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ABSTRACT 

The development of effective subunit vaccines relies on the incorporation of adjuvants to enhance immune responses and improve vaccine efficacy.  
This paper provides a comprehensive review of the various adjuvants employed in subunit vaccine development, with an emphasis  on liposome-
based, carbohydrate-based, polymer-based, and nanoparticle-based adjuvants. Additionally, the general concept of vaccine adjuvants, their 
classification into different types, and the underlying molecular mechanisms by which they exert their immunostimulatory effects are discussed. 
The use of adjuvants in subunit vaccine development has revolutionized immunization strategies by enhancing vaccine efficacy and inducing robust 
immune responses. Further research is needed to understand the safety profiles of adjuvants, elucidate the underlying molecular mechanisms, and 
optimize the adjuvant formulations. By harnessing the power of adjuvants, we can advance the development of effective subunit vaccines against 
infectious diseases and malignancies, thereby contributing to global health outcomes. 
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INTRODUCTION 

Subunit vaccines are a new generation of vaccines that utilize 
constituents derived from pathogenic bacteria, parasites, or viruses to 
elicit adaptive immune responses against pathogens [1]. These 
pathogenic constituents, commonly denoted as antigens, predominantly 
manifest as discrete proteins or artificial peptides [2]. Extensive clinical 
investigations have been conducted over the past few decades to 
evaluate the efficacy of protein and peptide antigen-based vaccines, and 
a number of these formulations are now commercially accessible 
worldwide (fig. 1). While conventional subunit vaccines predominantly 
exploit antigens that are markedly safer and highly purified than their 
whole-organism-based counterparts [3], their reduced immunogenicity 
is attributed to their diminished size and the absence of pathogen-
associated molecular patterns (PAMPs) required for optimal antigen 
recognition [4]. Consequently, to induce or augment an immune 
response, non-immunogenic substances, referred to as adjuvants, are 
commonly incorporated into vaccine formulations [5].  

Adjuvants can be classified based on various criteria, including 
physicochemical characteristics and modes of action [6]. A widely 
accepted categorization scheme is predicated on their mechanisms 
of action, which divides adjuvants into two primary groups: delivery 
systems (particulate) and immune potentiators [7], as shown in 
table 1. Another noteworthy class of adjuvants is mucosal adjuvants, 
which share certain attributes with the aforementioned categories. 
In the case of delivery system adjuvants, antigens are combined with 
an adjuvant that principally serves as an antigen transporter. 
Furthermore, these adjuvants can elicit a localized proinflammatory 
response by activating the innate immune system, thereby attracting 
immune cells to the inoculation site [8]. Specifically, the antigen-
adjuvant complex activates pathways governed by pattern 
recognition receptors (PRRs) by mimicking PAMPs. This activation 
results in the stimulation of innate immune cells and subsequent 
production of cytokines and chemokines. Immune potentiators also 
directly engage in the same pathway [9] (fig. 2). 

  

 

Fig. 1: Timeline of vaccine adjuvant development and licensing [5], AS, adjuvant system; MPL, monophosphoryl lipid A; HAV, hepatitis A 
virus; HBV, hepatitis B virus; HPV, human papillomavirus; WHO, World Health Organization; OMVs, outer membrane vesicles 
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Fig. 2: Mechanisms of action of adjuvants [8] 

 

Table 1: Classification of adjuvants according to their main mechanism of action [5] 

Adjuvant groups Types of adjuvants 
Delivery systems 
Mineral Salts Aluminum salts 
Emulsions Freund’s adjuvants 

MF59 
AS03 

Microparticles Virus-like particles 
Virosomes 
PLA/PLGA 

Immune potentiators 
TLR1/2 agonists L-pampo, MALP-2, Pam2CSK4 and Pam3CSK4 
TLR3 agonists Poly(I: C) (polyinosinic: polycytidylic acid) 

Poly-ICLC 
TLR4 agonists Monophosphoryl lipid A (MPL) 
TLR5 agonists Flagellin 
TLR7/8 agonists Imiquimod (R837; 1-(2-methylpropyl)-1H-imidazo [4,5-c]quinolin-4-amine) and resiquimod (R848, 4-amino-2-

(etoximetil)-a,a-dimethyl-1H-imidazo [4,5-c]quinoline-1-ethanol) 
TLR9 agonists CpG ODNs 
Combined adjuvants AS01 and AS02 

AS04 
Mucosal adjuvants Cholera toxin (CT) 

Heat-labile enterotoxin (LTK3 and LTR72) 
Chitosan 

 

Multiple factors warrant careful consideration when selecting a 
vaccine adjuvant, with safety being a paramount concern. An ideal 
adjuvant should exhibit a commendable safety profile, ensuring 
minimal adverse effects and optimal tolerability. Furthermore, it 
should be easy to produce, possess favorable pharmaceutical 
attributes, such as appropriate pH, osmolality, and endotoxin levels, 
and maintain long-term stability during storage. Economic feasibility 
is also a crucial consideration [10]. Accommodating all these 
prerequisites while simultaneously upholding the adjuvant's safety 
represents a formidable challenge. Consequently, only a limited 
number of vaccine adjuvants have been incorporated into currently 
employed vaccine formulations.  

The existing repertoire of adjuvants includes thiomersal, alum, 
complete Freund's adjuvant (CFA), incomplete Freund's adjuvant 
(IFA), Montanide, adjuvant 65, and lipovant. However, it is 
important to note that these adjuvants frequently exhibit toxic and 
reactogenic properties [11]. Consequently, one of the primary 
obstacles encountered in subunit vaccine research is the need to 
engineer adjuvants that are devoid of toxicity or possess minimal 
toxicity [8].  

This review aims to comprehensively examine the currently used 
subunit vaccine adjuvants and to evaluate ongoing studies on the 
properties and possible future use of new adjuvants. Five databases 

were used to search for relevant articles, including Google Scholar, 
PubMed, Scopus, Web of Science, and Elsevier, published from 2013-
2023. The following keywords were used: “subunit vaccine 
adjuvants”, “subunit vaccines”, and “vaccine adjuvants”. 

Vaccine adjuvants: an overview 

Adjuvants are agents that, when employed in conjunction with 
vaccine antigens, elicit a heightened and more potent immune 
response than that elicited by the vaccine alone [12]. Incorporating 
adjuvants into vaccines serves several purposes: (i) enhancing the 
immunogenicity of antigens, (ii) diminishing the requisite antigen 
dosage or immunization frequency necessary to confer protective 
immunity, and (iii) bolstering the efficacy of vaccines in specific 
populations such as newborns, the elderly, or individuals with 
compromised immune systems [13].  

Over the years, aluminum hydroxide and aluminum phosphate gels, 
commonly referred to as alum, have found extensive application as 
adjuvants in various licensed vaccines, serving as a safer alternative 
to Incomplete Freund's adjuvant because of the elimination of 
several cytotoxic properties [14]. However, Alum exhibits certain 
limitations, including susceptibility to freezing and drying, 
inconsistent and modest humoral immune responses, and specific 
safety concerns, which compromise its overall immunostimulatory 
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efficacy [15]. The advent of delivery systems has played a pivotal 
role in advancing the development of efficient vaccine adjuvants, 
primarily by facilitating antigen uptake by antigen-presenting cells 
(APCs) or augmenting the influx of APCs. A notable advantage of 
particulate formulations for vaccine delivery is the preservation of 
antigens from proteolytic degradation, which enhances the cellular 
uptake of the vaccine [16]. Furthermore, the inclusion of 
immunopotentiators, such as PRRs, along with the delivery system, 
can greatly contribute to generating a robust immune response by 
recognizing pathogen-associated molecules and facilitating 
increased antigen uptake. Consequently, the delivery system 
safeguards the encapsulated antigen from the host's in vivo 
environment, ensuring sustained release to evoke a durable antigen-
specific immune response. Immunostimulatory adjuvants in the 
form of PRRs provide a stimulatory dose of linked PRR ligands, 
further enhancing antigen uptake and facilitating preferential 
presentation to APCs. Thus, this integrated approach enables 
prolonged antigen delivery with heightened immunogenicity [17].  

The incorporation of adjuvants is of particular significance when 
formulating vaccines targeting the elderly population. This 
significance arises from the physiological phenomenon of 
immunosenescence observed in this group of individuals, which 
leads to diminished immune responses following natural infections 
or immunization interventions [18]. In such scenarios, the inclusion 
of adjuvants can serve as a valuable strategy for overcoming this 
limitation in vaccine efficacy.  

In the context of vaccine development for diseases such as cancer, 
chronic infections (e. g., HIV, Hepatitis C Virus, Tuberculosis, and 
herpes simplex virus (HSV)), and emerging pathogens such as 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the 
ability of an adjuvant to elicit a qualitatively robust immune 
response is of paramount importance [19]. A comprehensive 
understanding of the immunobiology encompassing Toll-like 
receptors (TLRs), other PRRs, immunoregulatory cells, and the 
pivotal role of specific T helper (Th) cell responses in resolving 
distinct diseases lays the foundation for ongoing advancements and 
optimizations in vaccine design [20].  

