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ABSTRACT 

Objective: This study aims to enhance early detection and prediction by exploiting drug molecular substructures, overcoming challenges posed by 
limited authentic patient data in the medical domain. 

Methods: The study implemented a neural network approach to optimize molecular fingerprint algorithms and employed various machine learning 
algorithms for predictions. Additionally, the study identified and extracted substructures associated with severe Adverse Drug Reactions (ADRs), 
validating their presence within drug structures through a comparison with a random set of drug structures. Predictions were made for sp ecific 
molecular structures, and results were validated using clinical evidence from the literature. 

Results: Optimized molecular fingerprint algorithms and diverse machine-learning models yielded promising outcomes. The Area Under Curve (AUC) 
value for the fingerprint dataset was obtained at approximately 65%, and integrating it with patient data significantly improved the performance by 
about 30%. Substructure analysis pinpointed key components linked to severe ADRs, reinforcing the predictive prowess of the model. Predictions for 
specific molecular structures were corroborated using clinical evidence from the literature, fortifying the credibility of the proposed approach. 

Conclusion: In conclusion, this research effectively tackles challenges in the early detection and prediction of ADRs by leveraging machine learning 
algorithms, focusing on drug molecular substructures. The optimized model, incorporating both fingerprint and patient datasets, demonstrated significant 
improvements in predictive performance. Identifying and validating substructures linked to severe ADRs contribute to the model's reliability. The study's 
findings are vital for advancing drug safety and laying the groundwork for further strides in predictive modeling within the medical domain. 
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INTRODUCTION 

Drug development is a demanding and time-consuming process, 
typically spanning a period of approximately 10 to 12 y and 
involving substantial financial investments, all with no guaranteed 
outcomes. Clinical trials, which include post-marketing surveillance 
(phase IV), pose numerous challenges and are often burdensome. As 
a result, there is constant pressure to reduce the study population 
size [1] in which the experimental drug is tested. However, due to 
the controlled and specialized nature of clinical development, the 
patients involved may not fully represent the original population 
regarding genetic and physiological makeup. Consequently, there is 
a possibility of patients experiencing adverse reactions to the drug 
once it is approved and used by a diverse range of individuals with 
varying physiological characteristics and clinical disease 
presentations. Despite these challenges, as mentioned earlier, the 
primary objective of the healthcare and pharmaceutical industry 
remains the minimization of ADRs and the assurance of overall drug 
safety and efficacy in patients.  

The World Health Organization (WHO) has defined ADRs as 
"noxious and unintended responses to drugs occurring at doses 
normally used in humans for prophylaxis, diagnosis, or therapy of 
diseases, or for the modification of physiological functions" [2]. In 
essence, ADRs refer to unexpected drug effects that often lead to 
hospitalization and fatalities within the patient population. These 
reactions can be attributed to various factors, including patient-
related, drug-related, and social environment-related parameters 
[3]. Key patient-related factors include age and gender, whereas 
significant drug-related factors encompass drug dosage and drug-
drug interactions, which warrant careful examination to assess the 
impact of ADRs on human health. Additionally, social environment-
related factors such as smoking and alcoholism indirectly contribute 
to several ADRs. Early detection and prediction of such ADRs during 
the drug development cycle are crucial for enhancing patient 
healthcare and overall drug safety.  

Adverse reactions can range from mild to severe, and in some cases, 
they can even be life-threatening. Common ADRs encompass 
symptoms like nausea, vomiting, diarrhea, dizziness, headache, rash, 
and fatigue [4]. However, it is important to note that adverse 
reactions can also lead to serious health complications such as organ 
damage, allergic reactions, and even mortality. While prescribing the 
drug, physicians should always be aware of the adverse effect of 
phenytoin and other many other drugs [5]. Drug structures play a 
significant role in the occurrence of ADRs. The molecular 
composition and structural characteristics of a drug can influence its 
interactions with biological targets in the body, leading to desired 
therapeutic effects as well as potential adverse reactions [6]. 
Understanding the relationship between drug structures and ADRs 
is crucial for drug design, optimization, and safety assessment. 
Computational methods and structure-activity relationship studies 
can aid in predicting potential ADRs based on structural features, 
facilitating the identification and modification of drug candidates to 
mitigate or minimize the occurrence of adverse reactions.  

