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ABSTRACT 

Artificial Intelligence (AI) has facilitated significant breakthroughs in drug discovery, the design of materials, and organic synthesis. The advancements 
in the latter group are especially remarkable due to the abilities of the latest computational methods (molecular design algorithms) that enable the 
exploration of extensive chemical spaces and enhance research in fields such as predicting molecule properties, designing molecules, retrosynthesis, 
predicting reaction conditions, and predicting reaction outcomes. A literary review was conducted following PRISMA guidelines. This study aimed to 
review existing data on the application of AI in separation chromatography. The evolution and utilization of AI in the pharmaceutical industry and its 
future aspects were articulated in this study. The utilization of AI can completely transform the field of chromatography analysis by facilitating 
expedited, more precise, and more effective data processing. By automating chromatography analysis, AI can enhance efficiency and minimize the 
potential for human mistakes. This advancement enables scientists to dedicate their efforts towards addressing intricate and demanding analytical 
issues. With the evolution of technology and the increasing adoption, we can anticipate more progress in chromatography analysis and analytical 
chemistry. 
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INTRODUCTION 

Chromatography is a crucial separation technique for high purities 
in food, soil, water and pharmaceutical samples. Preparative 
chromatography is an established technology in biopharmaceutical 
manufacturing that is crucial in achieving high-quality separation 
and purification [1]. Historically, preparative chromatography was 
established through laborious laboratory experiments that required 
significant amounts of time and materials [2, 3]. However, the 
manual operational process is tedious, time-consuming, and 
susceptible to human error [4]. Further, more than these methods 
are needed to meet the current demands of efficient and customized 
pharmaceutical manufacturing within shorter timeframes for 
development [5]. Hence, there is a demand for more expeditious 
approaches to process development, which enhance the 
pharmaceutical industry's understanding of processes [6, 7]. A 
practical method to address this goal is to employ process modelling 
for the development. Models are constructed using mathematical 
equations that accurately represent physical and biological aspects 
of the process, which significantly enhances comprehension [8, 9]. 
Therefore, there is a need for rapid and precise methods to 
determine model parameters with minimal effort [10, 11]. 

AI is an emerging discipline focused on utilizing computer systems 
to solve issues by executing algorithms that imitate the cognitive 
functions of the human brain. AIis emulating human cognitive 
processes via machines, particularly computer systems. Most 
contemporary AI algorithms can establish connections between 
inputs and outputs, adjust their behaviour based on environmental 
cues, and subsequently make decisions, enhancing the likelihood of 
delivering precise responses. AI's primary benefit includes 
extracting significant and impartial information from datasets that 
are either extraordinarily huge or highly intricate, beyond the 
analytical capabilities of humans, and giving better and more precise 
predictions [12]. In addition, the increased processing capacity of 
computers, coupled with the advancement of robust algorithms and 
their availability through open-source platforms (such as APIs, 
frameworks, and training data), has facilitated the utilization of AIin 
various scientific domains [13-17]. AI has facilitated significant 
breakthroughs in drug discovery [18, 19], drug safety [20], the 
design of materials [21-23], and organic synthesis [24]. The 
advancements in the latter group are especially remarkable due to 
their ability to apply new computational methods (molecular design 
algorithms) that enable the exploration of extensive chemical spaces 

and enhance research in fields such as predicting molecule 
properties [25], designing molecules [26], retrosynthesis [27], 
predicting reaction conditions [28], and predicting reaction 
outcomes [29]. 

Additionally, it can facilitate the automation of analyzing extensive 
datasets, enhance the precision and uniformity of data analysis, 
detect and rank areas for further investigation, optimize the 
configuration of separation experiments, gain a deeper 
comprehension of the intricate connections among various 
components in a mixture, and expedite the advancement of novel 
separation techniques and technologies. Despite notable progress in 
education, the development of easy-to-use frameworks, and the 
availability of pre-trained neural networks, applying AI for analytical 
methods has yet to be thoroughly studied and remains poorly 
understood. The issues highlighted can be attributed to the 
discrepancy between the current academic training and the complex 
nature of modern algorithms used in data science. Utilizing machine 
learning algorithms with less intricate data can potentially overcome 
challenges in analytical chemistry [18, 21-24]. Preparative 
chromatography is a well-established biopharmaceutical 
manufacturing technology that provides high-quality separation and 
purification. An effective strategy to address this goal is employing 
process modelling for development. Models are constructed using 
mathematical representations of physical and biological phenomena 
to enhance understanding of the process. This leads to reduced 
development time and the ability to use model-based process 
control methods and optimization [30]. Given the context, a 
comprehensive literary analysis was undertaken to comprehend the 
incorporation of AI in separation chromatography. 