Molecular mechanisms of vaccine adjuvants 

Currently, six adjuvants (Alum, AS04, MF59, AS03, AS01, and CpG 
ODN) are approved for use in human vaccines. This achievement has 
been facilitated by the extensive structural characterization of 
multiple adjuvants and identification of diverse PRRs and co-
stimulatory ligand receptors, which have substantially enhanced our 
understanding of the underlying molecular mechanisms governing 
adjuvant function. Acquiring a comprehensive understanding of the 
mode of action of adjuvants is critically important for the design of 
vaccines capable of inducing pathogen-specific effector responses 
and establishing durable memory responses. Moreover, this 
understanding is invaluable during the developmental and 
regulatory phases of adjuvant safety [21]. The possible mechanisms 
by which adjuvants exert their adjuvanticity are discussed below.  

Delivery systems 

Adjuvants employed as delivery systems in subunit vaccines, 
including liposomes, immune-stimulating complexes (ISCOMs), and 
nanoparticles, have demonstrated remarkable efficacy in eliciting 
protective immunity [16]. These adjuvants play a crucial role in 
preventing the rapid degradation of proteins and peptides in vivo, 
consequently augmenting the dose effectiveness of the vaccine 
antigen. Notably, the co-administration of antigens with cationic 
liposomes elicits more robust antigen-specific immune responses 
than neutral or anionic liposomes [22]. Liposomes, serving as 
effective vaccine delivery systems, function as carriers in adjuvants, 
such as AS01, a liposome-based formulation comprising 
monophosphoryl lipid A (MPLA) and QS-21 [23]. Furthermore, 
enhanced saponin-based tensoactive adjuvants, namely ISCOM, 
ISCOMATRIX, and Matrix-MTM, have emerged as particulate antigen 
delivery systems with potent immunostimulatory activities [24]. 
ISCOMs adopt a cage-like structure with diameters ranging from 40 
to 50 nm, consisting of saponins, cholesterol, and phospholipids. 
Similarly, ISCOMATRIX exhibits a structurally analogous formation, 

albeit without the inclusion of the antigen itself (which can be 
formulated with ISCOMATRIX to prepare an ISCOMATRIX vaccine) 
[25]. Both ISCOMATRIX and ISCOM possess attributes encompassing 
antigen delivery and immunostimulatory properties, making them 
versatile tools for vaccine development [26]. 

Depot effect 

The depot effect pertains to the gradual and sustained release of 
antigens at the injection site, which provides continuous stimulation 
to the immune system. This mechanism facilitates improved antigen 
uptake by APCs and is associated with the induction of high antibody 
titers. Initially, the adjuvanticity of alum was primarily attributed to 
its depot effect; however, recent evidence suggests that this effect is 
not the sole mechanism underlying its adjuvant activity [27].  

In a mouse model, alum rapidly induced an inflammatory milieu 
characterized by the upregulation of inflammatory chemokines, 
leading to the recruitment and clustering of neutrophils at the 
injection site. Additionally, alum promotes neutrophil death, 
resulting in the release of neutrophil extracellular traps (NETs) 
composed of extracellular DNA, which play a substantial role in the 
adjuvant action of alum [28]. Oil-in-water emulsions such as 
Emulsigen®, water-in-oil emulsions such as the cationic adjuvant 
formulation (CAF)01 (consisting of a cationic liposome composed of 
dimethyldioctadecylammonium/α,α’-trehalose 6,6’-dibehenate or 
DDA/TDB), and biodegradable micro-and nanoparticles have also 
exhibited adjuvant activity mediated by the depot effect in mouse 
models [29].  

Activation of immune signalling 

Adjuvants can activate various PRRs and initiate signal transduction 
pathways through TLRs, nucleotide-binding oligomerization domain 
(NOD)-like receptors (NLRs), and other crucial cellular pathways. 
The effectiveness of the yellow fever vaccine YF-17D, a live 
attenuated virus vaccine, can be attributed to its ability to activate 
multiple TLRs, including TLR2, 7, 8, and 9, on or within dendritic 
cells (DCs) in mice [30]. YF-17D also activates DCs derived from 
human monocytes and plasmacytoid DCs (pDCs) [30]. Intracellular 
NLRs such as NOD1 and NOD2 recognize diaminopimelatic acid 
(DAP)-containing muropeptides from gram-negative bacteria, 
whereas NOD2 detects the muramyl dipeptide (MDP) component 
present in all bacterial peptidoglycans. The adjuvanticity of mucosal 
adjuvant Cholera Toxin (CT) is mediated through the NOD2 receptor 
[31]. Adjuvants induce a cascade of signal transduction pathways to 
exert their effects at both innate and adaptive levels. Intramuscular 
injection of MPL or AS04 in mice leads to NF-κB activation in 
muscles and local draining lymph nodes [32]. Synthetic derivatives 
of MPL activate TLR4 and selectively stimulate the p38 MAPK 
pathway, which is closely associated with optimal induction of IFN-
γ-induced protein 10 (IP-10), TNF-α, and IL-10 in mice [33]. 

Induction of cytokines, chemokines, and IFNs 

In their microarray analysis, the impact of three potent human 
vaccine adjuvants, MF59, CpG ODN, and alum, on gene expression in 
mouse muscles was investigated [34]. They identified a shared set of 
168 genes, referred to as "adjuvant core response genes," that 
encode cytokines, chemokines, innate immune receptors, IFN-
induced proteins, and adhesion molecules. These genes play crucial 
roles in orchestrating immune responses. The induction of 
nonpathogenic inflammatory responses by these adjuvants creates a 
local immunocompetent environment that contributes to their 
adjuvanticity. Among the three adjuvants, MF59 exhibited the 
strongest capacity to induce adjuvant core response genes, leading 
to an enhanced and rapid influx of MHC-II+and CD11b+cells at the 
injection site and a more efficient transport of antigens to the 
draining lymph nodes [35]. Both alum and MF59 were found to 
induce chemokines involved in cellular influx, including CCL2, CCL3, 
CCL4, and CXCL-8, thereby facilitating the recruitment of immune 
cells to the injection site [36]. 

Induction of humoral immunity 

The regulation of antibody responses is significantly influenced by 
innate immune responses, which affect the magnitude, quality, and 
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persistence of these responses. The magnitude of the antibody 
response is particularly crucial in providing protection against 
various infections, such as diphtheria, hepatitis A, Lyme disease, 
tetanus, yellow fever, polio, rabies, and pneumococcal infections 
(Pulendran and Ahmed, 2011). For infections such as RSV and 
meningococcal infections, both the magnitude and quality of 
antibodies and cell-mediated responses are of vital importance. To 
achieve enhanced immune responses, adjuvant systems, such as 
AS01, are employed in vaccines against malaria (RTS, S), herpes 
zoster (HZ/su), tuberculosis (TB), and HIV. Additionally, AS03 is 
utilized in several influenza vaccines, including trivalent inactivated 
H1N1 influenza, H5N1 pre-pandemic influenza, and candidate H7N1 
and H7N9 pandemic influenza vaccines. Moreover, AS04 has been 
incorporated into licensed HPV-16/18 and HBV vaccines. These 
adjuvant systems are recognized for their ability to augment 
antigen-specific T cell and antibody responses [37]. Their 
incorporation into vaccines holds promise for enhancing the 
protective immunity against various infectious diseases. 

Immunological memory is a defining characteristic of the adaptive 
immune system that functions as a crucial element in the 
establishment of protective immunity against infectious diseases. 
The germinal center (GC) reaction is at the core of memory 
development and orchestrates the generation of long-lasting 
immunological memory. The regulation of GC differentiation, affinity 
maturation, and the formation of enduring memory responses relies 
on the induction of specific key molecules, including CD40 inducible 
T-cell costimulator (ICOS), IL-21, programmed death-ligand 1 (PD-
1), CD95, IRF4, and B-cell lymphoma 6 protein (Bcl-6) (Pulendran 
and Ahmed, 2011). 

TLRs expressed on various cell types within GC, such as GC B cells, 
follicular dendritic cells (FDCs), and T cells, exert a profound 
influence on the initiation and progression of antibody responses. 
Notably, the utilization of nanoparticles, which bear resemblance to 
virions in size and incorporate TLR ligands, such as MPL and R837, 
in conjunction with H5N1 hemagglutinin, has been demonstrated to 
enhance the persistence of GCs. This prolonged persistence of GCs 
significantly affects the differentiation of memory B cells, thus 
playing a critical role in the establishment of enduring antibody 
responses in murine models [37].  