The present research aimed at relating chemical structures, in 
particular specific substructures, to the occurrence of ADRs, 
supported by clinical evidence, using neural network-based machine 
learning algorithms. Further, the models were validated for 
predictions of ADRs based on specific substructures present. The 
method described herein can be used for ADR predictions early on in 
preclinical and clinical candidates, which may help reduce the 
attrition in late-stage clinical trials or even during the post-
marketing surveillance phase.  

MATERIALS AND METHODS 

Hardware and software 

All the studies described herein were performed on HP™ machine 
(12th Gen Intel(R) Core(TM) i5-1235U 1.30 GHz; 64-bit operating 
system, x64-based processor) running Windows 11 operating 
system, with internal memory up to 16 GB. The programming 
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language used for implementation was Python 3.0. Experiments 
were conducted in the Google Colab programming framework. It 
allows researchers to write and execute arbitrary Python code 
through the browser and is especially well suited to ML, data 
analysis, and education.  

Datasets 

The following datasets were used extensively throughout the studies. 

SIDER dataset 

It is a database with marketed drugs and ADRs. The version of the 
SIDER dataset in DeepChem has grouped drug side effects into 27 
system organ classes following MedDRA classifications measured for 
1427 approved drugs [7]. It is one of the most popular datasets used 
in ADR detection and prediction-based research studies. It has been 
used in almost 60% of the research work done up till now [8]. A 
pictorial representation of the dataset is shown in table 1. 

 

Table 1: Sample dataset 

Smiles Hepatobiliary disorders 
C(CNCCNCCNCCN)N 1 
CC(C)(C)C1=CC(=C(C=C1NC(=O)C2=CNC3=CC=CC=C3C2=O)O)C(C)(C)C 0 
CC[C@]12CC(=C)[C@H]3[C@H]([C@@H]1CC[C@]2(C#C)O)CCC4=CCCC[C@H]34 0 
CCC12CC(=C)C3C(C1CC[C@]2(C#C)O)CCC4=CC(=O)CCC34 1 
CCCCCC(C=CC1C(CC(=O)C1CC=CCCCC(=O)O)O)O 0 

The drug SMILES are converted into fingerprints for the application of ML algorithms. A detailed introduction to fingerprint algorithms is described 
in the next section. 

 

FAERS dataset 

This is a primary data source [9]. The data is collected and stored 
through authentic processes and validated. This dataset is presented 

both in ASCII and CSV format. Around 3 million records were 
collected from the FAERS dataset dated from 2019 to 2020 end in 
ASCII format. Once downloaded and extracted, the overall dataset is 
visualized in fig. 1. 

 

 

Fig. 1: Overview of the FAERS dataset [10] 

 

Table 2: Description of each table of the FAERS dataset 

Name Description 
Demographic It contains patient demographic and administrative information, a single record for each event report. 
Drug It contains drug/biological information for as many medications as were reported for the event (1 or more per event). 
Indication It contains all Medical Dictionary for Regulatory Activities (MedDRA) terms coded for the indications for use (diagnoses) for 

the reported drugs (0 or more per drug per event). 
Reaction It contains all MedDRA terms coded for the adverse event (1 or more).  
Outcome It contains patient outcomes for the event (0 or more). 
Therapy It contains drug therapy start dates and end dates for the reported drugs (0 or more per drug per event)  
Report Sources It contains report sources for the event (0 or more). 