Methodology 

Reputed databases, such as PubMed and Google Scholar, were 
searched for the research articles published in chromatography and 
AI using a search strategy.  

Search strategy 

The secondary data was obtained using a search strategy developed 
with keywords such as “Separation chromatography” and 
"Analytical chemistry and artificial intelligence”. “Chromatography 
and AI” were used. The study approach adhered to the PRISMA 
principles, prioritising transparency and reproducibility. This 
ensured that every step, from the search strategy to data synthesis 
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and reporting, was clearly and thoroughly documented. The 
obtained publications underwent a thorough screening process, 
where their titles and abstracts were carefully examined to discover 
potentially relevant studies. The eligibility of full-text articles was 
evaluated based on predetermined criteria for inclusion and 
exclusion. Systematic data extraction involves gathering relevant 
information from each chosen study, such as study design, sample 
size, methodology, outcomes, and significant findings. The quality of 
the included papers, particularly in systematic reviews and meta-
analyses, was evaluated using quality assessment methods or 
checklists. The inclusion criteria included studies comprised of 
research and review articles published between 2018 and 2023 and 
articles published in English Language and Peer-reviewed journals. 
Articles not available in full text or required payment, those 
published before the selected time, and in languages other than 
English were excluded. 

Evolution of AI in chromatography 

Over the last fifty years, analyzing and comparing large amounts of 
data from chromatography of natural and complex products, 
including essential oils, flavours and fragrances, pharmaceuticals, 
and petroleum products, have required manual methods due to 
unpredictable and nonlinear variations in retention times (RT). 
These datasets typically contain 20 to 1000 or more peaks. The issue 
has been resolved using software that employs neural algorithms, 
enabling the automated processing of intricate chromatograms [31]. 

 

Fig. 1: Bar chart showing the number of publications related to 
the application of AI in chromatography 

Source: Pubmed, keywords used: chromatography and AI, year: 
2018-2023 

 

 

Fig. 2: Automatic data interpretation using AI in different chromatographic techniques 
Source: Author generated 

 

Evolution of high throughput process development (HTPD) 

Introduction to the concept of model-based approaches. HTPD 
facilitated expedited and comprehensive screening of conditions, 
hence augmenting knowledge. Model-based HTPD has played a 
crucial role in the (bio)pharmaceutical business, specifically in 
chromatography. Chromatography is the primary method used for 
purifying protein subunit vaccines. The majority of vaccine 
purification methods rely on heuristics. For instance, when purifying 
hepatitis A virus from mammalian cell cultures, the initial step 
involves using low-cost anion-exchange chromatography to capture 
the product and eliminate significant impurities. The final step in the 
downstream process involves a polishing and desalting step using 
size-exclusion chromatography. Currently, there are several 
commercially available chromatographic mechanistic models 
software, such as GoSilico (now part of Cytivia, formerly known as 
ChromX), Aspen Chromatography, DelftChrom, CADET, and 
ChromaTech. While equilibrium and binding capabilities of 
membrane chromatography are typically restricted, membrane 
chromatography surpasses conventional packed bed 
chromatography in terms of productivity and bed utilization at high 
flow rates and short residence times [32]. 

A crucial chromatography element is the capacity to create a 
chromatograph using artificial intelligence. This allows for the 
automatic development of an analytical method for High-
Performance Liquid Chromatography (HPLC). This means that the 
ideal composition of the mobile phase can be chosen from scouting 
tests, and the optimal operating parameters can be adjusted to 
achieve the desired analytical results. The chromatographic 
approach can also provide qualitative information about the peaks, 
particularly for an unidentified mixture, based on the 
chromatogram. To achieve this objective, essential equations for the 
retention of undissociated solutes, weak organic bases, weak acids, 
and amphoteric substances in liquid-solid chromatography were 
derived by considering variations in the composition of the mobile 
phase. The software RVPKLC-83 was designed to compute the 
parameters of these equations based on empirical data, and the 
accuracy of the equations was experimentally confirmed. The 
OMPCLC-83 programme was created to forecast the most favourable 
composition of the mobile phase. A HPLC equipment fitted with a 
fast-scanning Ultra Voilet (UV) detector system was utilized. The 
ChgrA-83 programme is currently under development to determine 
peak purity and detect unresolved peaks [33]. 
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Preparative and process chromatography is a flexible procedure 
used to separate, purify, and refine a wide range of molecules, 
particularly those that are highly similar and complex, such as 
sugars, diastereomers, isomers, plant extracts, enantiomers, and 
rare earth metal ions. Bio-chromatography is an ever-expanding 
area of application that involves a wide range of complex molecules, 
including peptides, proteins, Monoclonal Antibodies (mAbs), 
fragments, Virus Like Particles (VLPs), and even mRNA vaccines. In 
addition to chemical diversity, separation processes encompass 
selective affinity ligands, hydrophobic contact, ion exchange, and 
mixed modes. Bio-chromatography ranges from a few kilogrammes 
to 100,000 tonnes per year, with column diameters typically ranging 
from 20 to 250 cm. Therefore, there is a requirement for a 
multifunctional and efficient tool that can be used for both process 
design and operation optimization, as well as process control [30]. 