Induction of cellular immunity 

Activation of TLRs, including TLR3, TLR4, TLR7, TLR8, and TLR9, 
has been associated with the promotion of Th1-biased immune 
responses, whereas TLR2/TLR1, TLR2/TLR6, and TLR5 signaling 
pathways have been shown to induce Th2-biased immunity. In mice, 
CD11c+CD11b−CD8α+dendritic cells localized in the marginal zones 
of lymph nodes (LNs) have been identified as key regulators of Th1 
responses and effective cross-presentation of antigens in vivo and ex 
vivo [40]. In humans, BDCA1+(CD1c+) and BDCA3+(CD141+) DCs, 
corresponding to murine CD8α− and CD8α+DCs, respectively, play a 
role in the cross-presentation of extracellular antigens [40]. 

The use of poly (I: C), a TLR3 agonist, enhances major 
histocompatibility complex class I (MHC-I) expression and type I 
interferon (IFN) production, thereby promoting antigen cross-
presentation to CD8+T cells and antigen-specific cytotoxic T 
lymphocytes (CTLs). Conversely, alum, an adjuvant commonly used 
in vaccines, favors Th2 responses characterized by robust antigen-
specific IgG1 and IgE production while failing to induce CD8+T cell 
immunity and even inhibiting Th1 immune responses in mice [41]. 
Squalene-based oil emulsions have demonstrated potent induction 
of both Th1 and Th2-mediated immunity while maintaining good 
tolerability [42]. 

Specific adjuvants, such as QS-21, MF59, and CFA, have been shown to 
induce Th1-biased or mixed Th1/Th17 and Th1/Th2 immune 
responses. In TB vaccines, experimental cationic adjuvant 
formulations combined with immunostimulators such as TDB 
stimulate robust cellular and humoral immune responses as well as 
the generation of polyfunctional memory T cells and Th1-and Th17-
biased immune responses in mice [43]. A summary of the mechanisms 
of action of the different adjuvants is shown in table 1, while table 2 
presents the adjuvants currently undergoing clinical trials. 

Table 2: Adjuvants currently in use in Phase I, II, and III vaccine 
trials [8] 

Adjuvants  Experimental vaccines 
AS01  Haemophilus influenza vaccine  

Moraxella catarrhalis vaccine  
Tuberculosis vaccine  
HIV vaccine 

CpG ODN  Cancer vaccine for patients with melanoma (Phase I) 
Flagellin  Plague vaccine (Phase I)  

Influenza vaccine (Phase I/II) 
PolyI: C12U 
(Ampligen)  

H5N1 influenza vaccine (Phase III)  
Cancer vaccine (Phase I/II) 

CAF01  Chlamydia trachomatis vaccine (Phase I)  
Tuberculosis vaccine (Phase I) 

IC31  Tuberculosis vaccine (Phase I/II) 
ISCOMATRIX  Tumor cell vaccine (Phase I)  

Melanoma (Phase II) 

 

Subunit vaccine adjuvants 

Liposome-based adjuvants  

Liposomes, which are bilayer lipid or phospholipid vesicles, 
primarily consist of amphiphilic lipids and phospholipid molecules 
that represent natural components at various scales. However, the 
incorporation of additional components such as sterols, 
polypeptides, antioxidants, and polymers allows for the modulation 
of the bilayer structure, prolongation of blood circulation half-life, 
enhancement of tolerance against reactive oxygen species, and 
development of targeted strategies for these lipid vesicles [44, 45]. 
Liposomes improve the encapsulation, release, and delivery of 
bioactive compounds to target cells and tissues, thereby enhancing 
their stability and efficacy [45]. For ease of cellular endocytosis, two-
layered liposomes are favored in the formulation, with the inclusion 
of cholesterol and polyethylene glycol providing stabilization and 
protection against immune cell attack, respectively [46]. The first 
demonstration of liposomes in mRNA vaccines dates back to 1978 
when rabbit globin mRNA sequences were delivered to mouse 
lymphocytes [46]. Over the past few decades, liposomes and lipid 
nanoparticles have been developed to enhance subunit vaccines 
against various infectious diseases, including TB [47]. However, to 
maximize liposome efficacy, several factors must be optimized, 
including liposome size, surface charge, and lipid bilayer composition 
[48]. Depending on the desired effect, ligands such as drugs, peptides, 
cytokines, RNA, nucleotides, and antibodies can be conjugated onto or 
loaded within liposomes using diverse strategies [49].  

The development of liposomal vaccines has been driven by the 
objective of targeting specific immune cell types to elicit tailored 
immune responses [50]. As an adjuvant or delivery system, cationic 
liposomes have shown promise in enhancing the potential of diverse 
subunit vaccines owing to their strong interactions with negatively 
charged immune cells [47]. When combined with other 
immunostimulatory factors like TDB (trehalose 6, 60-dibehenate), 
monophosphoryl lipid A (MPL), trehalose dimycolate (TDM), and Poly 
I: C, cationic liposomes demonstrated robust electrostatic interactions 
with APCs, leading to the induction of both humoral and cellular 
immune responses, as well as a robust memory response [51].  

Two approved liposomal vaccine formulations, Inflexal® V 
(influenza vaccine) and Epaxal® (hepatitis A vaccine), utilize 
virosome-based technology, wherein viral proteins are affixed to the 
surface of a liposome carrier [52]. Various methods have been 
explored to enhance the stability of liposome formulations during 
storage, including freeze-drying, spray-drying, supercritical fluid 
technology, and lyophilization [52]. These approaches hold 
significant potential for advancing the field of liposomal vaccines 
and their successful application in future immunization strategies.  

Carbohydrate-based adjuvants  

The presence of carbohydrates on bacterial cell surfaces serves 
multiple purposes, including adhesion to human tissue, protection 
against desiccation, prevention of complement deposition, and 

https://www.zotero.org/google-docs/?uNnk1U
https://www.zotero.org/google-docs/?uNnk1U
https://www.zotero.org/google-docs/?uNnk1U
https://www.zotero.org/google-docs/?uNnk1U
https://www.zotero.org/google-docs/?uNnk1U
https://www.zotero.org/google-docs/?0fH73d
https://www.zotero.org/google-docs/?XwHf02
https://www.zotero.org/google-docs/?XwHf02
https://www.zotero.org/google-docs/?6rS26C
https://www.zotero.org/google-docs/?Jbxv9k
https://www.zotero.org/google-docs/?S7WcnU
https://www.zotero.org/google-docs/?EybEUN
https://www.zotero.org/google-docs/?PR6s08
https://www.zotero.org/google-docs/?T5sifh
https://www.zotero.org/google-docs/?Lp82Bv
https://www.zotero.org/google-docs/?kK1gSx
https://www.zotero.org/google-docs/?E7GmXG
https://www.zotero.org/google-docs/?r98nih
https://www.zotero.org/google-docs/?aUcwFS
https://www.zotero.org/google-docs/?x52iPG
https://www.zotero.org/google-docs/?pDG39J
https://www.zotero.org/google-docs/?ySqjOZ
https://www.zotero.org/google-docs/?tcgxQT
https://www.zotero.org/google-docs/?F56X0e
https://www.zotero.org/google-docs/?jYEMMb
https://www.zotero.org/google-docs/?SUn1u6


F. L. Orosco & L. M. Espiritu 
Int J App Pharm, Vol 16, Issue 1, 2024, 18-32 

22 

evasion of innate defense mechanisms. Carbohydrates possess 
inherent immunomodulatory properties and can act as natural and 
relatively safe vaccine adjuvants or immune stimulators because 
they are recognized by receptors present on the surface of APCs. The 
immunomodulatory properties, biocompatibility, biodegradability, 
and low toxicity of carbohydrates have led to an intensified 
investigation of their potential as adjuvants and delivery systems 
[53, 54].  

Mannose 

Mannose, a common component on the surfaces of bacteria, fungi, 
and viruses, is a recognized target for various immune receptors 
[55]. Among these receptors are different C-type lectin receptors 
(CLRs), such as mannose-binding lectin, mannose receptors, Mincle, 
and DC-SIGN receptors, as well as TLR4, which specifically binds to 
O-linked mannosylated ligands [56]. Recognition of mannose by 
these receptors can elicit complement activation and phagocytosis 
and subsequently trigger innate immune responses [57]. 

Moreover, the stimulation of mannose receptors can lead to 
receptor-mediated endocytosis and influence TLR signaling 
pathways, thereby activating the adaptive immune system [58]. For 
instance, the mannose receptors CD206 and CD209, which are 
expressed on macrophages and DCs, play a crucial role in 
recognizing mannosylated antigen-bearing constructs and 
facilitating the delivery of antigens to MHC I and MHC II receptors.  
This recognition by T cells ultimately initiates adaptive immunity 
[59]. Activation of mannose receptors has been shown to enhance 
CD4+ and CD8+T-cell responses, leading to the induction of both Th1-
and Th2-type immunity, subsequent IgG production, and 
establishment of long-lasting immunity [60]. Furthermore, the 
activation of mannose receptors in tumor-associated macrophages 
has been demonstrated to enhance both innate and adaptive 
antitumor immunity [61]. 