 

The FAERS dataset is segregated across multiple tables that need to 
be integrated using primary ID and case ID. The drug names of the 
drug database should be converted into smile structure format using 

the Chemical Identifier Resolver (CIR) [11] from the RDKit package. 
Further, the smile structures were manually checked for consistency 
with the drug structure itself. 
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ChEMBL database 

It is a manually curated database of bioactive molecules with drug-
like properties [12]. It brings together chemical, bioactivity, and 
genomic data to aid the translation of genomic information into 
effective new drugs. It includes information about how small 
molecules interact with their protein targets, how these compounds 
affect cells and whole organisms, and information on Absorption, 
Distribution, Metabolism, Excretion, and Toxicity (ADMET). ChEMBL 
holds two-dimensional structures, calculated molecular properties 
(e. g., logP, molecular weight, Lipinski ‘Rule of Five’ parameters), and 
bioactivity data (such as binding constants and pharmacology). The 
bioactivity data is tagged to show links between molecular targets 
and published essays. A diagrammatic representation of the ChEMBL 
dataset is shown in fig. 2. 

These datasets form the basis of the present research work. The SMILES 
1D representation of drug structures is converted into some fixed-size 
bit vector, i.e., fingerprint for the application of the ML algorithms.  

Fingerprint algorithms 

Molecular graph theory and fingerprints have a long history of 
applications in drug discovery and development [13]. Some 

predefined molecular fingerprints already in use for the drug 
structures are listed in table 3. 
 

 

Fig. 2: Data included in the ChEMBL database

 

Table 3: A representative list of fingerprint algorithms 

Algorithm  Brief description 
Pubchem 
Fingerprinter 

These fingerprints are used by PubChem for similarity neighboring and similarity searching. A substructure is a fragment 
of a chemical structure. A fingerprint is an ordered list of binaries (1/0) bits [14]. 

AtomPairs2D 
Fingerprinter 

The fingerprints are generated by connecting atoms within a molecule and creating a two-dimensional graph. This type of 
fingerprinting allows scientists to identify compounds from their chemical structure [15]. 

Estate Fingerprinter It is an AI algorithm designed to automatically identify molecules within a substance. It works by comparing a molecule's 
structure to a database of known compounds, allowing scientists to quickly and accurately identify the molecules present 
in a given sample [16]. 

Extended 
Fingerprinter 

It works by comparing a substance's molecular structure to a known database of compounds. The fingerprints generated by 
this technology are also able to identify the conformational and stereochemical properties of molecules [17]. 

GraphOnly 
Fingerprinter [18] 

It works by analyzing a substance's molecular structures and creating a graph of atoms. This graph can then be compared 
to a database of known compounds, allowing scientists to quickly and accurately identify the substances in question.  

KlekotaRoth 
Fingerprinter [18] 

It works by analyzing a substance's molecular structure and using a statistical algorithm to compare the result with a 
known database of compounds. This type of fingerprinting can identify subtle differences between molecules and thus can 
be used to quickly and accurately identify new or unknown compounds. 

Molecular ACCess 
System (MACCS) 

This type of fingerprinting uses 166 specific bits to represent particular chemical features. For measuring molecular 
similarity, 166-bit 2D structure fingerprints are provided by MACCS keys. The binary bit is either 0 (or off) or 1 (or on) to 
represent it. MACCS provides more than 9.3x1049 distinguishable fingerprint vectors [19]. 

Substructure This is a type of molecular or compound fingerprinting technology based on the concept of a “substructure”. It looks at 
smaller molecular structures within molecules and uses them to identify different compounds. A substructure is made up 
of individual atoms that are connected in a certain pattern [18] 

Circular Fingerprint This type of fingerprinting works by analyzing a substance's molecular structure and then creating a circular graph of its 
atoms. The representation of molecular structures by atom neighborhoods--has been applied to a wide range of 
applications, such as similarity searching and the prediction of absorption, distribution, metabolism, excretion, and 
toxicity properties [20]. 

Morgan fingerprint 
 

The fingerprint is a reimplementation of the Extended Connectivity Fingerprint (ECFP). It goes through each atom of the 
molecule and obtains all possible paths through this atom with a specific radius. Then, each unique path is hashed into a 
number with a maximum based on the bit number [21]. The higher the radius, the bigger fragments are encoded. 

