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ABSTRACT 

In our daily lives, nanomaterials are utilized extensively in paints, textiles, food goods, cosmetics, and medicine. Several investigations aim to deter 
investigations of the physiological effects in various cell types. The innate immune system's macrophages regulate a wide range of biological 
functions. Depending on the stimulus, macrophages can be activated toward pro-or anti-inflammatory (M1) phenotypes; however, polarization may 
change in conditions including cancer, autoimmune illnesses, and bacterial and viral infections. Metal oxide nanoparticles have recently gained 
significant interest due to their diverse range of unique features with applications in research and industry. The production and usage of 
nanomaterials will rise significantly as the nanotechnology business grows. As a result, testing the consequences of nanomaterial exposure in 
biological systems is critical. A comparative analysis is conducted on the toxicities of several metal oxide nanoparticles. The significance of 
biogenically generated metal oxide nanoparticles has been growing in recent years. However, more research is needed to thoroughly characterize 
the potential toxicity of these nanoparticles to ensure nanosafety and consider environmental views. To that end, nanotoxicology seeks to assess the 
toxicity of nanomaterials to physicochemical factors such as size and form. In this review, we focus on the biological reactions of macrophages to 
metal oxide nanoparticles. Because macrophages are the first cells to engage with nanoparticles when they enter the body, they can absorb them 
through various processes. 
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INTRODUCTION 

In recent years, nanotechnology has caused a revolution in the 
industrial and scientific sphere by enabling the study and 
manipulation of interactions and phenomena at the atomic and 
molecular levels, giving rise to a new generation of nanometric 
materials with unique properties and applications [1]. 
Nanomaterials are all materials synthesized naturally, incidentally 
or manufactured with at least one dimension equal to or less than 
100 nm. They are classified according to their origin, dimensionality, 
chemical composition and potential toxicity [2]. In the case of 
nanomaterials, the physicochemical characteristics such as small 
size and large surface area give them optical, electrical, mechanical, 
chemical, thermal, and magnetic properties, among others, that 
differ from bulk material (micro or micrometric) and that are of 
interest to the industrial area [3]; however, these characteristics also 
impact on their interaction with biological systems and their toxicity. 
Due to the broad spectrum of applications of nanomaterials in 
multiple areas, it is estimated that by 2022, the market value of 
nanotechnology will be approximately $55 billion [4-8]. 

One of the most promising fields derived from nanotechnology is bio-
nanotechnology, whose study objective is the interactions of 
nanomaterials with biological systems to develop new diagnostic 
strategies and therapies against diseases that currently have no cure 
or successful treatment. These strategies include drug nano-carriers, 
biosensors, antimicrobials, and immunomodulatory [9]. Now, it is 
possible to find various products on the market containing metal oxide 
nanoparticles in everyday products, food additives, or even medicines 
[10]. In this context, it is a fact that nanomaterials are and will be part 
of our daily lives, and, therefore, the synthesis, application and 
exposure to nanomaterial will be seen to increase considerably in the 
coming years; therefore, it is of vital importance to assess their safety 
and regulate their marketing and final disposal [11-13]. 

The present review sourced its article choices from specialised 

databases (covering the years 2016–2023), including Elsevier, 
Pubmed, Cambridge, online sources, and online publications. The 
search used the following keywords: nanotoxicology, toxicity, 
macrophages, and oxide metallic nanoparticles. 

Nanotoxicology: how safe is a nanomaterial? 

Nanotoxicology is born of the need to evaluate the toxicity of 
nanomaterials. One of its challenges is to design and adapt 
conventional toxicology methods of analysis to study nanomaterials. 
The toxicity of nanomaterials depends on a large number of factors, 
such as their size, shape, and surface chemical properties. It can 
induce toxicities through direct contact, ingesting contaminated 
water or food, or incorporating it into everyday products [14-16]. 