Given the significant role of mannose in immune activation, it is 
frequently employed in vaccine design to augment the 
immunogenicity of co-administered antigens. For instance, 
anticancer vaccines were developed by linking two mannosyl 
glycolic acids to the amino groups of the N-terminal lysine of a 
peptide derived from mucin 1 protein, an antigen overexpressed in 
several types of cancer [62]. This strategy harnesses the potential of 
mannose to enhance immune responses and holds promise for the 
development of effective vaccines against various diseases. 

Glucan 

Glucan, a polymerized form of glucose and a natural constituent of 
yeast and certain bacterial cell walls, possesses notable 
immunostimulatory properties [63]. This polysaccharide comprises 
various glycosidic bonds, including α-, β-1,3 and 1,4 glycoside bonds. 
Additionally, glucan can be obtained as hollow spherical particles 
upon isolation from Saccharomyces cerevisiae [64]. Immune cells, 
including neutrophils, macrophages, and DCs, recognize all forms of 
glucose homopolymers [65]. Glucan engages several PRRs, such as 
dectin-1, TLR2, TLR6, and TLR9, thereby promoting phagocytosis 
and endocytosis of antigens. This leads to CD4+ and CD8+cell 
proliferation, Th1 and Th17 differentiation, upregulation of IL-4 and 
IL-3 cytokines, and generation of substantial levels of IgG and IgA 
antibodies [66]. 

Moreover, glucan is non-toxic and possesses anticoagulant, 
antithrombotic, and antioxidant properties [67]. Given these 
characteristics, glucans and related GPs have been explored for their 
potential in vaccine delivery. For instance, β-glucan was conjugated 
to three types of hollow silica particles: (a) Escherichia coli particles 
(rod-shaped, 900 nm × 1.2–3.2 µm), (b) Staphylococcus aureus 
particles (spherical, 900 nm), and (c) polystyrene particles 
(spherical, 220 nm) [68]. These particles were subsequently loaded 
with the OVA antigen. All glucan-conjugated particles were 
effectively internalized by dectin-1, complement receptors, and TLR-
2 on APCs, resulting in successful APC maturation, upregulation of 
MHC II, and robust IgG antibody responses compared with plain 
particles. Furthermore, all glucan particles induced both Th1 and 
Th2 responses, with minor differences observed in Th1/Th2 
specificity among the particles. These findings highlight the potential 

of glucan-based vaccine formulations to elicit robust immune 
responses with balanced Th1/Th2 polarization [68]. 

Lipid A and its derivatives 

Lipid A, a constituent of bacterial endotoxins, represents a lipid 
component that exhibits slight structural variations among different 
Gram-negative bacterial species, including Acinetobacter baumannii, 
Burkholderia pseudomallei, Campylobacter jejuni, Escherichia coli, 
Helicobacter pylori, Klebsiella pneumoniae, Neisseria gonorrheae, and 
Salmonella Minnesota R595 [69]. Typically, lipid A consists of a 
disaccharide (comprising two glucosamine residues), two phosphate 
groups, and five or six fatty acids, with chain lengths ranging from 
12 to 16 carbon atoms. Notably, lipid A exhibits potent adjuvant 
properties, sourced naturally, although its toxicity remains a 
concern [70]. Fortunately, a derivative of lipid A, monophosphoryl 
lipid A, offers an advantageous alternative. MPLA lacks one 
phosphate group, resulting in reduced toxicity while retaining 
robust immunostimulatory capabilities [70]. 

MPLA-adjuvanted vaccines have undergone extensive evaluation in 
the context of various diseases, including influenza [71], hepatitis B 
[72], rabies [73], and parasitic infections [74], among others. 
Notably, the inclusion of MPLA in the rabies vaccine formulation 
resulted in the promotion of robust cell-mediated immune 
responses characterized by increased production of IL-4 and IFN-γ, 
and activation of CD4+/CD8+T cells compared to formulations 
lacking MPLA [73]. Furthermore, when Toxoplasma GRA2 and GRA6 
antigens were combined with MPLA, a pronounced Th1 response 
was induced, accompanied by a significant increase in the 
expression of both IFN-γ and IL-2 in mice [74].  

CAF01 

CAF01 is a liposomal formulation featuring a cationic liposome 
carrier (dimethyl ioctadecyl ammonium) along with a glycolipid 
immune stimulator, trehalose-6, 6-dibehenate [75]. Unlike MPLA, 
TDB engages with CLR receptors rather than TLR4, with the sugar 
moiety playing a pivotal role in its immune recognition [76]. The 
major hydrophobic pocket of the mincle receptor, a specific type of 
CLR, is proposed as the recognition site for the lipid chains of TDB, 
underscoring the significance of the lipid components in the 
formulation's immune-stimulating activity [76]. The presence of two 
fatty acids, ranging from 5 to 14 carbon atoms, is essential for 
maximizing TDB potency [77]. 

Several vaccine formulations that utilize CAF01 have been examined 
in various studies. In one study, mice were subcutaneously 
immunized with a vaccine formulation consisting of epitopes from 
HIV-1 proteins (Vif, Gag, Env, Pol, and Vpu), the universal T-helper 
PADRE, and CAF01 [78]. This immunization strategy elicited cellular 
immune responses targeting HIV-1 CTL epitopes, comparable to 
those elicited by incomplete Freund's adjuvant. Notably, CAF01 was 
employed as an adjuvant in tuberculosis vaccine Hybrid 1 (H1), 
which carried the hybrid protein of Early Secretory Antigenic Target 
(ESAT) and Antigen 85B. In this context, CAF01 demonstrated a 
dose-dependent effect, inducing a robust and persistent CD4+T-cell 
response lasting up to three years [75]. 

Saponin (QS-21) 

Saponins, which are intricate natural liposaccharides, exhibit 
notable immunostimulatory properties and can be sourced from 
various herbs, such as Saponaria officinalis, Quillaja saponaria, and 
Gynostemma pentaphyllum [79]. The structure of saponins 
comprises four domains: branched trisaccharide, quillic acid 
triterpene, binding linear tetrasaccharide, and pseudodimeric acyl 
chain [80]. The immunostimulatory activity of saponins has been 
acknowledged for nearly a century [81]. The fucosyl residue present 
in saponins is known to bind to lectin DC-SIGN, contributing to its 
immunostimulatory capacity [82]. The adjuvanticity of saponins is 
influenced by the number, nature, and connectivity patterns of the 
glycosyl groups in the sugar chains [83]. For instance, reducing the 
number of sugars at the C-3 position or increasing them at the C-28 
position enhances the adjuvant activity of saponins [84]. Numerous 
studies have evaluated the immunostimulatory effects of QS-21. In 
one study, SPf66, an early malaria vaccine candidate composed of a 
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synthetic 45 amino acid peptide derived from four Plasmodium 
falciparum proteins [85], exhibited limited efficacy when tested with 
alum as an adjuvant [86]. 

α-Galactosylceramide 

α-Galactosylceramide (α-GalCer) is a glycolipidic adjuvant derived 
from marine sponges and has shown remarkable 
immunostimulatory properties. It serves as an antigen recognized 
by natural killer T cells (NKT). The interaction between α-GalCer 
and NKT cells occurs through the presentation of α-GalCer by APCs 
via the MHC I-like molecule CD1, resulting in the activation of pro-
inflammatory and immunomodulatory cytokine responses [87]. In 
turn, activated NKT cells can stimulate dendritic cells and enhance 
the responses of antigen-specific CD4+ and CD8+T-cells. 
Consequently, α-GalCer has been employed as an adjuvant in the 
development of antiviral and antitumor vaccines [88]. The 
immunogenicity of α-GalCer is influenced by the conformation and 
structure of the sugar moiety as well as the length of the fatty acyl 
chains of glycoceramide [89]. 

The immunostimulatory potential of α-GalCer was evaluated in 
conjunction with HIV CTL epitopes derived from the gp120 envelope 
protein [90]. The vaccine formulation was administered to mice via 
the intranasal and oral routes. Notably, both immunization routes 
elicited robust IFN-γ production in the spleen and mucosal tissues, 
indicating the induction of potent immune responses. This highlights 
the efficacy of α-GalCer as an adjuvant for stimulating both systemic 
and mucosal immunity. Additionally, α-GalCer demonstrated the 
capability to elicit humoral immune responses, as evidenced by a 
significant increase in IgG titers (including both IgG1 and IgG2a) 
following intranasal administration of α-GalCer and OVA. These 
findings suggest that α-GalCer can promote a balanced Th1/Th2 
immune response profile in mice [91]. 