 

Molecular fingerprints are limited by their ability to accurately 
represent the chemical structure and properties of molecules. 
Additionally, molecular fingerprints can be prone to false 
positives and false negatives due to their size. This can lead to 
inaccurate results in certain applications. The primary drawback 
of the discussed current molecular structure fingerprints is their 
general-purpose use. This involves encoding structures into 
large-sized bit-vectors and encoding all possible substructures, 
resulting in redundancy. To counter the limitation of the existing 
molecular fingerprinting algorithms, the research further 
discusses the application of neural networks to drug molecular 
structures.  

Neural fingerprint methodology 

A replacement for the molecular fingerprint of drug structure is to 
apply a neural network to drug structures [22]. Neural network 
fingerprints are machine learning techniques that can be used to 

identify and classify molecules. They rely on deep neural networks, 
which take in a molecule’s structure and output a fingerprint that 
captures the essential features of that molecule. The steps involved 
in the algorithm designed for neural network fingerprint are given in 
fig. 3. 

The drug molecular structure is considered as input to the neural 
network. The radius of the molecule and the input and output 
weights are the initial hyperparameters set for the model. A bit array 
vector for storing the fingerprints is initialized. For each atom in the 
molecule, the neighboring atoms are identified and summed up.  

A smoothing function is applied to obtain approximate values. 
The fingerprint obtained for each atom is added to the 
fingerprint vector. After performing the above process for al l the 
atoms in the molecule, the entire fingerprint vector is returned. 
These neural graph fingerprints offer several advantages over 
fixed fingerprints. 
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Fig. 3: Steps involved in the neural fingerprint algorithm 

 

Predictive performance 

ML fingerprints can provide better performance at prediction tasks 
than the predefined fixed fingerprint technique by using the 
available data at hand. The prediction performance of the neural 
graph fingerprint technique is comparatively better at solubility, 
drug efficacy, and organic photovoltaic efficiency datasets than the 
existing molecular fingerprinting technique. 

Parsimony 

To encode all possible substructures without any overlap, the 
standard fingerprints need to be very large. The fingerprint vector 
size can go up to 43,000 even after eliminating the rarely occurring 
features [23]. Only the relevant features are encoded by the 
differentiable fingerprint, thus reducing the downstream 
computation and regularization requirements. 

Interpretability 

The problem with the existing fingerprint was that it encoded each 
fragment separately without identifying the similarity between 
them. Compared to neural graph fingerprint, it encodes distinct 
features separately and identifies the overlap, making the fragment 
representation more meaningful. 

After identifying the optimum fingerprint algorithm, the next step was 
to identify the critical substructures of the drug structure responsible 
for causing an ADR. The fingerprint similarity was done for all the 
adjacent molecular structures in the dataset, but a common 
substructure for all structures in the given dataset was not able to be 
obtained. Therefore, the ‘Maximum Common Substructure’ algorithm 
was applied for the positive drug structure samples. 

Maximum common substructure (MCS) [24] refers to a set of atoms 
or molecules that are shared between two or more molecules. These 
atoms and molecules will form the same structural arrangement 
despite differences in their functional groups. MCS can be used to 
identify similarities, generate leads for drug discovery, and 
determine structure-activity relationships. Fig. 4 shows the MCS 
between two representative molecules. 

 

 

Fig. 4: Maximum common substructure between two representative molecules 

 

The common substructure was identified for the given set of drug 
structures. Next, the drug substructure was compared with a 
random set of drug structures to identify its presence and predict its 
possibility for ADR association. 

