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ABSTRACT 

Objective: The goal of the current research is to identify the dominant phytochemical from the plant Nyctanthesarbor-tristis Linn. and to investigate 
their binding affinities against the proteins BRaf Kinase mutant (3OG7) and Hsp90 Chaperone (2VCJ) that causes melanoma. 

Methods: In this work, Schrodinger software was utilized to investigate the anti-cancer potential of phytochemicals Nyctanthesarbor-tristis against 
specific target proteins, namely BRaf Kinase mutant (3OG7) and Hsp90 Chaperone (2VCJ) Inhibitors. 

Results: Based on the outcome of the docking investigation, phytochemicals that exhibited the highest binding affinity to the specified protein 
targets were subjected to induced fit docking and MM-GBSA computations using the Schrodinger Maestro version 2021.2 in prime module. 
According to the analysis, the compounds with the highest binding affinities for 2VCJ and 3OG7 are Arbortristoside D and Nicotiflorin, respectively. 
The compound that interacted with both proteins was Arbortristoside B. These phytochemicals appear to be more effective to the FDA-approved 
V600E-BRaf inhibitor Vemurafenib and Hsp90 Chaperone Inhibitor Diclonine. 

Conclusion: One of the most common, deadly, and dangerous malignant diseases with a high global prevalence rate is melanoma (skin cancer). The 
present study may prove more helpful in developing an ideal targeted drug delivery system of phytochemicals obtained from plant 
Nyctanthesarbor-tristisfor treatment of melanoma. This suggests that these substances could be evolved into highly effective anti-melanoma drugs. 
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INTRODUCTION 

Malignant melanoma is an aggressive form of skin cancer that 
accounts for approximately 75% of skin cancer-related deaths 
worldwide [1, 2]. According to American Cancer Society, estimate for 
melanoma in the United States for 2023 was about 97,610 new cases 
of invasive and 89,070 cases of in-situ melanoma will be diagnosed 
in United States, while 7,990 (approx) people are expected to die of 
melanoma Melanoma will be leading cause of death world wide.  

Melanoma is reportedly affected by various environmental and 
genetic factors, such as ultraviolet exposure and carcinogenic BRAF 
mutations [3, 4]. Inspite of several available treatment modalities 
(surgery, radiation therapy, immunotherapy, and chemotherapy) [5, 
6] to cure melanoma, phytochemicals have been recognized as 
better anti-cancer therapies to prevent or inhibit carcinogenesis 
because of its fewer side effects and better biocompatibility [7]. 

Synthetic chemicals are widely used as medicines in the treatment of 
diseases, encompassing various side effects. Different plants were 
explored as a source of bioactive agents for the treatment of 
ailments like cancer. Plants pose immense biological properties due 
to the presence of different chemical substances which perform 
several important physiological functions. Among 4,22,000 
flowering plants reported from the whole world, more than 50,000 
plants are reported to have medicinal and pharmacological uses. A 
rich diversity of medicinal plants is found in India [8].  

Nyctanthesarbor-tristis (NTA) Linn. (Oleaceae), commonly known as 
‘parijat’ is a common wild shrub flourishing in the sub-Himalayan tract in 
the states of Uttar Pradesh, Assam, Bengal, Madhya Pradesh and in the 
south upto Godavari [9]. NTA is a beautiful and fragrant plant. Its flowers 
bloom at night, drop off and fall early next morning for this reason, it is 
called as-sad tree‖. It is mainly characterized by the presence of 
phenylethanoid derivatives and iridoid derivatives. It is used in 
traditional medicine as stomachic, carminative, intestinal astringent, 

expectorant, in biliousness, piles, and various skin diseases and as hair 
tonic. It has also been reported to possess hepato-protective, anti-viral, 
antifungal and analgesic, anti-pyretic, ulcerogenic activities [10].  

Juice of the leaf is used in chronic and bilious fever rheumatism as a 
laxative, diaphoretic and diuretic. The plant has been reported to be 
effective against leishmanial, viral and amoebic infections [11]. It is 
also been used in the Ayurvedic system of medicine for the cure of 
snake bite, bites of wild animals, cancer, sores, ulcers, dysentery, 
menorrhagia and obstinate sciatica. Leaves are responsible for some 
Central Nervous System (CNS) activities such as hypnotic, 
tranquilizing, local anesthetic antiasthmatic activities [12]. 