Muramyl dipeptide 

Carbohydrate-peptide conjugates have demonstrated potential as 
adjuvants in vaccine development. Among these, the peptidoglycan 
N-acetyl-muramyl-l-alanyl-d-isoglutamine (muramyl dipeptide, 
MDP, Gerbu adjuvant) is derived from both Gram-positive and 
Gram-negative bacterial cell walls and can also be synthesized. MDP 
acts as a ligand for PRRs, particularly NLRs, which are present on 
APCs [92]. Upon binding to NLRs, MDP trigger the production of pro-
inflammatory cytokines (e.g., TNF-α and IL-1) and co-stimulatory 
molecules (e.g., IL-6 and IL-12) by APCs, thereby activating both 
humoral and cellular immune responses [93]. Although its pyrogenic 
effects render it unsuitable for human vaccines, MDP has the 
potential for use in animal vaccines [94, 95]. An example of MDP's 
effectiveness of MDP in animal vaccines can be observed in a study 
in which MDP was combined with inactivated porcine epidemic 
diarrhea virus (PEDV) and administered subcutaneously to mice. 
This formulation induced the production of PEDV-specific IgG 
antibodies and cytokines while also activating CD3+ and CD4+ cells. 
Notably, the inclusion of MDP significantly enhances the levels of 
PEDV-specific IgA antibodies following intranasal immunization 
[96]. 

Polymer-based adjuvants  

Recently, there has been a growing interest in exploring the 
adjuvanticity and antigen-delivery potential of polymers. These 
versatile compounds can serve as immunostimulants and delivery 
systems in vaccine formulations. Polymers possessing 
immunostimulatory properties interact with specific receptors 
found on immune cells, thereby directing the vaccine to specific sites 
of antigen uptake and activating distinct immune pathways [97]. 
Immunostimulants are typically administered alongside antigens 
either as a physical mixture or through chemical conjugation with 
the aim of eliciting targeted and desired immune responses [98, 99]. 
The polymer-based adjuvants are discussed below.  

Oligo-and polysaccharides of mannose 

The oligo-and polymerized forms of mannose have undergone 
extensive evaluation and have been found to be readily recognized 
by PRRs located on the surface of various human immune cells, 

including dendritic cells, macrophages, epithelial cells, and 
endothelial cells [100]. Mannan, the polymerized form of mannose, 
is recognized by a broad spectrum of receptors, such as mannose 
receptors, dectin-2, dectin-3, Mincle, DC-SIGN, galectin-3, FcγR, 
TLR2, TLR4, and TLR6 [53]. Consequently, mannan holds promise as 
an APC targeting agent, effectively enhancing the uptake and 
processing of co-administered antigens within APCs. Although 
mannan shares a similar immune recognition mechanism with 
mannose [101], it displays heightened adjuvanticity. This can be 
attributed to its ability to bind more effectively to receptors 
comprising multiple carbohydrate-recognizing domains owing to 
the presence of multiple ligands (mannose moieties) [102]. 
Structurally, mannan consists of linear and branched polymers of 
mannose sugars linked through α-1,2, α-1,3, α-1,4, α-1,6, and β-1,2 
glycosidic bonds [103]. The interaction between ligands and 
receptors, as well as the subsequent stimulation of immunity, relies 
on the conformation of mannan (and other polysaccharides), the 
specific types of glycosidic bonds within the molecule, and factors 
such as the degree of branching, charge, and molecular weight [104].  

The strategy employed for the conjugation of mannan with antigens 
significantly influences receptor recognition. An investigation 
involving reductive coupling between mannan and the antigen 
elicited robust humoral immunity but no cellular response. Mice 
immunized with oxidized mannan coupled with the antigen 
demonstrated protection against tumor challenge with mucin-1 3T3 
tumor cells, whereas mice treated with the reduced mannan-antigen 
conjugate did not exhibit inhibited tumor growth. The observed 
effect of oxidizing conditions was attributed to the formation of 
Schiff bases between mannan aldehyde groups, antigens, and APCs, 
which consequently induced potent antitumor immunity by 
targeting the antigen to the intracellular processing pathway for 
presentation with MHC I molecules. However, contradictory findings 
from another study have indicated high antibody responses against 
vaccines bearing oxidized mannan [105]. 

Chitosan and its derivatives 

Chitosan, a biodegradable and biocompatible polymer, exhibits 
notable properties such as mucoadhesion and cationic 
characteristics because of its high proportion of free amine groups 
(≤95%) that form salts under acidic conditions [106]. The hydroxyl 
groups at the C-2, C-3, and C-6 positions of chitosan can be utilized 
for the modification or attachment of peptides or protein antigens 
[107]. The immunostimulatory effects of chitosan include 
enhancement of both humoral and cellular immune responses [108]. 
This polymer and its derivatives interact with various receptors on 
APCs, including dectin-1, TLR-2, leukotriene B4, and mannose 
receptors [109].  

Chitosan serves as an excellent adjuvant for mucosal administration 
because of its mucoadhesive properties and ability to facilitate the 
opening of tight junctions, thereby enabling the paracellular 
transport of vaccine antigens [110]. The cationic charge of chitosan 
and its derivatives facilitates increased cellular interactions with 
negatively charged epithelial cells, thereby prolonging the residence 
time of antigens in the nasal cavity [111]. Charge-mediated 
interactions have been employed to incorporate various protein and 
peptide vaccine epitopes into chitosan particles [109]. For instance, 
co-administration of matrix protein 1 (M1) of influenza A virus (100 
µg) with chitosan via intranasal administration induced higher 
levels of IgG and IgA antibody titers against H9N2 virus in mice than 
intraperitoneal administration [112]. 

Alginate 

Alginate, a bioadhesive polysaccharide polymer, is widely 
recognized for its anionic nature and has been extensively employed 
in drug delivery systems, primarily because of its ability to shrink in 
the stomach and release cargo into the intestine. Recent 
advancements have expanded the use of alginate in vaccine delivery. 
Derived from the cell walls of algae, alginate is a copolymer 
comprising (1–4)-linked β-d-mannuronate and α-L-guluronate 
residues. Although alginate is insoluble in water, its salt form, 
sodium alginate, is commonly used in biomedical applications. 
Studies have shown that alginate possesses adjuvant properties and 
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stimulates monocytes/macrophages [113]. Notably, alginate has a 
significant utility in site-specific vaccine antigen delivery to mucosal 
tissues. Its incorporation into formulations enhances phagocytosis 
and promotes increased adhesion of the formulation to dendritic 
cells [114]. 

Alginate has emerged as a promising candidate for subunit vaccine 
delivery, with various formulations, including conjugates, nanogels, 
and microparticles (MPs). A notable example involves the 
conjugation of peptide antigens derived from Pseudomonas 
aeruginosa, namely peptide294 (ERRANAVRDVLVNEY) and 
peptide176 (AGLGVGFNFGGSKAA), with alginate [114]. 
Subcutaneous administration of the peptide294-alginate conjugate 
emulsified with incomplete Freund's adjuvant in mice resulted in the 
generation of robust titers of protective and opsonophagocytic 
antibodies. In contrast, peptide294 emulsified with IFA alone, 
without the incorporation of the polymer, failed to elicit a significant 
antibody response [114].  

Hyaluronic acid 

Hyaluronic acid (HA), also known as hyaluronan, is a linear 
mucopolysaccharide composed of repeating disaccharide units of D-
glucuronic acid and N-acetyl-D-glucosamine linked through 
alternating β-1,4 and β-1,3 glycosidic bonds [115]. Notably, HA 
exhibits remarkable hydrophilicity, making it the most hydrophilic 
polymer in nature [116]. One of the unique features of HA is its non-
antigenic and non-immunogenic nature, attributed to its highly 
conserved structure across species. This natural polymer is 
abundantly present in both prokaryotes and eukaryotes and is 
widely distributed within the extracellular and pericellular matrices, 
as well as intracellularly. 

HA has primarily been employed in transdermal immunization 
because of its ability to hydrate the skin tissue, facilitate absorption 
from the skin surface, and traverse the stratum corneum and 
underlying skin layers. When combined with antigenic peptides, HA 
enables the delivery of these peptides to the deep layers of the skin 
owing to its hygroscopic and skin-penetrating properties [117]. HA 
interacts with dermal dendritic cells and epidermal Langerhans cells 
(LCs) through HA receptors and TLRs present on the immune cells. 
Remarkably, low-molecular-weight (MW) HA serves as an 
endogenous danger signal by activating the transduction pathway 
mediated by TLR2 and TLR4 [118]. Additionally, it possesses 
immunostimulatory properties, prompting the production of 
chemokines and cytokines. Activation of TLR2 and TLR4 pathways by 
low-MW HA enhances the skin's self-defense mechanisms, leading to 
the production of β-defensin 2 [119]. In a study focusing on 
transdermal immunotherapy for Duchenne muscular dystrophy 
(DMD), antigenic peptides derived from the myostatin fragment 
(MstnF), namely MstnF (VFLQKYPHTHLVHQA) and scrMstnF 
(TFHQVLQHKVAPYLH), were conjugated to HA [117]. Transdermal 
immunization of mdx mice with the HA-MstnF conjugate resulted in a 
significant increase in antibody titers against myostatin, along with 
notable improvements in the biochemical and pathological conditions 
of skeletal musculature, as well as functional behaviors [117]. 