The interactions of nanomaterials with biological systems leading to 
toxic biological responses consist of four main phases: 1) 
introduction of nanomaterials into the biological system, which can 
be produced through six pathways: intravenous, dermal, 
subcutaneous, inhalation, intraperitoneal and oral, the most 
significant exposure is through the inhalator pathway followed by 
the gastrointestinal; 2) adsorption: occurs when the Nanomaterial 
interacts with biological components such as proteins and cells, 
resulting in the formation of a protein crown that covers the 
Nanomaterial and gives it a biological identity, or the Nanomaterial 
can be opsonized, i.e. it can be covered by molecules known as 
opsonin’s that have the function of facilitating phagocytosis; 3) 
biodistribution: consists in the distribution of the Nanomaterial 
through the bloodstream to several organs of the body where they 
can be modified, metabolized or accumulated, and, 4) excretion and 
waste of the Nanomaterial, in which organs such as the kidney, liver 
or bile canal can participate (fig. 1). Their long-term behaviour is 
unknown if nanomaterials are not excreted [17-20].  

Once absorbed by the body, nanomaterials can interact with cells 
passively and actively by regulating cellular functions through 
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molecular mechanisms, in which their physicochemical properties 
determine their biocompatibility and safety. Thus, the cellular 
response varies considerably between different cell lines and in the 
study of nanomaterials, even if these are similar [21]. This 
complicates predicting the toxicity of a nanomaterial according to its 
characteristics in a specific biological system. Some of the cytotoxic 
responses triggered by exposure to nanomaterials include the 
generation of highly reactive oxygen species (ROS), which can lead 
to oxidative stress, mitochondrial disturbance, endoplasmic reticular 
stress, protein degradation and denaturalization, cell cycle 
alteration, DNA damage, lipid peroxidation, among others [22]. The 
cytotoxicity triggered by nanoparticles consists of 4 fundamental 
mechanisms: 1) adhesion to the membrane surface, 2) penetration 
inside the cell and nucleus, 3) ROS generation and cell toxicity, and 4) 
cell signalling modulation [23]. 

Macrophages: role and importance 

One of the most studied ways of introducing nanomaterials is 
inhalation, where, depending on the size, it is likely to occur. 
Reservoir of nanomaterials in the respiratory system [24]. Due to 
constant exposure to pathogenic microorganisms and exogenous 
agents in the respiratory system, in these tissues, there is a high 
concentration of innate immune system cells with phagocytic 

capabilities to eradicate and prevent possible damage to the host. 
The physiological function of the immune system is to defend the 
host against infectious microorganisms and foreign substances. The 
immune response to an exogenous microorganism or agent is 
orchestrated primarily by innate immunity, consisting of a rapid 
response that lacks specificity, followed by adaptive immunity, a late 
response with high specificity. Inborn and adaptive immunity are 
closely linked and essentially dependent on each other [25-30].  

One of the primary cells of the innate immune system in the lung 
system are macrophages and, due to their natural ability to 
phagocyte nanomaterials, some authors suggest that they are the 
first to interact with nanoparticles, therefore also to mediate the 
immune response. Therefore, studying the effect on the function of 
macrophages and the mechanisms of recognition of nanoparticles is 
extremely important [31]. Macrophages are distributed in various 
tissues and play a key role in innate and adaptive immune 
responses. Some of its functions include phagocytosis, antigen 
presentation and induction of inflammation, as well as in the 
maintenance of cellular homeostasis through the removal of 
apoptotic cells and repair of damaged tissue, among others; so that, 
generally, macrophages, depending on their phenotype, may have 
pro-inflammatory or anti-inflammatory functions [32-37]. 

  

 

Fig. 1: Introduction of nanomaterials to the human body through inhalation [38] 

 

The phagocytosis, in addition to having a fundamental role in the 
nutrition of the cell, has other functions as a product of evolution. It is 
an active Energy-dependent receptor-mediated process, which allows 
the internalization in vesicles of particles up to 10 μm, and includes the 
following stages: 1) recognition of the microorganism or exogenous 
agent by membrane receptors by the macrophage, which can be 
pattern recognition receptors, opsonic receptors or receptors of 
apoptosis bodies; 2) the membrane of the phagocytic cell suffers an 
alteration that surrounds the particle to phagocytize; 3) the exogenic 
agent is ingested through its internalization in a cyst that receives the 
name of a phagosome, and, 4) the phagolysosome is formed through 

the fusion of the phagosome and lysosome, the latter contains a low 
pH and digestive enzymes that produce the destruction of the 
particulate (fig. 2). This process is crucial for the adaptive immune 
system, as after digestion, the macrophages can present antigens to B 
and T lymphocytes, respond to the stimulation in a specific way and 
generate memory against subsequent invasion by the same agent [38, 
39]. However, these processes do not occur after the phagocytosis of 
nanoparticles and the molecular mechanisms and consequences of 
persistence in macrophages due to the inability to degrade them 
through enzymes, as well as their impact on the functions of the 
immune system in general, is unknown [40, 43]. 