Vemurafenib has potent inhibitory effect and is selective for BRAF kinase 
[13]. It is used to treat diseases imposed on by V600E-BRAF. Despite 
these advances, a large number of patients experienced vemurafenib 
resistance, and reports have demonstrated keratoacanthoma and high 
rates of squamous cell carcinomas associated with identified inhibitors 
[14, 15]. HSP90 chaperones, including mutant B-raf, are essential for cell 
survival and advancement of malignancy. Thus, blocking HSP90 can 
effectively stop the signalling pathways that promote tumour growth 
and stop HSP90 from functioning in tumour cells [16]. 

Therefore, the current study focuses on targeting Hsp90 Chaperone 
protein 2VCJ and B-Raf Kinase mutant protein 3OG7. We investigated 
the anti-cancer properties of phytochemicals from NTA against these 
protein targets. Further, we performed structure-based screening of 
phytochemicals from NTA against skin cancer protein targets and 
combined molecular docking, quantum mechanical charge derivation 
(MMGBSA) in the binding site, followed by induced fit docking on the 
protein targets, which is responsible for producing melanoma cancer.  

MATERIALS AND METHODS 

Protein preparation and receptor grid generation 

The three-dimensional (3D) structures of melanoma target proteins 
were retrieved from RCSB with Protein Data Bank (PDB) ids2VCJ (Hsp90 
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Chaperone Inhibitors, 2.50 Å resolution) [17] and 3OG7 at (B-Raf Kinase 
mutant, 2.45 Å resolution) [18-19]. The proteins were created using the 
Schrodingermodelling computations. The proteins' 3D structures have 
been imported using the "Protein preparation wizard" in accordance 
with the procedure described by Tutone et al. [20]. Missing hydrogen 
atoms, Heavy atoms, water molecules, metal ions, co-crystallized ligands 
and incomplete and/or terminal amide groups could all be present in a 
protein structure and the wizard treated the metals, corrected the bond 
ordering, rectified the formal corrections, removed the extra water 
beyond the 3 Angstrom limit of the het atom, and added the missing 
protons. The most stable state for the protein's ligand's potential 
ionisation states was determined using Epik [21]. The proteins were 
then optimised under regulated conditions employing the force field 
OPLS-2005 with a constrained RMSD tolerance of 0.3 [22]. 

The region wherein a receptor and ligand interacts is revealed 
through the establishment of receptor grids. The grid was built 

around the co-crystallized structure using the glide "receptor grid 
building" component of the Schrödinger suite [23]. The centroid that 
develops across the co-crystallized structure serves as a sign of the 
protein's active site [24, 25]. 

Ligands selection and preparation  

The phytochemicals of NTA reported in literature [26, 27] were 
retrieved from Pubchem and are given in table 1. Eliminating 
salt and unnecessary hydrogen atoms is necessary to achieve a 
proper and legal protein-ligand docked complex. In order to 
prepare the ligands, the "LigPrep" module of the Schrodinger 
Maestro suite was applied to each ligand in the form of its 3D 
structure. Stereo-chemistries, desalting, and tautomer 
generation were chosen to obtain at least 32 conformations for 
each ligand and were optimized using Epikin pH between 7±2 
and ring conformation [28]. 

 

Table 1: Reported phytoconstitutents of NTA with their pubchem id 

S. No. Phytoconstituent Pubchem id 
1.  4-hydroxy hexahydrobenzofuran-7-one 155803271 
2.  6β-hydroxyloganin 158641 
3.  Arachidic acid 10467 
4.  Arborside C 182904 
5.  Arborside D 101685135 
6.  Arborsides A 182902 
7.  Arborsides B 182903 
8.  Arborsides C 182904 
9.  Arbortristoside A 6442162 
10.  Arbortristoside B 5459045 
11.  Arbortristoside C 23955893 
12.  Arbortristoside D 14632886 
13.  Arbortristoside E 14632884 
14.  Astragaline (Kaempferol 3-glucoside) 5282102 
15.  Astraglin 5282102 
16.  Benzoic acid 243 
17.  Calceolarioside A 5273566 
18.  Calceolarioside A 5273566 
19.  crocetin 5281232 
20.  Friedeline 91472 
21.  Hentriacontane 12410 
22.  Mannitol 6251 
23.  Methyl salicylate 4133 
24.  Nicotiflorin 5318767 
25.  Nyctanthic acid 12313631 
26.  Nyctanthoside 95224501 
27.  Octacosane 12408 
28.  Oleanolic acid 10494 
29.  Oleic acid 445639 
30.  Palmitic acid 985 
31.  Phenyl acetaldehyde 998 
32.  Rengyolone 10725564 
33.  Vitamin C 54670067 
34.  Ƴ-cymene 7463 
35.  α-linolenic acid 5280934 
36.  α-pinene 6654 
37.  β-amyrin 73145 
38.  β-digentiobioside-ester of α-crocetin (or crocin-I) 5281233 
39.  β-monogentiobioside-ester of α-crocetin (or crocin-III 10461942 
40.  β-monogentiobioside-β-D-monoglucoside-ester of α-crocetin (crocin-II), 9940690 
41.  β-sitosterol 222284 