Extensive experimentation is frequently required to ascertain the best 
solvent system in mixed solvent extraction. Centrifugal Partition 
Chromatography (CPC) is a liquid-liquid preparative chromatographic 
separation technique commonly employed in pharmaceutical and 
natural product purifications. It often necessitates using a solvent 
system including three or more components. To get the desired 
results, it is necessary to use multi-stage hybrid solutions with 
different components when dealing with complicated feedstocks, such 
as lignin depolymerization products. AIoffers significant potential for 
improving the complex process of selecting solvents. The training 
dataset can be obtained and organized from numerous sources, 
including academic publications, printed handbooks, and online 
archives. Machine learning can be utilized to create quantitative 
structure-property relationship (QSPR) models. These models 
establish a connection between the molecular structure of solvents 
and solutes and their physicochemical properties and extraction 
performance. They can predict the behaviour of untested 
combinations of solvents and solutes, providing valuable information 
on the most favourable solvents for specific extraction tasks [34]. 

AI approaches have significantly increased the accuracy of predicting 
retention in chromatographic procedures. AI can effectively analyze 
large data sets and simplify the identification and separation of 
substances. Multiple methodologies have been documented for the 
prediction of retention in various chromatographic techniques. 
Consistent findings have shown that deep learning models surpass linear 
machine learning models in terms of accuracy and efficacy, particularly 
in liquid and gas chromatography. The most commonly used method for 
predicting retention factors of various substances in thin-layer 
chromatography is Support Vector Machine-based neural networks. 
Cheminformatics, chemometrics, and hybrid techniques were utilized for 
the modelling and proved more dependable in retention prediction than 
traditional models. The Quantitative Structure Retention Relationship 
(QSRR) is a promising approach for predicting the retention of analytes 
in various chromatographic methods and identifying the optimal 
separation procedure. By integrating QSRR with AI-driven 
methodologies, these methods showcased the benefits of achieving more 
accurate retention predictions [35]. 

Used in the food industry 

Recently, Phyto-control, a French company, has collaborated with 
Fujitsu (a Japanese company) to automate chromatographic 
techniques using AI. AI-enhanced chromatography offers quick 
sample analysis without any human error. Food products must be 
accurately analyzed to prevent contaminants from being introduced 
into the supply chain. If the contaminant-detecting process is weak, 
entire populations could be affected. As stated above, 
chromatography is one of the most reliable techniques for analyzing 
food samples, i.e., processed and raw products. 

According to a recent World Health Organization (WHO) study, 
approximately 0.4 million people die annually due to the ingestion of 
contaminated food. Besides Phyto-control, Virtual Control, a Hong 
Kong-based company, has developed AI technology and machine 
learning-based software to provide analytical solutions in laboratory 
testing. In the case of Virtual Control, AI has been integrated with 
gas chromatography and mass spectrometry (GC/MS) platforms. 
The integrated product is ACIES, which has enhanced laboratory 
testing accuracy, efficiency, and productivity. This technology can 

benefit various industries, including agriculture, food, the 
environment, and applied materials [36]. 

