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ABSTRACT 

The process of developing new drugs is known for being drawn-out, expensive, risky, and having a high attrition rate. Drug repurposing has grown 
in favor recently as a practical way to speed up the development of new medicines while reducing the costs and time constraints associated with 
traditional drug research. The description of this study's pharmacological repurposing highlights its promise as a practical method to fill gaps in the 
market and revitalize treatment options. This review provides a full analysis of the ground-breaking tactic of repurposing medications, supported 
by numerous cases that demonstrate its revolutionary potential. We examine instances of repurposed drugs, such as thalidomide, sildenafil, and 
metformin, that have performed astoundingly well in a range of therapeutic settings despite being used outside of their original scope. 

Overall, the paper's main goal-to study pharmacological repurposing as a potentially successful strategy for revitalizing treatments-is, succinctly 
summarized in this abstract. It highlights the potential benefits of this approach and how it might be used in the pharmaceut ical industry's ongoing 
quest for more inexpensive and effective medicine development.  
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INTRODUCTION 

Despite improvements in technology and our understanding of 
human disease, we have seen far slower than anticipated progress in 
developing new therapeutics [1, 2]. It has been calculated that less 
than a dollar of value is generated for every dollar spent on research 
and development (R and D) on average [3]. Due to the increasing 
cost and length of time needed for new medication development, 
this may make the pharmaceutical business a less desirable 
alternative for investors. 

Finding new medical uses for already approved, abandoned, shelved, 
and experimental drugs is a process known as drug repurposing, 
also known as drug repositioning, drug reprofiling, indication 
expansion, or indication shift. Although this tactic is not new, it has 
gained significant traction in the last ten years: around one-third of 
recent approvals are related to drug repurposing, and repurposed 
medications today account for about 25% of the pharmaceutical 
industry's yearly income [4]. The earliest stages of clinical trials can 
be omitted because the drug's efficacy, safety, and toxicity are 
already known, which reduces their cost and duration. A new drug 

must be developed for around 15 y before it can be sold, although 
repurposed drugs can be developed faster and for less money [5]. 

Existing compounds are those that have undergone successful Phase I or 
Phase II clinical studies and have a demonstrated safety and tolerability 
profile. As a result, a prospective repurposing medicine will have a well-
established safety and toxicity profile and will have gathered data in 
preparation for regulatory approval [6]. The current review provides an 
overview of methods currently employed for repurposing and discusses 
case studies that demonstrate the effectiveness and utility of drug 
repurposing as evidenced by the significantly shorter development time 
for new drugs as a result of the availability of all pertinent clinical and 
toxicological data. This article discusses various repurposing strategies 
and the accompanying difficulties [7]. 

As we delve further into this review, we will cover successful case 
studies, various tactics employed in drug repurposing, as well as the 
difficulties that come with this method. By shedding light on the 
drug repurposing industry, we hope to shed light on its enormous 
potential to treat a variety of ailments, ultimately enhancing patient 
outcomes and altering the pharmaceutical industry. 

  

 

Fig. 1: Illustration of traditional method and drug repurposing 
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Significance of drug repurposing in healthcare 

A new medicine must adhere to strict guidelines in order to be sold. 
Due to the various physicochemical features of the chemical entities 
and the difficulty of scaling up the manufacturing, it takes a 
considerable investment to identify a medicine and subsequently 
develop it [8–10]. A key strategy in drug development is drug 
repurposing. According to some statistics, between 2007 and 2009, 
the US Food and Drug Administration (FDA) authorized around 30–
40% of novel pharmaceuticals and biologics that can be classified as 
repurposed or repositioned products [11].  

Many experts believe that repurposing medications can be more 
efficient than standard drug development techniques in terms of 
speed, cost, safety, and effectiveness. This is mostly due to the fact that 
since the initial stages of development that establish medicine safety 
have already been completed, researchers can skip them [12]. 
However, it could be challenging to pinpoint exactly how much time, 
risk, and money are saved due to some contradicting information [13]. 

The preclinical, pharmacokinetic, pharmacodynamic, and toxicity 
characteristics of the drug are all known, which lowers the risk of 
compound development and is one of the key benefits of a drug 
repurposing procedure. As a result, the medicine can be used in Phase 
II and III clinical studies quickly, resulting in lower development costs 
[14], a higher return on investment, and a shorter development period 
[15]. From the standpoint of intellectual property (IP) and patent 
protection, drug repurposing is also intriguing because, assuming the 
new use is not specifically stated and supported by the original 
patents, patent protection for a new use of an existing drug whose 
composition of matter patents are still in force may be obtained [16].  

