum ligand movement RMSD in the 

first round of MD simulation in (table 1) indicated that only 
ergotamine and revefenacin were able to stay close to binding site 
with RMSD value less than 4 Angstrom throughout 20 nanoseconds 
interval. It is well-known that a low ligand movement RMSD means a 
close proximity of the drug to target site and, thus stronger binding 
[38]. Consequently, the second round of MD simulation for 50 
nanoseconds were executed only for ergotamine and revefenacin. 
During this later simulation, only the antimuscarinic drug revefenacin 
was able to maintain a ligand movement RMSD value that didn’t 
exceed 4 Angstrom as seen in the last column in (table 1). 

  

 

Fig. 2: An alignment of NAD+ native conformation (green color) with the docked conformation (yellow color) 

 

Table 1: A tabular summary of the molecular docking and dynamics simulation (MD) study results for the top 10 FDA-approved drugs that 
were virtually screened against the monomer of Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA). These top hits 

were listed based on their least docking energy of binding to chain A of InhA enzyme 

No. Generic name Clinical indications Docking energy 
(Kcal/mol) 

Maximum ligand movement RMSD (Å) 
20 nanoseconds 50 nanoseconds 

1 Ergotamine Migraine -12.1 3.92 4.20 
2 Rimegepant Migraine -12.0 6.65 - 
3 Ubrogepant Migraine -11.5 6.26 - 
4 Conivaptan Hyponatremia -11.4 4.21 - 
5 Zafirlukast Asthma -10.1 5.99 - 
6 Revefenacin Chronic obstructive pulmonary disease -10.1 3.40 3.40 
7 Ebastine Allergy -10.0 7.87 - 
8 Carindacillin Bacterial infection -9.9 6.93 - 
9 Sultamicillin Bacterial infection -9.7 6.78 - 
10 Glimepiride Type 2 diabetes mellitus -9.6 7.12 - 

RMSD: Root-Mean-Square Deviation; Å: Angstrom. 

 

A detailed plot of ligand movement RMSD throughout 50 
nanoseconds interval of MD simulation can be viewed in (fig. 3) for 
both ergotamine and revefenacin. Based on this plot, it is expected 
that revefenacin was able to stay closer than ergotamine to the 
binding site of InhA enzyme monomer. As a result, revefenacin may 

exhibit a stronger binding potential to enzyme active site because it 
has a lower ligand movement RMSD values during MD simulation.  
Moreover, the computed average MM-PBSA binding energy during 
50 nanoseconds simulation was -13.88 and-35.59 Kcal/mol for 
ergotamine and revefenacin, respectively. 

  

 

Fig. 3: A plot of ligand movement RMSD versus molecular dynamics simulation interval for both ergotamine and reverencing 
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This difference in ligand movement RMSD and MM-PBSA binding energy 
during MD simulation between ergotamine and revefenacin can be 
explained through examination of types of interactions between drug 
and residues of enzyme binding pocket. The visualization of docking 
complexes in (fig. 4), indicated that both ergotamine and revefenacin can 
form two hydrogen bonds with residues of enzyme binding site. 

However, only revefenacin was able to keep these two hydrogen bonds 
with enzyme active site throughout 50 nanoseconds of MD simulation as 
can be noted in (fig. 5). Hence, during MD simulation, the closer 
proximity and favorable binding energy for revefenacin can be explained 
by the ability of this antimuscarinic agent to maintain these two 
hydrogen bonds with InhA enzyme. 

 

 

Fig. 4: A graphical illustration of docking complex for (A) ergotamine and (B) revefenacin. Hydrogen bond is illustrated as blue 
continuous line while hydrophobic bond is represented by the dashed line 

 

 

Fig. 5: A plot for types of ligand-enzyme interactions as a function of simulation interval for (A) ergotamine and (B) revefenacin. Hydrogen 
bonds are represented by red color and hydrophobic interaction is illustrated by green color 
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CONCLUSION 

In this computational study, we report that the bronchodilator drug 
revefenacin may have the capacity to inhibit enoyl-ACP reductase 
(InhA) enzyme for Mycobacterium tuberculosis. Both molecular 
docking and dynamics simulation analysis pointed to the possible 
ability of revefenacin to maintain hydrogen bonds interaction with 
enzyme binding pocket during simulation. This continuous 
interaction ability may explain the closer proximity of revefenacin to 
InhA binding pocket and its favorable binding energy as compared 
to other virtual screening hits. However, these preliminary results 
must be further validated by in vitro and in vivo studies. 
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