 

Molecular docking (Rigid and flexible)  

The Maestro12.8version tool was used in this investigation to perform 
rigid and flexible docking and to assess the binding affinities, ligand 
effectiveness, and inhibitory characteristic to the targets [29]. The 
ligands were docked to the active binding site of the melanoma 
proteins 2VCJ and 3OG7 using Extra precision-Glide XP mode, which 
binds to determine the flexibility of the ligand. The phytochemicals 
would be able to reliably bind to the protein and ligand 
hydrophobically, avoiding the consequences and getting high docking 
scores. The electrostatic interaction of the hydrogen bonds involved 

both the hydrophobic contact and the salt bridge contacts [30]. In 
order to predict precision of binding affinity of top-scoring NTA 
phytochemicals with anti-melanoma proteins, Induced fit docking 
(IFD) protocol was used. Using Glide and the Refinement module in 
Prime, IFD is an in silico method that accurately predicts ligand 
binding modes and related structural changes in the receptor [31]. 

Pose validation  

In order to evaluate and validate the reproducibility of present 
computational method redocking of co-crystallized ligand into the 
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proteins' active regions was done. The RMSD (root mean square 
deviation) of the bound ligands were found to be 1.418Å, and 1.302Å 

for 2VCJ and 3OG7, respectively and is illustrated in fig. 1. This 
demonstrates the reproducibility of the docking process. 

 

  

a)    b) 

Fig. 1: Superimposition of the re-docked conformation (Yellow) and crystal structure conformation (Green) a) 2VCJ b) b) 3OG7 

 

Prime MM-GBSA (molecular-mechanics-generalized-born 
surface area) calculations 

The ligand binding energy for each of the NTA phytochemicals and 
the recommended standard for inhibiting melanoma proteins was 
estimated using the MM-GBSA function in the Schrodinger Suite 
2021 [32, 33]. This post-docking method is crucial because it 
exposes the proper ranking of ligands' binding and aids in accurately 
predicting the relative free binding energy [34]. Here, the PRIME 
module built into Maestro was used to calculate the free binding 
energies of the docked complexes by utilizing the XP docking 
methods [35]. 

RESULTS AND DISCUSSION 

Discovery of novel therapeutics significantly depends on in situ 
approaches. They predict the experimental binding mechanism and 
affinity of ligand in the binding site of target [36, 37]. Glide XP-Molecular 
docking, MM-GBSA and IFD was successfully performed between the 
selected ligands (phytochemicals from NTA) and two melanoma protein 
targets (PDB ID: 2VCJ and 3OG7) using Schrodinger software. Molecular 
docking results of top 5 ligands with target proteins is summarized in 
table 2. Arbortristoside D and Nicotiflorininteracted efficiently with 2VCJ 
and 3OG7, respectively, with highest binding energy. All top 5 
phytochemicals have higher binding score than the reference 
compounds Dyclonine [38] (-3.445) and Vemurafenib (-4.440). The 
scores were higher than the cocrystallizedligand also. 

The XP and IFD scores of investigated phytochemicals with 
melanoma proteins revealed that for protein target 2VCJ; 
Arbortristoside D generated highest binding affinity with glide XP 
docking score of-8.793 kcalmol-1 which is significantly higher than 
the reference compound Dyclonine (-3.445 kcalmol-1) and 
cocrystallized ligand (-6.647). Arbortristoside D had the highest 
Glide emodel scores (-80.915 kcal mol-1), followed by 
Arbortristoside B (-64.629 kcal mol-1), which were higher than the 
reference Dyclonine(-44.289 kcalmol-1)while the cocrystallized 
ligand had higher glide emodel score (-109.343 kcalmol-1). The 
MMGBSA binding score was higest for cocrystallized ligand ( -
223.26), then for reference Diclonine (-198.08), 

ArbortristosideD(-80.915 kcalmol-1) and ArbortristosideB (-64.629 
kcalmol-1). The IFD scores were-437.52kcalmol-1and-469.18 
kcalmol-1 for Arbortristoside D and Arbortristoside B, respectively. 
Both Arbortristoside D and Arbortristoside B formed 6 H-Bond 
(common interactions were with LYS58, ASP54 and THR184), while 
Dyclonine formed only 1 H-Bond (LYS 58) and cocrystallized ligand 
formed 4 H-Bonds (with THR148, LEU48, ASH93 and GLY97), 1 salt 
bridge (with ASP54), 1 Halogen bond with chloride residue (ASN51), 
and 1 Pi-Pi interaction (with LYS58). Khanpur et al. in 2014 reported 
the antiproliferative activity of the ethanol and ethyl acetate extracts 
of N. abor-tristis flowers against the MCF7 breast cancer cell line. 
The present result is in agreement with previous studies that the 
selected plant has already been reported to have anti-cancer activity 
[39].  