One effective example of repurposing is the phosphodiesterase type 
5 (PDE5) inhibitor sildenafil. The FDA granted sildenafil approval for 
its use in treating erectile dysfunction despite the fact that it was 

initially created to treat hypertension. Later, it was modified to treat 
the uncommon condition pulmonary hypertension [17]. 

Challenges in drug repurposing 

Despite recent growth in popularity, there are fewer applications 
than anticipated due to several challenges to effective deployment. 

 Lack of comprehensive database: The lack of centralized, 
comprehensive databases with thorough information on 
pharmacological characteristics, target interactions, and illness 
connections is one of the main obstacles to medication repurposing. 
Researchers frequently encounter difficulties locating trustworthy, 
current data, which makes it difficult for them to discover 
prospective targets for efforts at repurposing [18].  

 Intellectual property and patent issues: Repurposing existing 
drops for new indications is significantly hampered by the complex 
web of intellectual property rights. The scope of prospective 
possibilities for repurposing can be constrained by existing patents, 
which can prevent the research of specific chemicals [19]. 

 Clinical trial design and biomarker identification: The 
selection of suitable dosages, patient demographics, and endpoints is 
necessary for the design of efficient clinical trials for repurposed 
medications. Finding trustworthy biomarkers to predict therapy 
effectiveness or illness response is also important but frequently 
difficult, which has an impact on the approval of repurposed 
treatments [20]. 

 Regulatory challenges: Regulatory organizations want solid 
proof of a drug's efficacy and safety. It can be challenging to meet 
these requirements, especially when repurposed medications are 
approved. Meeting these requirements can be challenging, especially 
when repurposed drugs don't follow conventional development 
pathways. This calls for creative solutions and cooperative efforts 
from researchers and regulators [21]. 

 

 

Fig. 2: Challenges in drug repurposing 

 

Strategies for accelerating drug repurposing  

 In silico models-Using bioinformatics or in silico models, we can 
find the intricate connections between medications, targets, and 
disorders that are necessary for repurposing [22]. 

 Target docking–Finding polypharmacological drugs that act on several 
targets and can treat multifactorial disorders like cancer and neurological 
diseases requires the use of high-throughput screening tools [23]. 

 Artificial intelligence (AI)-AI makes data more accessible. 
Finding drug interactions, side effects, mechanisms of action, and 
gene regulators by extensive literature data mining helps speed up 
drug development [24]. 

Infectious diseases: repurposing for rapid response 

Anthelmintics for drug repurposing 

A class of substances known as anthelmintics exhibit anti-infective 
activity against helminths that colonize the human intestine [25]. 
Anthelmintics come in a number of chemical forms and work by 

altering the metabolism of the parasite (worm) or paralyzing it so 
that the parasite can be killed by the immune system of the host. It 
has been shown that several anthelmintics have the ability to block 
important oncogenic pathways, including Wnt/b-catenin and STAT3 
[25]; therefore, their application for cancer treatment has been 
considered. 

The updated knowledge regarding anthelmintics with anti-
cancer activity and their potential use as anti-cancer medicines 
(i.e., repositioned pharmaceuticals) is summarized in this 
paragraph. 

The anti-tumor properties of albendazole have been proven in vitro 
against hepatocellular carcinoma (HCC) and colorectal carcinoma 
(CRC), as well as in vivo against a xenograft model of peritoneal 
carcinomatosis. Additionally, the drug has demonstrated 
antiproliferative effects on tumor cells, including those resistant to 
other microtubule-targeting medications (such as leukemia and 
ovarian cancer cells) [26]. 
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Table 1: list of anthelmintic that have been repositioned in oncology and have shown to have anti-cancer effects 

Drug name New indication Comments Reference 
Ivermectin Colon and Lung 

Cancer 
Block the T-cell factor (TCF) family transcriptional factor's main signaling pathway, which is 
influenced by the wingless-related integration site (wnt) gene. 

[26] 

Levamisole Hepatocellular 
carcinoma 

Boost the tumor necrosis factor levelDeath receptor 4 (DR4)-independent apoptosis rate by limiting 
the phosphorylation of c-Jun N-terminal kinase (JNK)-related apoptosis-inducing ligand (TRAIL) 

[25] 

Mebendazole Colorectal 
cancer 

Mebendazole inhibits a number of processes that help tumors grow, including angiogenesis, the 
polymerization of tubulin, pro-survival pathways, and matrix metalloproteinases. 

[27] 

Praziquantel Anticancer When combined with paclitaxel, praziquantel inhibits cell growth and induces death in a variety 
of cancer cells, including CRC DLD-1. 