Dextran 

Dextran, a complex branched polysaccharide, is composed of a linear 
α-1,6-linked d-glucopyranosyl backbone with branches formed 
through α-1,3 linkages. This polysaccharide is synthesized by 
specialized lactic acid bacteria using sucrose as the substrate. Dextran 
exhibits high water solubility, and controlled degradation leads to the 
production of dextran with a diverse range of molecular weights. The 
adjuvant properties of numerous dextran derivatives have been 
investigated. Dextran sulfate, in particular, has shown great promise as 
a matrix material for the controlled release of pharmaceuticals. The 
high charge density of dextran sulfate, resulting from the high ratio of 
negatively charged sulfate to glucosyl residues, enhances the loading 
of positively charged molecules [120]. 

Conjugation of dextran with bovine serum albumin (BSA) has proven 
to be highly effective in stimulating a robust and persistent antibody 
response in mice, even in the absence of additional adjuvants. 
Remarkably, even at a relatively low dose of 10 µg, detectable antibody 
titers were achieved, and a dose-dependent increase in titers was 
observed at higher doses. The molecular weight of dextran plays a 

critical role in the generation of these antibody titers, as dextran 
within the range of 500-2000 kDa was found to be indispensable, 
while the use of 70 kDa dextran failed to induce detectable antibody 
production [121]. Furthermore, dextran served as an effective 
platform for the conjugation of the CpG oligodeoxynucleotide (CpG-
ODN) adjuvant and TLR7 agonist 1V209, resulting in enhanced 
targeting capabilities and improved immunostimulatory profiles for 
these adjuvants [122]. This highlights the versatile nature of dextran in 
augmenting the functionality of adjuvants, further expanding its 
potential applications [121]. 

Carrageenan 

Carrageenan, derived from red seaweed, has emerged as a 
promising adjuvant for peptide vaccines, garnering significant 
attention in recent research. The anionic nature of carrageenan 
arises from the presence of hemisulfate ester groups, which 
contribute to its unique properties. Structurally, the carrageenan 
backbone is composed of a polymer chain comprising hemisulfated 
galactose and 3-6 anhydrogalactose residues, interconnected 
through alternating α-1,3 and β-1,4 glycosidic bonds. Based on the 
distribution and location of ester sulfate groups along the repeating 
galactose units, carrageenans can be categorized into three primary 
types: kappa (κ-), iota (ι-), and lambda (λ-) carrageenans [123]. 

The use of carrageenan as an adjuvant was prompted by its 
remarkable capacity to elicit immune responses specific to antigens 
and exert antitumor effects. In a study utilizing mice vaccinated with 
a physical combination of carrageenan and a peptide derived from 
the E7 protein of human papillomavirus type 16 (HPV-16), 
carrageenan was observed to significantly augment immune 
responses specific to the E7 antigen through activation of the TLR4 
pathway [124]. Importantly, the intensified immune response 
induced by carrageenan was comparable to that triggered by other 
TLR4 ligands, including monophosphoryl lipid A as well as 
structurally related compounds such as dextran [124]. This finding 
highlights the promising adjuvant properties of carrageenan, thus 
substantiating its potential to effectively enhance immune responses 
in a manner akin to established immunostimulants. 

Poly(ε-caprolactone) 

Poly(ε-caprolactone) (PCL) is a semi-crystalline polyester 
synthesized through the ring-opening polymerization of ε-
caprolactone using a suitable catalyst [125]. This polymer exhibits 
inherent biodegradability as its ester linkages undergo hydrolysis 
under physiological conditions. Notably, the degradation rate of PCL 
is slower than that of polylactide polymers. One advantageous 
characteristic of PCL is its ability to avoid the generation of an acidic 
environment upon dissolution, a property not shared by other 
polyesters, such as PLGA. This absence of acidity is particularly 
beneficial, as it prevents any potential negative impact on the 
antigenicity of loaded proteins or peptides. PCL has been recognized 
as an FDA-approved polymer for long-term implantable devices 
owing to its biodegradability and safety. Furthermore, PCL 
possesses additional merits, including its hydrophobic nature, 
biocompatibility, and cost-effectiveness [126]. 

PCL is frequently employed as a viable option for sustained-release 
delivery of antigens, obviating the necessity for a prime-boost 
regimen because of its inherently sluggish biodegradability in vivo. 
This characteristic affords the opportunity for a two-fold effect, 
wherein the initial release of antigen from the surface of PCL 
microspheres acts as a priming dose, while the subsequent delayed 
release of antigen over an extended duration, arising from either 
diffusion or the breakdown of MPs, serves as a boost. In a specific 
study, the immunogenic properties of PCL MPs (23 µm in size) 
loaded with ovalbumin (OVA) were assessed to evaluate their ability 
to elicit both humoral and cell-mediated immune responses [127]. 
Immunization with these MPs demonstrated heightened levels of 
IgG responses compared to OVA alone, albeit significantly lower 
than OVA administered alongside complete Freund's adjuvant.  

Poly(lactic-co-glycolic acid) 

Poly(lactic-co-glycolic acid) (PLGA) is a copolymer in which 
consecutive monomeric units of glycolic acid or lactic acid are 
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interconnected via ester linkages. The utilization of PLGA as a 
vaccine delivery system holds significant promise, which is primarily 
attributable to several key factors. First, the gradual degradation 
rate of PLGA particles prior to internalization into antigen-
presenting cells enhances their desirability. Additionally, the 
nontoxic nature of this system, coupled with its ability to facilitate 
the controlled release of encapsulated payloads [128], further 
contributes to its appeal.  

PLGA degradation occurs through bulk erosion, which results in the 
ingress of water into the polymeric matrix. This event prompts the 
hydrolysis of ester linkages, leading to the reconstitution of the 
original monomers, lactic acid, and glycolic acid. Notably, these 
monomers are byproducts of various metabolic pathways in the 
body and do not give rise to substantial toxic effects. Concurrently, 
the degradation process engenders an increase in matrix porosity, 
facilitating the sustained release of the entrapped antigen as the 
degradation progresses [129].  

In an experimental setting, self-encapsulating PLGA microspheres 
loaded with the adjuvanting calcium phosphate gel (CaHPO4) were 
employed for the encapsulation of ovalbumin antigen. Upon nasal 
immunization, these microspheres, characterized by a size of 7 µm 
and a surface charge of-22 mV, predominantly elicited IgG1 titers 
in both the serum and local mucosa. These IgG1 titers signify a Th2 
immune response and are comparable to the titers induced by 
administering OVA alongside cholera toxin subunit B (CTB) [130]. 
Consequently, the PLGA formulation alone exhibited adjuvant-like 
properties similar to those of the established mucosal adjuvant 
CTB [130]. 

Polyglutamic acid 

Polyglutamic acid (PGA) is a biodegradable, biocompatible, and non-
toxic anionic polymer composed of repetitive units of glutamic acid. 
There are two distinct forms of PGA: α-PGA and γ-PGA, wherein the 
glutamic acid units are linked through α-or γ-carboxylic acids, 
respectively. α-PGA is typically synthesized chemically, while γ-PGA 
is biosynthetically produced by bacteria, predominantly Bacillus 
species. The application of high-molecular-weight γ-PGA spans 
various domains, including its utilization as a metal chelator, a 
carrier for cisplatin and paclitaxel, a bio-adhesive, and in tissue 
engineering [131]. 

However, it is noteworthy that only modified PGA nanoparticles 
(NPs) exhibit exceptional capabilities as vaccine carriers, enabling 
efficient delivery of antigenic proteins to antigen-presenting cells 
and eliciting potent immune responses. In one study, the γ-PGA 
polymer was grafted with the hydrophobic compound L-
phenylalanine ethyl ester (L-PAE) to form NPs with a size of 200 nm 
[132]. These γ-PGA-L-PAE NPs efficiently encapsulated ovalbumin 
and demonstrated effective uptake by immature dendritic cells, 
subsequently inducing maturation [133]. Comparatively, OVA-
loaded γ-PGA-L-PAE NPs exhibited enhanced efficiency in inducing 
cellular CTL responses compared to OVA alone while maintaining 
equivalent efficiency to OVA combined with complete Freund's 
adjuvant. Moreover, OVA/γ-PGA-L-PAE NPs elicited an antigen-
specific IgG response similar to that elicited by OVA/CFA, 
significantly surpassing the response induced by OVA alone. 
Furthermore, in a separate study, mice immunized with γ-PGA-L-
PAE NPs coated with a CD8+T cell epitope listerolysin (LLO) peptide 
(VAYGRQVYLKLS) displayed a remarkable survival period of 11 d 
post-challenge, in stark contrast to mice receiving either phosphate-
buffered saline (PBS) or LLO alone, which succumbed to infection 
[134]. 