Forprotein target 3OG7, all the top five phytochemicals showed 
much higher binding score than the reference and cocrystallized 
ligand Vemurafenib with XP binding score of-4.440 kcal mol-1. 
Among the phytochemicals, the decreasing order of XP binding 
scores were Nicotiflorin>Arbortristoside-B>Arbortristoside 
E>Arborside D>Astraglin. The glide emodel score was highest for 
Arbortristoside E (-87.130 kcal mol-1), while the MMGBSA binding 
score was highest for reference Nicotiflorin (-99.63 kcalmol-1). The 
IFD binding scores for Nicotiflorinand Arbortristoside-B were 
548.99 kcal mol-1 and-550.78 kcal mol-1, respectively. Nicotiflorin 
showed 4 (LYS483, GLN530, CYS532, ASH594) while 
Arbortristoside-B and Vemurafenib (GLN530, CYS532, ASH594, 
TYR538, ASN580) showed 5 H-bond interactions with the same 
residues of protein target. The present study is in accordance with 
the finding that Arbortristoside A and B and iridoid glycosides are 
reported from seeds at 2.5 mg/kg in mice which possess anticancer 
activity against methylcholanthrene induced fibrosarcoma [40]. 
Additionally Vemurafenib also formed two salt bridges (with 
LYS483 and ASH594). Table 2 shows the top five scoring 
phytochemicals' Glide XP docking and MMGBSA scores as well as the 
kind of ligand-protein interactions and the implicated residue. Fig. 2 
shows the 2D and 3D interactions of the top-scoring bioactives from 
NTA with protein targets. Table 3 shows the IFD score and structure 
of top two phytochemicals. 

 

Table 2: Docking score, and MMGBSA score of top scoring (5) phytochemicals and reference with 2VCJ and 3OG7 

Protein 
pdb code 

CID and compound 
name 

Glide XP docking  MMGBSA d G bin 
D (kcalmol-1) 

Residues 
interactions 

Types of bond formation 
Docking score Glide emodel 

2VCJ 14632886 
(Arbortristoside D) 

-8.793 -80.915 -89.35 LYS58 
ASP54 
GLU62 
PHE138 
GLY135 
THR184 

H-bond with carboxyl 
H-bond with hydroxyl 
H-bond with hydroxyl 
H-bond with hydroxyl 
H-bond with hydroxyl 
H-bond with hydroxyl 

5459045 
(Arbortristoside-B) 

-7.798 -64.629 -35.33 LYS58 
ASP54 
GLY135 
THR184 

H-bond with oxygen 
H-bond with hydroxyl 
H-bond with hydroxyl 
H-bond with hydroxyl 
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Protein 
pdb code 

CID and compound 
name 

Glide XP docking  MMGBSA d G bin 
D (kcalmol-1) 

Residues 
interactions 

Types of bond formation 
Docking score Glide emodel 

LEU107 
GLY108 

H-bond with hydroxyl 
H-bond with hydroxyl 

101685135 (Arborside 
D) 

-7.577 -75.665 -59.40 LYS58 
ASN51 
ASP102 

H-bond with hydroxyl 
H-bond with hydroxyl 
H-bond with hydroxyl 

6442162(Arbortristoside 
A) 

-7.361 -63.427 -66.41 ASP54 
ASN51SER50 

H-bond with hydroxyl 
H-bond with hydroxyl 
H-bond with hydroxyl 

23955893 
(Arbortristoside C) 

-6.653 -80.329 -76.01 LYS58 
GLY97 

H-bond with hydroxyl 
H-bond with hydroxyl 

3180 (Reference-
Dyclonine) 

-3.445 -44.289 -198.08 LYS58 H-bond with carbonyl 

Cocrystallized ligand (5-
(5-chloro-2,4-
dihydroxyphenyl)-N-
ethyl-4-[4-(morpholin-4-
ylmethyl)phenyl] 
isoxazole-3-
carboxamide) 