RESULTS AND DISCUSSION 

Over the last decade, substantial research has been carried out in the 
field of ADR detection and prediction. Initially, the ADRs were 
detected based on their temporal association with drugs, as 
discussed by Shanmugapriya et al. in their research. Signal detection 
techniques [25] were also applied to Spontaneous Reporting System 
(SRS) databases to identify the true signal among all the reported 
ADR instances. After successfully performing ADR detection on both 
reported ADRs and medical reports of patients, further research 
efforts were applied to successfully predict the occurrence of severe 
and harmful ADRs soon. 

The majority of research carried out in the domain of ADR 
prediction is based on the SRS dataset and electronic health records. 
The limitations of the SRS dataset are under-reporting [26], data 
duplication, and data quality issues, while the drawback of electronic 
health records is their unavailability [27]. Therefore, a methodology 
needs to be developed to counter the issue of data quality as well as 
its unavailability. In 2012, a research study was performed by Liu et 
al. [28] to predict ADRs by integrating the drug's biological, 
chemical, and phenotypic properties. Although the performance 

metrics reported by the research were above 90% in terms of 
accuracy for all ADRs the drawback of this research work was the 
model’s interpretability for acceptance in the medical domain. 

The integration among different datasets was done through the 
network and knowledge-graph representation techniques [29]. 
The inference of these research studies showed that to some 
extent, the molecular structure of drugs was associated with the 
ADRs caused due to it. This concept was mainly discussed in the 
research study done by Dey, et al. [30] in 2018 where the 
prediction of ADR was done using the molecular structure of 
drugs. For prediction algorithms to be applied to drug molecular 
structures these structures should be converted into fixed-size bit 
vector arrays. The entire process of conversion is performed using 
fingerprinting techniques [30]. The performance assessment of 
different fingerprint techniques was also done as part of their 
research work. Although the research study tackles the issue of 
model interpretability, the prediction model does not account for 
the severity of adverse drug reactions. The molecular structure 
can further be partitioned into several substructures. The analysis 
of these substructures can be associated with the prediction of 
ADR in an early stage of the drug development life cycle.  

Processes related to substructures can be identifying its presence in 
the given drug structure, substructure-substructure similarity 
matching [31], and extracting MCS from a set of molecular 
structures, which is based on the mathematical concept of maximum 
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common subgraphs derived by Cao et al. [32] in his research work. 
The application of drug substructures is not only limited to drug 
discovery [33] as well as drug repositioning [34] for different 
diseases but also associating the side effects of drugs with similar 
drug substructures [35]. Therefore, the authors of this research 
study have made an attempt to address the issue of prediction of 

severe ADRs based on their drug substructure analysis and develop 
an interpretable ML model for acceptance in the medical domain. 

This fingerprint algorithm is tested on a sample dataset referenced in table 
1 and the prediction results were evaluated based on training accuracy and 
test accuracy. The results are shown in the following table 4. 

  

Table 4: Results obtained from model development and validation using fingerprint algorithms 

Fingerprint algorithm Accuracy of the training dataset Accuracy of the test dataset 
Pubchem fingerprinter 0.9667 0.5333 
AtomPairs2D fingerprinter 0.9194 0.4615 
Estate fingerprinter 0.8675 0.4596 
Extended fingerprinter 0.9877 0.5035 
GraphOnly fingerprinter 0.9649 0.4650 
KlekotaRoth fingerprinter 0.9675 0.5298 
MACCS fingerprinter 0.9675 0.5018 
Substructure fingerprinter 0.8781 0.5088 
Circular fingerprinter 0.9947 0.6573 
Morgan fingerprinter 0.7212 0.7118 
Neural fingerprinter 0.7953 0.7318 

 

After analyzing the results from table 4, it was evident that the 
outcomes of the Morgan fingerprint and Neural fingerprints were 
comparable. However, the performance of the Neural fingerprint 
algorithm was superior. While both algorithms shared a similar 
initial framework, the Neural fingerprint algorithm incorporated a 
neural network, which contributed to its enhanced performance. In 
the Neural fingerprint algorithm, a summation operation was 
conducted for each atom in the molecule instead of concatenation. A 
smooth function was also applied to the final layer, contrasting with 
the hash function utilized in the Morgan fingerprint algorithm. 
Furthermore, the Neural fingerprint algorithm added the fingerprint 
to the fingerprint vector instead of indexing, as is done in the 
Morgan fingerprint. 