Polyacrylates 

Poly(methyl methacrylate) (PMMA), also referred to as poly(methyl 
2-methyl propanoate), is a homopolymer synthesized from methyl 
methacrylate monomers. It is an extensively investigated biomedical 
polymer owing to its exceptional biocompatibility. Although 
inherently hydrophobic, PMMA exhibits slightly increased 
hydrophilicity upon contact with water. Its biocompatibility and 
well-established safety profile in biomedical applications render it 

generally regarded as non-toxic. PMMA can be used as an implant 
material in total hip replacements and in mandibular and dental 
corrections [135].  

The potential of PMMA as a nanoparticulate vaccine adjuvant was 
first demonstrated by Speiser et al., who reported that PMMA 
facilitated stronger immune responses when utilized in conjunction 
with the inactivated influenza virus [136]. Furthermore, it has been 
observed that PMMA microspheres are capable of being absorbed by 
Peyer's patches within the gut-associated lymphoid tissue following 
oral administration [137]. Despite its nonbiodegradability, PMMA 
has been used for vaccine delivery. For instance, core-shell 
nanoparticles composed of an anionic core and a shell derived from 
Eudragit were prepared by emulsion polymerization, with HIV Tat 
protein adsorbed onto these NPs (220 nm in size) [138]. The 
administration of these NPs resulted in the induction of significant 
anti-Tat IgG titers, although they did not surpass those achieved by 
the Tat protein alone. Intramuscular vaccination of mice with these 
NPs elicited higher IFN-γ and IL-2 responses along with lower IL-4 
levels, thereby indicating the prevalence of a Th1 immune response 
[135]. 

Nanoparticle-based adjuvants 

The use of nanoparticles (NPs) as adjuvants in vaccine formulations 
has garnered considerable attention in recent years. Incorporating 
NPs into vaccine formulations offers several advantages, including 
enhanced antigen stability [139], targeted antigen delivery [140], 
prolonged antigen release [141], and obviating the need for booster 
shots [142]. Various types of NPs have been extensively investigated 
for their potential to effectively deliver antigens and augment 
immune responses against vaccine antigens [143]. The different 
nanoparticle-based vaccine adjuvants are discussed in this section 
and summarized in table 3. 

Natural nanoparticles 

Bacterial spore 

Spores are quiescent cells that can be generated by specific bacterial 
species, including Gram-positive Bacilli and Clostridia [144]. Spore 
formation serves as a survival strategy that enables bacteria to 
withstand adverse environmental conditions. These mature spores 
typically exhibit a size range of 800-1200 nm and possess spherical 
or ellipsoidal morphology [145]. Notably, spores have a remarkable 
ability to self-assemble into functional structures, thereby serving as 
effective carriers for vaccines. This property allows spores to shield 
surface-bound antigens from degradation and stimulates an immune 
response [146]. Bacillus subtilis spores, in particular, offer several 
advantages, including high stability, low production costs, ease of 
construction, and a well-established safety profile, leading to their 
designation as Generally Recognized as Safe (GRAS) [147]. 
Furthermore, their oral administration route allows spores to 
protect antigens against degradation by gastric acid, facilitating their 
delivery to the immune cells within the small intestine [148]. 

In the development of an oral influenza vaccine, researchers have 
utilized Bacillus subtilis spores, incorporating the sport coat protein 
of B. subtilis PY79 fused with three copies of the conserved matrix 
protein (M2e). M2e represents the ectodomain of the M2 protein, a 
proton channel present in the influenza virus, and is highly 
conserved across all human influenza virus A strains. Thus, it is a 
prominent target for universal influenza vaccine strategies [146]. 
The successful display of M2e on the spore surface leading to the 
generation of a recombinant spore (RSM2e3), which exhibited 
notable immunogenicity in mice. Upon repeated immunization, 
M2e-specific IgG responses were elicited with an impressive titer 
of 1:12,800 at week 17 post-1st immunization, alongside robust 
cellular immune responses. Following immunization, when mice 
were subsequently challenged with the A/PR/8/34 (H1N1) 
influenza virus, lung specimens from the vaccinated group 
demonstrated substantially reduced virus titers compared to those 
of the control group, indicating the effectiveness of the vaccine. 
Moreover, vaccinated mice exhibit a remarkable survival rate of 
100 % [146]. 
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Table 3: Approved and clinically tested vaccines using nanocarrier-based adjuvants and delivery systems [142] 

Product Application Adjuvants used Approval year, company, status of research 

Viral vectored vaccines 

ACAM2000 Smallpox MVA-BN 2007, Sanofi Pasteur Biologics Co., Cambridge, MA, USA 

Chimpanzee adenovirus 
vector (ChAdOx1) 

Severe acute respiratory 
syndrome coronavirus 2 (SARS-
CoV-2), Coronavirus disease 
(COVID-19) 

Chimpanzee Adenoviral 
vector 

2020, University of Oxford in collaboration with 
AstraZeneca, Cambridge, UK 

Sputnik V (Gam-Covid-Vac) SARS-CoV-2, COVID-19 Replication-deficient Ad types 
5 and 26 vectors 

2020, Gamaleya Research Insitute, Acellena Contract Drug 
Research and Development, Moscow, Russia 

COVISHIELD™ (ChAdOx1) SARS-CoV-2, COVID-19 Chimpanzee Adenoviral 
vector 

2020, Serum Institute of India Pvt. Ltd., Pune, 
Maharashtra, India 

Convidicea (Ad5nCoV) SARS-CoV-2, COVID-19 Recombinant Adenoviral 
vector, Ad5 

2020, CanSino Biologics, Tianjin China (approved for 
use in Mexico, China) 

Janssen COVID-19 Vaccine 
(Ad26) 

SARS-CoV-2, COVID-19 Adenoviral vector, Ad 26 2021, Janssen Biotech, Inc., Horsham, PA, USA 
(Emergency use authorization by US FDA) 

Virus like particles 

Recombivax HB® Hepatitis B Virus (HBV) Amorphous aluminum 
hydroxyphosphate sulfate 

1986, Merck and Co. Inc., Kenilworth, NJ, USA 

Engerix-B HBV Aluminum hydroxide 1989, Glaxo Smithkline (GSK), Middlesex, UK 

Gardasil® Human papillomavirus (HPV), 
cervical cancer and genital warts 

Hydroxyphosphate sulphate 2006, Merck and Co. Inc., Kenilworth, NJ, USA 

Cervarix HPV AS04 (aluminum hydroxide 
and MPLA) 

2009, Glaxo Smithkline Biologicals SA, Rixensart, 
Belgium 

Hecolin Hepatitis E Virus (HEV) Aluminum hydroxide 2011, Xiamen Innovax Biotech, Xiamen, Fujian, China 

Gardasil-9® HPV Hydroxyphosphate sulphate 2014, Merck and Co. Inc., Kenilworth, NJ, USA 

Heplisav-B HBV 1018 ISS CpG ODN 2017, Dynavax Technologies Corporation, Emeryville, 
CA, USA 

Sci-B-Vac® HBV Aluminum hydroxide 2020 (under regulatory approval process) VBI Vaccines 
Inc., Cambridge, MA, USA 

Mosquirixs Malaria and HBV AS01 (MPL and Quillaja 
saponaria 21 (QS21)) 

2015, GlaxoSmithKline Biologicals S. A., Rixensart, 
Belgium 

Virosome-based vaccine 

Epaxal™ Hepatitis A virus (HAV) IRIV 1994, Berna Biotech Ltd., Berne, Switzerland 

Inflexal®V Influenza vaccine IRIV 1997, Berna Biotech Ltd., Berne, Switzerland 

Invivac® Influenza vaccine IRIV 2004, Solvay Pharmaceuticals B. V., DA Weesp, The 
Netherlands 

NasalFlu® Influenza vaccine IRIV 2001, Berna Biotech Ltd., Berne, Switzerland 

Epaxal Junior™ Novel pandemic A influenza 
virus (H1N1) 

IRIV 1994, Berna Biotech Ltd., Berne, Switzerland. 