A study conducted by Aghili et al. in 2022 presented a method to 
determine the odour characteristics of edible vegetable oils by 
analyzing their volatile aromas using an electronic olfactory device. 
This investigation collected odour profiles for eight different 
concentrations of sunflower and canola oil combined with sesame 
oil. The samples were analyzed simultaneously using GC-MS. The 
chemometric approaches, such as Linear Discriminant Analysis 
(LDA), Principal Component Analysis (PCA), Support Vector Machine 
(SVM), Quadratic Discriminant Analysis (QDA), and Artificial Neural 
Networks (ANN), were used to analyze the data collected from the 
electronic nose. The electronic olfactory system effectively identified 
a subtle deception involving a mixture of 25% sunflower oil and 
75% sesame oil despite the difficulty of detecting it through the gas 
chromatography-mass spectrometry method. This implies that the 
existing technique can detect and quantify occurrences of fraudulent 
activities related to edible oil to improve efficiency and monitoring 
and ensure the safety of eating edible vegetable oils [36]. 

Leite et al., 2019, created two models, Radial Basis Function (RBF) 
and MIP, using MATLAB and integrated them into High-Performance 
Liquid Chromatography, which is employed to detect the lactose 
concentration following the absorption process. The RBF and MIP 
models offer superior efficiency, speed, and simplicity.  When 
comparing RBF with MIP, it is shown that RBF requires more 
neurons in each layer for various tasks. However, RBF requires more 
hidden layers of neurons [37]. 

Further, Viejo et al., 2022, developed two ANN models to evaluate 
the quality of beer and to forecast: i) the peak area (PA) of 17 
distinct volatile aromatic compounds (Model 1) obtained through 
GC–MS, and ii) the intensity of ten sensory descriptors collected 
from a sensory session involving 12 trained panellists. The ANOVA 
results indicated significant disparities among the utilized samples, 
demonstrating the e-nose's ability to differentiate between them. 
The ANN models produced highly accurate results, with correlation 
values of R = 0.97 (Model 1) and R = 0.93 (Model 2) [36]. Another 
study by Warren-vega et al., 2023 developed a novel AIapproach to 
explore the relationship between the physicochemical profile and 
colour gained during the 100% agave Tequila maturation phase. The 
findings demonstrate using artificial intelligence-based techniques 
as a supplementary approach for assessing quality control in aged 
beverages [39]. 

Uses in healthcare 

The application of three AI techniques, namely Hammerstein-
Wiener (HW), multilayer perceptron (MLP), and SVM, in qualitative 
properties prediction of an anti-Alzheimer agent using high-
pressure liquid chromatography technique, demonstrated the 
promising capability of AI-based models in modelling the qualitative 
properties of the anti-Alzheimer agent. By observing the varying 
outputs of AI-based models over different time intervals, it became 
clear that combining the outputs of these models, known as 
ensembling, is necessary. Thus, the simple average ensemble and 
support vector machine ensemble (SVM-E) were utilized to improve 
the performance capabilities of the basic models [40]. 

In a recent publication, an AI-based solution for chromatographic 
data processing in the pharmaceutical industry was developed and 
applied using a "Digital by design" managerial approach. The 
authors, from Merck Serono (Italy) and Bosch Global Software 
Technologies Private Limited (India), proposed a potential GxP 
framework for using AI across the healthcare industry. The project 
was executed under a Digital Innovation Management framework, 
ensuring the involvement of stakeholders and decision-makers from 
proof of concept through proof of feasibility and finally to proof of 
value [41]. 

Further, De Vooght-Johnson, 2021, developed an artificial 
intelligence-based model for improving the prediction of peak 
perfection of an anti-oxidant Isoquercetin, where the RT was 
predicted using two individual nonlinear AI models, namely ANN 
and Adaptive Neuro-Fuzzy Inference System (ANFIS), along with 
Multi Linear Regression (MLR) Analysis, a traditional linear model. 
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In addition, the models were improved by using different ensemble 
techniques, specifically the simple average ensemble (SAE) and two 
types of ANFIS ensembles: the adaptive neuro-fuzzy inference 
system grid-partitioning ensemble (ANFIS-GPE) and the adaptive 
neuro-fuzzy inference system subclustering ensemble (ANFIS-SCE) 
[42]. 

Usman et al., 2020 used four models in a different study to predict the 
RT and PA of isoquercitrin (extracted from various plant species) 
using HPLC: ANFIS, ANN, SVM, and MLR. The simulation uses the 
standard concentration, the composition of the mobile phases (MP-A 
and MP-B), and the pH as the input variables. The performance 
efficacy of the models was evaluated using the relative mean square 
error (RMSE), determination coefficient (DC), mean square error 
(MSE), and correlation coefficient (CC). The findings of this 
investigation demonstrate that all four models can precisely forecast 
the qualitative and quantitative attributes of the bioactive chemical. 
Through a predictive comparison, it was ascertained that M3 
demonstrated the utmost prediction accuracy among the three 
models. 