Based on the obtained results for both algorithms, it was evident 
that the Neural fingerprint algorithm exhibited optimal performance 
compared to other Molecular fingerprints [36]. 

Substructure analysis of molecular structures 

The subsequent step involved applying the MCS algorithm to the 
positive drug structure observations. The extracted common 
substructure was then compared with the entire dataset of samples. It 
was observed that the extracted common substructure existed in 
approximately 90% of the drug structures within the sample dataset. 
This outcome could be attributed to the fact that the comparison was 
performed using the same dataset from which the common 
substructure was extracted. To address this limitation, a random 
dataset was obtained from the ChEMBL database [12], as described 
earlier. This dataset encompasses the molecular structures of 
approximately 14,000 drugs. The common substructure derived from 
the sample dataset was subsequently compared with this new dataset. 
Around 100 data samples were extracted for this comparison, and 
upon evaluation, it was found that five drug structures returned true 
values, indicating the presence of the common substructure. The 
results of this comparison can be seen in fig. 5. 

 

 

Fig. 5: Molecular structures obtained as hits from a pilot study 

 

The obtained drug structures were initially compared with the drugs 
in the sample dataset to identify any common records. However, no 
such records were found. Subsequently, the drug structures were 
transformed into fingerprints, and predictions were made for all five 
molecular structures. Among the tested structures, four were 
predicted to be true for causing the specified ADR (hepatobiliary 
disorder). This pilot study highlighted the significant role that drug 
substructures play in the occurrence of ADRs. It emphasized the 
importance of early detection and prediction of ADRs based on the 
analysis of drug structures themselves. By identifying the specific 
substructures associated with ADRs, this approach lays the 
foundation for proactive measures in drug safety assessment. 

Generalizing the results of the pilot study on the real-world dataset:- 
The FAERS dataset described earlier was pre-processed using the 
steps shown in fig. 6. As illustrated in fig. 6, the main steps of the 
process included converting drug names into SMILES format for 
neural fingerprint techniques, extracting external drug 
characteristics, and encoding patient-related data for the application 
of machine learning algorithms. The drug dataset was then 
integrated with the reaction dataset using primary ID and case ID as 

key identifiers. Subsequently, the most frequently occurring adverse 
drug reactions were identified and presented in table 5. 

 

 

Fig. 6: Pre-processing of the FAERS dataset
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Table 5: Top-10 most occurring ADRs 

S. No. ADR Occurrence 
1 Aplastic anemia 347 
2 Mucosal inflammation 272 
3 Nausea 146 
4 Hypogonadism 142 
5 Pancreatitis acute 142 
6 Pain 137 
7 Vomiting 125 
8 Dry mouth 102 
9 Somnolence 96 
10 Sepsis 96 

ADR prediction using ML approaches: -The prediction of adverse reactions to drugs was performed by incorporating different compositions of 
feature variables. Strategy 1. To predict ADRs using only neural fingerprints of drugs:- As seen in table 6, the ML algorithms were used to predict the 
probability of the occurrence of different ADRs based only on the drug fingerprints. 

 

Table 6: Fingerprint-based prediction based on AUC 

Adverse drug reactions 

AUC  Aplastic 
anemia 

Pain Nausea Mucosal 
inflammation 

Hypogonadism Pancreatitis 
acute 

Vomiting Dry 
mouth 

Somnolen
ce 

Sepsi
s 

Random forest 
model 

0.56 0.68 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 

Support vector 
machine (SVM) 

0.51 0.67 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 

Logistic regression 0.51 0.67 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 

ANN 0.53 0.50 0.50 0.54 0.50 0.50 0.50 0.50 0.50 0.50 

 

Instead of using accuracy as the evaluation metric for the model, 
AUC was employed. It is a preferred metric as it ensures that the 
performance of the classification model remains independent of the 
threshold value chosen. The achieved performance for the drug 
structure fingerprints exceeded 65%. This indicated that the model 
performed well when relying solely on fingerprints. However, there 
is potential for further improvement by incorporating additional 
feature variables alongside the fingerprints. 