Non-viral vectored vaccines 

Celtura® H1N1 MF59 2009, Novartis AG, Basel, Switzerland 

Fluad® Seasonal influenza in infants and 
young children 

MF59 1997, Novartis AG, Basel, Switzerland Phase III Trials 
Completed 2010-11 

Aflunov® Pre-pandemic influenza (H5N1) MF59 2010, Seqirus S. R. L., Monteriggioni, SI, Italy 

Montanide Malaria, HIV, cancer MF59 Under clinical trial 

FENDRIX HBV Aluminum phosphate and 
MPLA 

2005, GlaxoSmithKline Biologicals., Rixensart, Belgium 

Stimuvax® Lung, breast, prostate and 
colorectal cancer 

Liposome, MPLA Merck KGaA, Darmstadt, Germany, Phase III Clinical 
Trial Completed 

mRNA-1273 COVID-19 Liposome 2020, Moderna, Cambridge, MA, USA 

BNT162b2 COVID-19 Liposome 2020, Pfizer, New York, NY, USA and BioNTech, Mainz, 
Rhineland-Palatinate, Germany 

Prevnar® Invasive Pneumococcal disease Aluminum phosphate 2000, Wyeth Pharmaceuuticals, Madison, NJ, USA 

Menactra® Meningococcal disease Aluminum 2005, Sanofi Pasteur, Lyon, France 

  

Virus-like particles 

Virus-like particles (VLPs) are self-assembling and non-replicating 
entities that lack infectious genetic material [149]. VLPs can be 
derived from diverse host cells, including bacteria, yeast, insects, 
and animal cell lines. Their application in vaccine development is 
two-fold, serving as particulate carriers and immunopotentiators 
owing to their immunogenic properties, such as resembling the size 
of the original pathogen, presenting repetitive surface geometry, and 
eliciting innate and adaptive immune responses [150]. The 
fundamental advantage of VLP-based vaccines lies in the ability of 
the host immune system to recognize VLPs in a manner analogous to 
an authentic virus, thereby provoking a robust immune response 
[151]. These vaccines are primarily engineered to activate B cells 
and trigger potent antibody responses through activation of T helper 
cells [152]. Several prophylactic VLP-based vaccines have obtained 
regulatory approval for human use, such as Cervarix®, Gardasil®, 
and Gardasil9®, targeting human papillomavirus (HPV), and the 

third-generation Sci-B-Vac™ vaccine developed against hepatitis B 
virus (HBV) [153]. Furthermore, VLP-based strategies hold promise 
for the pursuit of a universal influenza vaccine [153].  

Bacteriophage VLPs 

Phage VLPs offer a safe alternative for vaccine development, as 
they are non-pathogenic and do not elicit pre-existing immunity in 
humans [154]. These VLPs use phage capsid proteins to present 
peptides or proteins on the phage surface. The cargo capacity of 
phage VLPs varies depending on the phage type. For instance, 
capsid proteins 10A and 10 B of bacteriophage T7 can 
accommodate approximately 400 copies of peptides or proteins, 
ranging from 50 to 1200 amino acids. On the other hand, the gene 
VIII protein of the Ff phage allows for a higher display valency of 
up to 8000 copies on its filamentous structure, but it is limited to 
displaying peptides and small proteins. The gene III protein of the 
Ff phage, although having a lower copy number, exhibits greater 
tolerance for larger displays [155]. 
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Synthetic nanoparticles 

Virosomes 

Virosomes, as lipid vesicles, have gained considerable attention in 
vaccine development owing to their unique composition. These 
vesicles incorporate virus-derived proteins and are devoid of the 
viral genome and internal proteins [156]. Membrane proteins 
incorporated into virosomes can be obtained using recombinant 
technology or purified from the corresponding viruses. Purification 
involves solubilizing the virus membrane using mild detergents 
without denaturation, followed by the removal of the nucleocapsid 
and other viral components through ultracentrifugation [157]. 

Virosomes, which are biodegradable and non-toxic, have emerged as 
promising entities in the field of vaccine development [158]. These 
vesicles offer several advantages over liposomes, particularly in 
terms of their ability to protect active substances from proteolytic 
degradation within the acidic endosomal environment, thereby 
enhancing their cytoplasmic delivery [159]. Moreover, virosomes 
demonstrate remarkable potential as adjuvants, exhibiting the 
ability to specifically target antigen-presenting cells and effectively 
stimulate both B-and T-cell responses against associated antigens, 
including surface hemagglutinin (HA) proteins [160]. One notable 
example of a virosome-based vaccine that exemplifies these 
characteristics is Inflexal® V. This trivalent virosome subunit 
vaccine is commercially available and is suitable for administration 
across all age groups, highlighting the versatility and applicability of 
virosome technology in vaccine formulations [161]. 

Immune-stimulating complexes 

Immune-stimulating complexes (ISCOMs) have emerged as particulate 
adjuvant systems that hold great promise for vaccine development 
[162]. These complex structures consist of antigens, cholesterol, 
phospholipids, and saponins, forming hollow cage-like particles with a 
diameter of approximately 40 nm [163]. ISCOMs offer a unique 
advantage by combining the characteristics of a particulate carrier 
system with the presence of an inherent immunopotentiator known as 
Quil A. This intrinsic immunopotentiator attribute contributes to the 
enhanced immunogenicity exhibited by ISCOMs, surpassing that of 
liposomes [24].  

Furthermore, ISCOMs have been shown to require lower quantities 
of antigen and other adjuvants to elicit a robust immune response in 
the host than simple mixtures of free antigen and saponins [164]. 
Standardized procedures are crucial for the formulation of ISCOM-
based vaccines to ensure the production of high-quality vaccines 
with consistent batch-to-batch performances. One such important 
step involves separation and purification of a heterogeneous 
mixture of ISCOM components. Reversed-phase high-performance 
liquid chromatography (HPLC) has been successfully employed to 
achieve this, effectively eliminating potentially toxic fractions within 
the vaccine preparation [165].  

The utilization of ISCOMs incorporating influenza viral proteins has 
demonstrated notable improvements in CD8+immune responses in 
both murine and human models [166]. Matrix M, a third-generation 
ISCOM adjuvant, has exhibited promising results in various studies. 
In a phase II clinical trial, Matrix M was employed as an adjuvant in 
combination with an H7N9 VLP vaccine, leading to significantly 
higher seroconversion rates compared to the non-adjuvanted VLP 
vaccine [167].  

Inorganic nanoparticles 

The use of inorganic nanoparticles as adjuvants in vaccine 
development has garnered increasing interest [168]. Among 
inorganic NPs, gold nanoparticles (AuNPs) have gained attention 
because of their unique properties that enable the conjugation of 
target antigens or adjuvants onto their surfaces at high densities. 
Importantly, synthetic AuNPs composed of a natural element do not 
induce carrier-specific immunity upon immunization [169]. 

In a notable study, an AuNP-based vaccine candidate was developed 
by immobilizing the conserved M2e of the influenza virus onto 
AuNPs, along with cytosine phosphoguanine-oligodeoxynucleotides 

(CpG-ODNs) as an immunopotentiator [170, 171]. This formulation 
demonstrated remarkable immunogenicity, inducing strong M2e-
specific antibody responses and providing 100% survival in mice 
that were lethally challenged with the influenza A/PR/8/34 (H1N1) 
virus [170]. 

Further research demonstrated that the immunogenicity of AuNPs can 
be enhanced by co-delivery with flagellin, a bacterial component, as an 
immunopotentiator [171]. When gold nanoparticles coupled with the 
HA protein A/Aichi/2/68(H3N2) and flagellin (FliC) were co-
delivered, stronger cellular immune responses were observed. 
Additionally, the addition of AuNPs-FliC improved mucosal B-cell 
responses, as evidenced by elevated levels of influenza-specific IgA 
and IgG in the nasal, tracheal, and lung washes. Furthermore, the 
AuNP-HA/AuNP-FliC formulation stimulated the proliferation of 
antigen-specific IFN-γ-secreting CD4+cells [172]. 

CONCLUSION 

In this review, the different adjuvants employed in the development 
of subunit vaccines are comprehensively examined. The use of 
adjuvants has proven to be instrumental in enhancing the 
immunogenicity and efficacy of subunit vaccines, ultimately 
contributing to improved protection against infectious diseases and 
malignancies. Our examination focused on four major categories of 
adjuvants, namely liposome-based, carbohydrate-based, polymer-
based, and nanoparticle-based adjuvants, while also providing an 
overview of vaccine adjuvants in general and exploring their 
molecular mechanisms of action. 

Adjuvant development for subunit vaccines holds tremendous 
promise. The integration of advanced technologies such as 
nanotechnology and synthetic biology presents exciting 
opportunities for the design of next-generation adjuvants. The field 
of adjuvant research for subunit vaccines continues to evolve, 
offering new possibilities for enhancing vaccine efficacy and 
broadening immunization strategies. The utilization of liposome-
based, carbohydrate-based, polymer-based, and nanoparticle-based 
adjuvants has demonstrated remarkable potential for improving 
immune responses. While challenges and research gaps remain, 
ongoing efforts in adjuvant development coupled with 
interdisciplinary collaborations and cutting-edge technologies hold 
the promise of revolutionizing vaccine design and improving global 
public health outcomes. 
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