-6.647 -109.343 -223.26 ASP54 
ASN51 
LYS58 
LEU48 
ASH93 
THR184 
GLY97 

Salt bridge with ammonium 
Halogen bond with chloride 
Pi-Pi cataion 
H-bond with hydroxyl 
H-bond with hydroxyl 
H-bond with hydroxyl 
H-bond with hydroxyl 

3OG7 5318767 (Nicotiflorin) -12.456 -75.433 -99.63 LYS483 
GLN530 
CYS532 
ASH594 

H-bond with hydroxyl 
H-bond with hydroxyl 
H-bond with hydroxyl 
H-bond with hydroxyl 

5459045 
(Arbortristoside-B) 

-12.455 -79.938 -77.29 GLN530 
CYS532 
ASH594 
TYR538 
ASN580 

H-bond with hydroxyl 
H-bond with hydroxyl 
H-bond with hydroxyl 
H-bond with hydroxyl 
H-bond with hydroxyl 

14632884 
(Arbortristoside E) 

-11.288 -87.130 -93.20 CYS532 
CYS532 
GLY534 
SER536 
SER465 

H-bond with hydroxyl 
H-bond with carbonyl 
H-bond with hydroxyl 
H-bond with hydroxyl 
H-bond with hydroxyl 

101685135 (Arborside 
D)  

-11.246 -76.225 -81.41 CYS532 
CYS532 
ASH594 
SER465 

H-bond with hydroxyl 
H-bond with carbonyl 
H-bond with hydroxyl 
H-bond with hydroxyl 

5282102 (Astraglin) -10.681 -73.205 -76.60 CYS532 
THR529 
ASH594 
SER465 

H-bond with hydroxyl 
H-bond with carbonyl 
H-bond with hydroxyl 
H-bond with hydroxyl 

Cocrystallized (N-(3-{[5-
(4-chlorophenyl)-1H-
pyrrolo[2,3-b]pyridin-3-
yl]carbonyl}-2,4-
difluorophenyl)propane-1-
sulfonamide) or 4261125 
(Reference-Vemurafenib) 

-4.440 -58.869 -84.75 CYS532 
GLY596 
GLN530 
LYS483 
LYS483 
ASH594 
ASH594 

H-bond with hydroxyl 
H-bond with hydroxyl 
H-bond with Nitrogen 
H-bond with Sulfonyl oxygen 
Salt bridge with amine 
H-bond with Sulfonyl oxygen 
Salt bridge with amine 

 

Table 3: Structure and IFD score of top-ranked (2) compounds for target proteins 2VCJ and 3OG7 

Protein CID and compound name IFD score Structure 
2VCJ 14632886 

(Arbortristoside D) 
-437.52 

 
 5459045 (Arbortristoside-B) -469.18 

 

https://pubchem.ncbi.nlm.nih.gov/compound/5362422
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Protein CID and compound name IFD score Structure 
3OG7 5318767 (Nicotiflorin) -548.99 

 
 5459045 

(Arbortristoside-B) 
-550.78 

 

 

 

 

a). 2VCJ (i) 14632889 (Arbortristoside D) 
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b). 2VCJ (ii) 5459045 (Arbortristoside-B) 

 

 

c). 3OG7 (i) 5318767 (Nicotiflorin) 
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d). 3OG7 (ii) 5459045 (Arbortristoside-B) 

Fig. 2: 2D interaction and fingerprint analysis of of top ranking bioactives (2) with protein targets a) 2VCJ and b) 3OG7  

 

CONCLUSION 

Patients suffering from advanced BRAFV600-mutant melanoma can 
benefit substantially from BRAF inhibitors; however, developing 
resistance is still prevalent. Preclinical research showed that 
concomitant use of the HSP90 inhibitor could eliminate resistance.  
Our study's findings made it abundantly evident that the target 
proteins 2VCJ can bind and interact strongly with Arbortristosides B 
and Arbortristosides D, as demonstrated by their binding energies 
than those of the other ligands we investigated. Similarly, 
Nicotiflorin and Arbortristoside B showed the best interaction with 
target proteins 3OG7. Based on the findings of our investigation, it is 
likely stated that Arbortristosides B is a potent 
antimelanomaphytodrug with the ability to interfere with both the 
investigated melanoma targets BRAF mutant (2VCJ) and HSP90 
inhibitor (3OG7). Hence, it is believed that Arbortristosides B will be 
devoid of the resistance associated with the BRAF inhibitors. On the 
basis of the predictions of our in silico investigations, additional in 
vitro and in vivo experiments are required to determine the 
anticancer potential of these phytochemicals of Nyctanthes 
Arbortristis for their anti-melanoma activity. 
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