[25] 

 

Drug repurposing for mycobactrium tuberculosis 

The bacterium mycobacterium tuberculosis, which causes 
tuberculosis (TB), is now regarded as the world's most common 
cause of bacterial infection-related death [28]. According to recent 
estimates, 10 million individuals worldwide contract M. TB each 
year, infecting more than 30% of the world's population [28]. 
Fortunately, the finding of novel therapeutic options against 
extensively drug-resistant (XDR-TB) strains of tuberculosis, which 
are causing infections that are incurable, is currently seen as a very 
promising strategy through pharmacological repurposing of 
antibiotics [29]. Although there are a number of experimental and in 

silico methods to uncover drugs with repurposing potential, 
knowledge-based strategies, molecular docking, and phenotypic 
screening are the most frequently employed [30]. 

Metformin, a medication for type 2 diabetes, has been scientifically 
shown to have anti-tuberculosis effects (table 2). Particularly, 
metformin enhances phagosome-lysosome fusion and increases 
ROS concentration during the oxidative burst, preventing bacterial 
colonization, reducing lung damage and chronic inflammation, 
enhancing the immune response against tuberculosis, and 
enhancing the activity of conventional anti-tuberculosis 
medication [31-33]. 

 

Table 2: List of drugs repurposed against M. tuberculosis 

Repurposed drugs Primary mechanism of action Reference 
Transition metals (Cu2+and Co2+) Interfering with urease [36] 
Eltrombopag Inhibition of Zmp1 and PDF [37] 
Metformin phagosome–lysosome fusion [31-33] 
Simvastatin HMG-CoA inhibition [38] 
Doxycycline Matrix metalloprotease inhibition [39, 40] 
Gefitinib EGFR inhibition [41] 

 

Similar to the way statins are used to treat hypercholesterolemia and 
atherosclerotic cardiovascular disease, they are also a very promising 
source of antimicrobial substances that are effective against M. 
tuberculosis [34]. Simvastatin, for instance, can lessen the amount of 
germs present inside cells when taken with other antitubercular drugs 
[35, 34]. This drug's mechanism of action appears to include inhibiting 
the 3-hydroxy-3-methylglutaryl-coenzyme enzyme. 

Drug repurposing for dengue 

The most common virus spread by mosquitoes in the world today is 
dengue. Four antigenically different serotypes of the dengue virus 

(DENV), notably DENV1-4, are the cause of this viral illness that is 
spread by mosquitoes. There is still a need for an efficient antiviral 
treatment for Dengue Virus infection, and several replicative cycle 
inhibitors are now being investigated. The repurposing of licensed 
medications used for other diseases to find novel inhibitors of this 
pathogen represents an appealing approach for a swift therapeutic 
intervention [42], given the rapid spread of DENV and the typical 
timescale necessary for bringing a new drug to market. The 
repositioning of well-known medications for the prevention of DENV 
replication will be described in detail in the following paragraphs 
through a number of exemplary examples. 

 

 

Fig. 2: Life cycle of dengue and steps inhibited by repurposed drug 
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A powerful protease inhibitor, nelfinavir (AG1343) is effective against 
human immunodeficiency virus type 1 (HIV-1) (24). An effort to 
reposition peptidomimetics against Nelfinavir and other viral protease 
inhibitors, such as Lopinavir and Ritonavir, were chosen as treatments 
for dengue virus infection using computer-aided drug design and 
molecular modeling [43]. Positive interactions between Nelfinavir and 
DENV NS2B-NS3 protease were found using molecular docking 
calculations and molecular dynamics simulations [42]. 

Similar to this, the antimalarial drug chloroquine has also been 
used to treat rheumatoid arthritis, systemic lupus erythematosus, 
and amebic liver abscesses by systemic therapy [44]. In the DENV 
scenario, chloroquine was utilized in a number of medication 
repositioning trials. Plaque test and qRT-PCR results 
demonstrated that it can prevent Dengue Virus Type 2 
multiplication in Vero cells at a dose of 5 g/ml (the cytotoxic level 
is 500 g/ml) [45]. 

 

Table 3: List of repurposed drugs against dengue virus 

Drug Original indication Activity against dengue virus Reference 
Nelfinavir Antivirals NS2B-NS3 protease inhibition [42, 43] 
Balapiravir Antivirals RNA-dependent RNA polymerase inhibition [46, 47] 
Chloroquine Antimalarics Inhibits low-pH dependent entry steps [45] 
Amodiaquine Antimalarics Inhibits low-pH dependent entry steps [48] 
Celgosivir Antidiabetics Accumulation of NS1 in ER [49, 50] 
Montelukast Antihistamines Reduction of vascular leakage DENV-induced [51] 
Dasatinib Anticancers Src Fyn kinases inhibition [52] 

 

Drug repurposing for breast cancer 

Globally, physical examinations, breast scans, and tissue biopsies are 
used to diagnose breast cancer, one of the most prevalent cancers in 
women. 2018 saw a total of 2.089 million new instances of breast 
cancer, of which 627,000 cases resulted in death [53]. About 15% of 
all female cancer deaths worldwide were caused by this [53].  