 

 

Fig. 2: Stages of phagocytosis of microorganisms or exogenous agents by macrophages [44] 
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Phagocytosis is activated through four molecular signalling 
mechanisms: Fcg receptor-mediated phagocytosis, TLR receptor-
mediated phagocytosis, C-type lectin-receptor-Mediated 
phagocytosis, and scavenger-receiver-mediated phagocytosis [45]. 
Phagocytosis mediated by the Fcg receptor Fcg receptor activation 
(FcgR) is a replication process as the membrane envelops the 
particle to the phagocyte. This is possible thanks to the extension of 
the pseudopods that allows additional encounters between the 
unoccupied receptors and the ligands available on the particle 
surface, which at the same time enables the approximation of the 
immunoreceptor tyrosine-based activation pattern (ITAM), which is 
a substrate for phosphorylation by Tyrosine kinases of the Src 
family. Subsequently, incorporating adaptive proteins acts as a 
downstream platform for recruiting signalling components [46-49]. 

An example of an adaptive protein is CrkII, which recruits the 
complex between a nucleation promoter factor (Dock180) and a 
guanine nucleotide exchange factor. (ELMO1). The nucleation-
promoting factors activate the Arp2/3 actin nucleation complex 
through Rac1, which in turn causes the polymerization of actin, a 
protein in the cellular cytoskeleton, which promotes the extension of 
the pseudopods, allowing phagocytosis [50]. The main activated 
transcription factors are NFk-β and AP-1. 

TLR-mediated phagocytosis 

Toll-type receptors (TLRs) are type 1 transmembrane receptors. 
Currently, ten different TLRs have been described in humans with a 
wide range of ligands ranging from structural motifs characteristic 
of microorganisms such as bacteria, fungi and parasites to 
components derived from the host [51]. Following the bonding of 
the ligand with its TLR receiver, a dimerization occurs, which causes 
the necessary conformational changes for signalling downstream 
due to the presence of adapting molecules with MyD88, TIRAP/MAL, 
TRIF, TRAM, IL-2 receptor-associated kinases (IRAK), kinases 
activated by the transformer factor beta/TGF-β (TAK1), among 
others. The intracellular signalling route promotes the transcription 
of genes of pro-inflammatory cytokines, chemokines and co-
stimulators in a way that depends on the adapting molecule 
upstream [52-55]. 

C-type lectin receptor-mediated phagocytosis 

Lecithin C receptors are a group of non-opsonic receptors that 
recognize carbohydrates, and one of the most studied is the receptor 
for the MRC1 mannose that recognizes carbs present in 
microorganisms such as mannose, fucose, N-acetyl glucosamine and 
other ligands for their elimination, and its adapting molecules 
include CDC42 and Rho [56].  

Scavenger-mediated phagocytosis 

This group of receptors includes scavenger A (SRA-1), collagen-
structured macrophage receptor (MARCO) and CD36. These 
promiscuous receptors bind to polyanionic ligands, have poorly 
defined signalling capacity, vary in the structural domain and have 
distinct, though overlapping, recognition of apoptotic and microbial 
ligands. In most cases, CD36 involvement causes activation of the 
kinase tyrosines of the SRC family [57]. After low-density oxidized 
lipoprotein binding (ox-LDL), prolonged activation of focal adhesion 
kinase 1 (FAK1), together with VAV1-mediated activation and 
inhibition of non-muscular myosin II, result in actin polymerization, 
increased cell proliferation and loss of cellular polarity. Other CD36-
orchestrated signalling cascades induce actin reorganization and 
stimulate the production of pro-inflammatory cytokines and pro-
apoptotic signals [58].  