Strategy 2. To predict ADRs using fingerprints as well as other 
characteristics of drugs: -The external features of drugs, namely 
target inhibitors and toxicity, are known to have an impact on the 
occurrence of ADRs. To account for these factors, the target 
inhibitors and toxicity information were concatenated with the drug 
SMILES fingerprints. Subsequently, predictions were made using 
this combined dataset for the 10 most frequently observed ADRs. 
The results obtained from this analysis are presented in table 7.

 

Table 7: Prediction based on fingerprint and other drug characteristics 

 Adverse drug reactions 

AUC  Aplastic 
anemia 

Pain Nausea Mucosal 
inflammation 

Hypogonadism Pancreatitis 
acute 

Vomiting Dry 
mouth 

Somnolence Sepsi
s 

Random forest 
model 

0.56 0.68 0.55 0.56 0.55 0.55 0.55 0.55 0.55 0.55 

SVM 0.56 0.71 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 

Logistic regression 0.56 0.69 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 

ANN 0.55 0.66 0.55 0.55 0.50 0.55 0.51 0.55 0.52 0.52 

 

Based on the findings presented in table 7, it can be deduced that the 
incorporation of drug characteristics, in combination with 
fingerprints, results in a noticeable improvement of approximately 
5% in the AUC compared to our initial prediction model. This 
indicates that the inclusion of drug characteristics has enhanced the 
classifier's ability to classify adverse drug reactions. Notably, the 
SVM algorithm demonstrates the most significant improvement 
among the applied methods. 

Strategy 3. To perform prediction using fingerprints, drug 
characteristics, and patient data: - 

To assess the real-world impact, a dataset was constructed by 
incorporating patient data, including age, weight, gender, and 
demographic details, alongside drug and adverse reaction information. 
The occurrence of adverse drug reactions within the patient population 
was analyzed using this dataset. Finally, predictions for ADRs were made 
by combining fingerprints, drug characteristics, and patient data. The 
results of these predictions are presented in table 8. 

Table 8 demonstrated a substantial enhancement in the 
performance of the prediction model when the patient dataset is 

combined with the drug data. This indicates that the inclusion of 
patient data, in conjunction with drug data, effectively predicts the 
occurrence of adverse drug reactions, resulting in a noteworthy 
increase of 30% in AUC. Notably, certain adverse reactions, such as 
aplastic anemia, hypogonadism, and acute pancreatitis, exhibit a 
considerable boost in AUC.  

To evaluate the severity of the ADRs, their impact on human health 
was assessed, as depicted in fig. 7. The analysis took into account the 
range of effects, ranging from mild symptoms such as cold and cough 
to more severe consequences that necessitate hospitalization or 
even result in fatalities. 

Extracting the most commonly occurring substructure for most 
severe ADRs 

To identify the most common substructure associated with the given 
ADRs, it was compared with the original dataset to check for 
repetition. To broaden the comparison, a random dataset 
comprising approximately 8 million drug structure records in 
SMILES format was downloaded from ChEMBL [23]. The provided 
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substructure was then compared with all the records in the ChEMBL 
dataset, yielding the following results:  

MCS for aplastic anemia: -. The structures shown in fig. 8 were found 
to be true, containing the highlighted MCS. 