In India, there were 87,090 reported fatalities and 162,468 new 
cases of breast cancer in 2018, according to NICPR. According to one 
of the most current studies on the risk of breast cancer in India, 1 in 
28 women will have breast cancer throughout their lifetime. In India, 
the incidence/mortality ratio is 0.48, which is more than in other 
nations [68]. 

The therapy options are quite expensive and have negative side 
effects. Repositioning older, off-patent, non-cancer medications with 
clinical approval and known targets into newer indications is 
analogous to employing older weaponry in a more recent conflict. 
Over the past ten years, various drugs have been repositioned for 
the treatment of breast cancer, including alkylating substances, 
anthracyclins, antimetabolites, CDK4/6 inhibitors, aromatase 
inhibitors, mTOR inhibitors, and mitotic inhibitors [54]. 

The PI3K/AKT/mTOR signaling pathway is inhibited by the mTOR 
kinase inhibitor everolimus. Everolimus was initially licensed for the 
treatment of pancreatic cancer in 2011, renal transplant 
immunosuppression, and renal cancer in 2009. Following the successful 
conclusion of a phase III clinical trial known as "Breast Cancer Trial of 
Oral Everolimus-2 (BOLERO-2)" that included everolimus in 
combination with exemestane, everolimus was approved by the US FDA 
in 2012 for the treatment of HR+, HER2-advanced metastatic cancers 
that are resistant to letrozole or anastrazole [55, 56]. 

A N,N',N''-triethylenephosphoramide (TEPA) derivative called thiotepa 
was introduced in 1953 as an immunosuppressive medication for 
transplantation in hematological illnesses [57]. The medication was 
subsequently advised for solid tumors in 1959 [58] and breast cancer 
(0.3 to 0.4 mg/kg IV repeated every 1 to 4 w) in 1963.  

Drug repurposing for COVID-19 

The use of repurposed medications has been used to treat a number 
of epidemic diseases, and the coronavirus disease 2019 (COVID-19) 
pandemic is one such instance [59]. A new coronavirus known as 
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is 
the source of COVID-19 [59]. A key phase in the infection process is 
the interaction of the viral spike protein with the human ACE2 and 
TMPRSS2 enzymes, according to the evidence for the mechanism of 
infection, which was also derived from earlier investigations on 
coronaviruses. The peptidase domain of the human ACE2 enzyme 
interacts to the receptor-binding domain of the spike protein [60]. 

Remdesivir is thought to be a promising drug candidate for 
repurposing against COVID-19 based on the existing understanding 

of its use in SARS-CoV2 infection. A nucleoside analog called 
Remdesivir (GS-5734) was initially created by Gilead Sciences Inc, a 
biopharmaceutical company with headquarters in the United States, 
to combat Ebola viruses. Despite the medication's ineffectiveness 
against the Ebola virus, preliminary findings from non vitro and in 
vivo preclinical research, as well as case reports, point to its 
effectiveness against the SARS-CoV2 virus [61-63]. 

Favipiravir is a prodrug that is produced by T-1105's pyrazine 
moiety being chemically modified. Because there is currently no 
proven cure for COVID-19 and there is a strong focus on repurposing 
existing medications because to the lengthy time it would take to 
develop new ones, favipiravir is swiftly becoming the medicine of 
choice. One new repurposing medication for the treatment of novel 
viruses is favipiravir [67]. 

The primary proteases of the coronavirus and HIV are aspartic and 
cysteine, respectively, in the lopinavir-ritonavir combination. It has 
been found that the non-specific protease inhibition of protease 
inhibitors used in HIV therapy makes them effective against SARS-
CoV. The SARS-CoV2 and HIV-1 proteases have comparable binding 
energies to lopinavir [64]. Significant virus clearance has been 
accomplished in SARS-CoV2 patients with lopinavir-ritonavir 
treatment [65,66]. A 47-year-old patient quickly improved with 
extra lopinavir and ritonavir tablet therapy after failing to respond 
to methylprednisolone and interferon therapy. 

CONCLUSION 

The identification of new indications for currently existing 
pharmaceuticals (drug repositioning) could improve and boost the 
actual number of new medicines that reach the market because the 
traditional drug-discovery technique is frequently a lengthy, difficult, 
and expensive procedure. Thanks to the faster drug discovery route on 
which this technique is based, drug repositioning strives to meet the 
need for new medications for a given disease, notably for developing 
diseases or for those yet without treatment. For usage as 
antitubercular medicines, certain substances have previously received 
approval or are in the final phases of clinical testing. The most effective 
medications target the activation or inhibition of host genes that 
enable bacterial colonization, which may also prevent the selection of 
new strains that are resistant to antibiotics. 
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