These receptors differ from each other because they have different 
degrees of affinity to a group of ligands, their expression in 
macrophages varies between the different phenotypes, and their 
activation directs different immune responses that are specific 
against the pathogen to be eradicated, which directly impacts on its 
toxicity [59, 60]. While many of the molecular processes mentioned 
earlier could be involved in the internalization of nanoparticles due 
to the adsorption of proteins, it has been observed that mannose and 
Fcg receptors internalize nanoparticles faster and more efficiently 
than scavenger receptor-mediated phagocytosis. Even it is suggested 

that more than one group of receptors could cause internalization as 
a whole [61, 62]. However, due to the promiscuity of scavenger 
receptors and their ability to bind polyanionic ligands, this particular 
mechanism is of particular interest because it allows the host to 
recognize foreign materials such as nanoparticles and surgical 
implants, and their internalization by macrophages contributes to 
chronic inflammation and progressive tissue damage. For example, a 
study by [63, 64] determined that TiO2 particles were recognized 
and internalized by macrophages through the MARCO scavenger 
receptor, which in turn caused changes in gene expression. On the 
other hand, [65, 66] demonstrated that inhibition of MARCO 
scavenger receptors prevents the internalization of iron oxide 
nanoparticles coated with dextran. 

Finally, the physicochemical characteristics of nanoparticles 
determine the molecular process that entails their internalization 
and, thus, the orchestrated immune response. Among these features 
are its size, shape and surface load [67, 68]. Therefore, several 
authors suggest that modifying the physicochemical properties of 
nanoparticles could decrease their internalization in immune system 
cells and, thus, their toxicity or direct internalization by a specific 
pathway for therapeutic purposes. Strategies for evading certain 
pathogenic microorganisms from the immune system have also been 
studied so that nanoparticles can mimic them [69, 70]. However, 
more studies are needed on the relationship between these 
characteristics and internalization to improve our knowledge and 
design nanoparticles, specifically to reduce toxicity and increase 
specificity [71, 72]. 

Immunomodulation of macrophages by exposure to metal oxide 
nanoparticles 

The role and importance of the immune system for the proper 
functioning of the body have been discussed earlier; however, an 
adequate immune response depends on a delicate balance. In 
pathological conditions, as in some autoimmune diseases, there is 
an exacerbation of the immune response and a lack of tolerance to 
the same that causes damage to the host, so the treatment consists 
of trying to decrease this response; this process is known as 
immunosuppression [73, 74]. On the other hand, the development 
of vaccines and recent advances in immunotherapy against cancer 
are aimed at stimulating the immune response, which is why they 
are defined as immunostimulants. In general, immunosuppression 
and immunostimulant are types of immunomodulation, which 
consists of optimizing the immune response [75, 76]. The 
immunomodulatory capabilities of some metal oxide nanoparticles 
have been studied for use in immunology [77, 78]. Some 
bionanotechnological strategies for the use of nanoparticles in 
immunotherapy are described below. 

Macrophage modulation for cancer immunotherapy 

Immunotherapy consists of harnessing and enhancing the natural 
ability of the immune system to combat diseases of a different 
nature. Promising results have been obtained in the research of 
immunotherapy as a treatment for certain types of cancer to 
overcome the obstacles imposed by the tumour in evading and 
controlling immune cells [79, 80]. In this sense, the immune system 
can inhibit or promote tumour growth. Therefore, 
immunomodulators are proposed to enhance the immune response 
and selectively cleanse immune cells. Due to the high phenotypic 
plasticity that macrophages possess, these can take on different 
functions in response to the microenvironment signals, known as 
macrophage polarization [81, 82]. Tumor-associated macrophages 
(TAMs) have been extensively studied as therapeutic whites in 
cancer immunotherapy by being localized in the natural 
microenvironment of the tumour, and it has been observed that they 
can play both antitumoral and protumoral roles and that they differ 
from the functions of macrophages present in healthy tissue. In the 
early stages of tumour formation, monocytes and macrophages are 
recruited that are polarized towards a phenotype known as M1, 
characterized by having anti-tumor effects. As the tumour advances 
to an advanced stage, the M1 macrophages are transformed into M2, 
which have protumoral effects and suppress the immune response 
[83, 84]. Some metal oxide nanoparticles can modulate these 
phenotypes and the activities of TAMs (fig. 3). 
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Fig. 3: Polarization of the phenotype of tumor-associated 
macrophages (TAM) [85] 