 

Table 8: Prediction based on drug and patient data 

Adverse drug reactions 

AUC  Aplastic 
anemia 

Pain Nausea Mucosal 
inflammation 

Hypogonadism Pancreatitis 
acute 

Vomiting Dry 
mouth 

Somnolence Sepsis 

Random forest model 0.89 0.71 0.64 0.85 0.95 0.95 0.75 0.75 0.79 0.79 

SVM 0.92 0.79 0.75 0.91 0.91 0.92 0.77 0.85 0.82 0.9 

Logistic regression 0.92 0.84 0.78 0.93 0.92 0.92 0.78 0.87 0.83 0.87 

ANN 0.54 0.65 0.65 0.82 0.59 0.54 0.5 0.5 0.61 0.7 

 

 

Fig. 7: Bar chart representing frequency distribution of ADR severity; after analyzing the impact of adverse reactions of drugs on patients’ 
health, the three most severe ADRs were aplastic anemia, mucosal inflammation, and vomiting 

 

 

Fig. 8: Highlighted MCS containing hits for aplastic anemia ADR 

 

The predicted model was utilized to perform predictions for all of 
these structures using their fingerprints, and all of them returned 
true values, indicating that these structures had the potential to 
cause aplastic anemia. The accuracy of the predictions was further 
validated using literature evidence [37]. This validation supported 

the reliability of the prediction model in identifying structures that 
were associated with the occurrence of aplastic anemia. 

MCS for mucosal inflammation: -For this ADR, three molecular 
structures returned to be true of containing the highlighted MCS as 
depicted in fig. 9. 

  

 

Fig. 9: Highlighted MCS containing hits for mucosal inflammation ADR 

 

The structures for which the common substructure returned a true 
value were converted into fingerprints, and predictions were 
made based on these fingerprints. The predictions resulted in 
positive values for all the structures, indicating that these 
structures were also associated with mucosal inflammation. To 
validate these predicted outcomes, literature evidence was 

referenced [38]. This validation strengthened the reliability of the 
prediction model in identifying structures that contribute to the 
occurrence of mucosal inflammation.  

MCS for vomiting: -For this ADR, three molecular structures 
returned to be true as depicted in fig. 10. 

 

 

Fig. 10: Hits for vomiting ADR 
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Upon applying the prediction model to these structures, it was 
observed that only two of them returned a positive prediction, while 
the third structure yielded a negative prediction, as reported [39]. 
The model correctly predicted the first and third structures as 
positive, indicating their association with the specified outcome. 
However, the second structure was predicted to be negative, 
suggesting it might not be linked to the outcome. Further analysis 
revealed that the third structure could be realigned or reconfigured 
to form an MCS, which would then align with the positive prediction. 
This discrepancy highlighted the complexity and intricacies involved 
in predicting the relationship between structures and specific 
outcomes. It emphasized the importance of continuous validation 
and refinement of prediction models based on real-world evidence 
and alignment with MCS. 

In summary, this research study aimed to detect and predict ADRs 
early by utilizing drug and patient characteristics, employing the 
drug's molecular structural fingerprint technique. One major 
challenge in medical research is obtaining patient data, which was 
addressed in this study. The prediction model based on drug 
fingerprints achieved performance with an AUC metric of above 
65%. By incorporating patient data alongside drug characteristics, 
the algorithms showed a significant improvement in AUC, increasing 
it by 30%, and indicating its effectiveness as a classifier. The 
extracted substructure was also identified and visually presented in 
fig. 8, 9, and 10, demonstrating the interpretability of the entire 
process. Furthermore, the prediction model successfully predicted 
ADRs for unknown drugs and validated its predictions using 
literature evidence. Overall, this research study effectively achieved 
its objectives and contributed to the advancement of early detection 
and prediction of ADRs. 

CONCLUSION 

The pilot study revealed that specific drug components significantly 
influence ADRs. This insight was applied to the pre-processed FAERS 
dataset using drug fingerprints and patient data. Machine learning 
showed drug fingerprints alone achieved over 65% prediction 
accuracy, addressing data limitations. Incorporating patient data 
improved overall prediction by approximately 30%. The study also 
focused on model interpretability using outcome visualization 
techniques. In conclusion, our research successfully tackled early ADR 
detection, data limitations, and model interpretability challenges, 
offering a valuable framework for future studies in the field. 
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