 

For example, in 2016, Zanganeh et al. observed that the drug 
Ferumoxytol, consisting of iron oxide nanoparticles approved by the 
United States Food and Drug Administration (FDA) for the treatment 
of iron deficiency, has an intrinsic therapeutic effect on tumours as 
tumour cells co-injected with Ferumoksytol showed a significant 
delay in tumour growth rate compared to injection of cells without 
Ferum oxytol [86, 87]. In addition, an increased presence of M1 
phenotype pro-inflammatory macrophages was observed in the 
tumour. Subsequent studies showed that treatment with 
Ferumoxytol caused increased gene expression involved in pro-
inflammatory responses [88-91]. The authors suggest that this type 
of compound modules the TAM phenotype through the Fenton 
reaction, where the hydrogen peroxide secreted by the M1 
macrophages could react with the iron to produce toxic hydroxyl 
radicals. In another study, it was also that the targeted delivery of 
manganese dioxide nanoparticles conjugated with manne and 
coated with hyaluronic acid to tumor-associated macrophages 
increased tumour oxygenation and caused the polarisation of M2 to 
M1 phenotype macrophages [92-96]. 

Cellular responses of macrophages to exposure to metal oxide 
nanoparticles: modulation or immunotoxicity? 

Despite promising results in immunotherapy with the use of 
different metal oxide nanoparticles, several authors have that 
macrophage exposure to metal Oxide Nanoparticles induces 
immunotoxicity responses, including induction of inflammation, 
nanoparticle internalization, disruption of phagocyte functions, 
increased production of ROS and nitric oxide, among others (fig. 4) 
[97-99]. Immunotoxicity is defined as any adverse effect on the 
immune system's or other systems' structure or function due to 
immune dysfunction. Thus, a negative or immunotoxin effect affects 
the humoral or cellular immunity necessary for the host to trigger an 
adequate response for its defence (immunosuppression) or cause 
unnecessary tissue damage (auto-immunity, hypersensitivity or 
chronic inflammation) [100-104]. In this context, it must be borne in 
mind that while a nanomaterial may have exciting properties and 
therapeutic potential, it is essential not to lose sight of its toxicity 
since the latter limits its application [105-108]. 

Over the past few years, various research groups have focused on 
clarifying the toxicological mechanisms of nanomaterials; however, 
the results are sometimes contradictory due in part to differences in 
the physicochemical characteristics of the nanomaterial evaluated. 
Several authors have toxicity in vitro in macrophages exposed to 
different concentrations of zinc oxide nanoparticles (ZnO-NPs) of 
different sizes and agree that smaller nanoparticle sizes and positive 
charge have higher toxicity, which depends on concentration and 
time. In addition, there has been an increase in the production of 
pro-inflammatory cytokines IL-1b, TNF-α and IL-8, which suggests 
immune activation [109, 110]. On the other hand, in 2014, Wang et 
al. demonstrated that the solubility of Zn2+ions is dependent on the 
pH of the medium, so that, at lower pH, higher Zn2+ion 
concentration. This suggests that the toxic potential of ZnO-NPs 
could be seen increased in macrophages since, as mentioned above, 
the phagolysosome formed after phagocytosis of exogenous agents 

has a low pH; therefore, it has been speculated that the toxicity of 
ZnOs is mainly due to the release of Zn2+ions resulting from their 
dissociation [111-113]. 

On the other hand, omic tools have been used to study cellular 
responses caused by macrophage exposure to ZnO-NPs in a more 
general way. An example of this is a transcriptomic profile study of 
human macrophages exposed to ZnO-NPs of 15 and 12 nm diameter 
conducted in 2013 by Tuomela et al., where it was established that 
the primary biological processes affected were growth regulation, 
cell death, development and control of the immune system. On the 
other hand, the proteomic analysis revealed alterations in routes 
involved in oxidative stress that could lead to genotoxicity and a 
strong response in protein degradation routes [114-119, 139]. 
However, clarifying a molecular mechanism that explains the toxic 
and inflammatory effects of metal oxide nanoparticles in 
macrophages requires even more research. 

In this context, in 2014, Roy et al. demonstrated that the increase in 
ROS is caused by the decrease and inhibition of the activity of 
antioxidant enzymes due to the suppression of transcription factor 
Nrf2, leading to lipid peroxidation and protein. Other studies 
conducted by the same research group indicate that ZnO-NPs of 
approximately 50 nm have adjuvant properties to the oval albumin 
allergen in Balb/c mice. Furthermore, they described that this effect 
involves Toll and Src-type receptor-mediated signalling pathways 
due to increased expression of TLR2, 4 and 6, as well as myeloid 
differentiation primary response protein 88 (MyD88), IL-1 receptor-
associated kinase 1 (IRAK-1) and TNFR-associated factor 6 (TRAF-
6). All this is attributed to inflammatory responses by the 
recruitment and activation of adhesion molecules and inflammation 
cells [120-123]. While the authors suggest that this mechanism 
could be used to develop strategies for its therapeutic use, it is 
necessary to consider the adverse effects that could be triggered by 
exposure to 50 nm ZnO-NPs in healthy patients due to the 
immunomodulating potential of this type of NPs. 

As with ZnO-NPs, multiple studies suggest that the rapid dissolution 
and release of Cu2+ions, size and shape are the main factors 
influencing the toxicity of copper oxide nanoparticles [124-127]. Due 
to their obvious toxicity potential, the authors suggest that CuO-NPs 
could be good candidates as positive controls in nanotoxicology 
trials. In vivo tests also show the toxicity potential of CuO-NPs. For 
example, Gosens et al. 2016 conducted a study in rats who were 
given CuO-NPs of an average size of 14 nm. After five days of 
exposure to CuO-NPs, the rats presented lung inflammation, and 
histopathological ana-lysis indicated alveolitis, bronchiolitis and 
vacuolation of the respiratory epithelium and pulmonary 
emphysema. Adverse effects due to toxicity were disappearing 
within three weeks of post-exposure [128-131]. 

 

 

Fig. 4: Cellular responses of macrophages exposed to zinc oxide 
nanoparticles (ZnO-NPs) [132] 

 

Furthermore, the impact on immune reactivity of the administration or 
inhalation of this type of nanoparticles has been discussed. The 
composition of cell populations of innate and adaptive measles immunity 
present in mice exposed to continuous inhalation of 30 nm CuO-NPs for 
three months. The results showed that inhalation of CuONPs affected the 
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cells of innate immunity more severely, as there were changes in the 
ratio of eosinophils, neutrophils, macrophages and antigen-presenting 
cells. In contrast, the impact on adaptive immunity cells such as T and B 
lymphocytes was minimal. This suggests that there is a modulating effect 
of inhalation time-dependent CuO-NPs on cytokine production by 
adaptive immune system cells [133-138]. 

The adverse effects on immune system cells from exposure to CuO-NPs 
highlight its ability to cause immunotoxicity. This demonstrates the 
cytotoxic, genotoxic and immunotoxic effects of ZnO-NPs and CuO-NPs in 
different in vitro and in vivo models; however, more studies are needed 
to establish more real scenarios (concentration and exposure time) to 
understand and clarify the mechanisms involved in these adverse effects; 
and thus, to design strategies to avoid the toxicity of nanomaterials and 
to take advantage of their unique properties. 

CONCLUSION 

Metal oxide nanoparticles present various properties of interest to 
research and industry, so their potential uses are being explored. 
Due to its immunomodulatory abilities, it has been suggested to be 
used for treating immune dysfunctions; however, it is necessary to 
consider the possible toxic effects. Macrophages are a good model 
for immunotoxicity study due to their primary functions for 
maintaining the organism and orchestrating the immune response. 
Furthermore, it has been suggested that they are the first cells to 
interact with nanomaterials once they enter the body. While several 
studies have shown that metal oxide nanoparticles can induce 
immunotoxicity in macrophages both in vitro and in vivo, further 
research is needed to clarify the precise mechanisms of toxicity. This 
knowledge is indispensable for designing nanomaterials by 
modifying their physicochemical properties to expand their 
potential. It thus can be applied in future biomedical applications, 
specifically in the field of immunomodulation and the fight against 
chronic diseases such as cancer. 
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