Further examination of the findings indicated that ANFIS–M3 
outperformed the other models and is the most efficient model for 
forecasting PA. Nevertheless, ANN–M3 proved its value. It emerged 
as the superior model for tR simulation due to its high projected 
accuracy, establishing it as a dependable tool for qualitative and 
quantitative determination [43]. 

The results showed that the developed AI architecture could automate 
the chromatographic peak integration process with high accuracy and 
efficiency. The AI model learned the analytical variations in the 
chromatographic profiles related to the peak shapes, baseline drift, 
operator variations, and RT shifts. This allowed the algorithm to 
predict new chromatographic profiles' RT and peak shape, integrating 
them with high accuracy. The results of this study suggest that AI has 
the potential to revolutionize chromatographic peak integration. AI 
algorithms can be used to automate the process of peak integration, 
significantly improving the accuracy and efficiency of the process. This 
could lead to significant benefits for the biopharmaceutical industry, 
including improved patient safety and reduced cost.  

Future of AI in Chromatography 

Shortly, membrane materials with increased binding capabilities 
will be developed, potentially resolving the limitation on surface 
area per unit volume of resin. The biopharmaceutical business finds 
the progress in membrane chromatography technology highly 
intriguing. Chromatography uses two phases that do not mix to 
extract and separate components from mixtures. Combining HT 
methods with statistical or mathematical/thermodynamic models is 
a convenient approach for characterizing these systems [44]. 

Current process modelling methods have the challenge of requiring 
complex laboratory experiments to determine and validate model 
parameters. To have a broader range of uses in everyday project 
tasks, the technique must be more efficient and demand less 
exertion from individuals who are not experts in chromatography. 
Due to significant advancements in artificial intelligence, novel 
approaches have been developed to meet this requirement. Once the 
ANN has undergone training, it can be utilized to predict the 
isotherm parameters of unfamiliar components, provided that they 
fall within the limits of its training data. This provides the 
opportunity to significantly decrease the amount of experimental 
and computational work required, allowing those without expertise 
to complete model parameter estimations accurately. 

Moreover, this approach provides the chance to obtain real-time 
parameter estimations for controlling the chromatographic process.  
This is possible because of its fast computation times and 
outstanding accuracy. Subsequent research will explore the 
expansion of the artificial neural network's capabilities to estimate 
more model parameters and isotherms. This will be done to achieve 
a model-based autonomous process operation in conjunction with 
the process analytical technology approaches [30]. 

Continuing with this pursuit results in the complete conversion of 
the plant into a digital format, sometimes called the digital twin. 
Therefore, there is a need for a rapid and precise method to 
determine model parameters with minimal effort [30]. When used 
with optimization algorithms, AI can aid in examining solution 
spaces with several dimensions and determine the most 
advantageous compromises between conflicting objectives, such as 
extraction efficiency, selectivity, environmental effect, and cost. The 
rapid progress in AI and its use in this crucial domain present 
promising prospects, including enhanced sorbent material design, 
refined extraction solvent selection, and optimized process 
operating conditions. Using artificial intelligence, scientists and 
engineers can fundamentally restructure separation processes, 
revolutionize several industries, and significantly contribute to 
achieving a more sustainable future [45].  

Comparison between traditional and AI-based approach 

AI has revolutionized chromatography by streamlining method 
development, improving data analysis, enhancing accuracy, and 
increasing the speed and efficiency of analysis. It has opened up new 
possibilities for various industries for advanced research, process 
optimization, and quality control. However, it is essential to note 
that while AI-based methods offer advantages, they should be 
validated and optimized using traditional methods to ensure 
reliability and accuracy [23-25].

 

Table 1: Comparison between traditional and AI-based approach 

Aspect Traditional analytical method development Ai-added method development Source of the data 

Time Time-consuming Faster [11] 
Expertise required High skilled analysts Less expertise required [11] 
Trial and error Iterative process Reduced trial and error [11] 
Cost Expensive Cost-effective [11] 
Sample size Limited sample size Larger sample size [11] 
Optimization Manual optimization Automated optimization [11] 
Flexibility Less flexible More flexible [11] 
Data analysis Manual interpretation Automated data analysis [11] 
Accuracy Human error-prone Improved accuracy [11] 
Scalability Limited scalability Scalable [11] 

 

Use of AI models in different chromatographic techniques 

ANN in process chromatography 

In the chromatography process, numerous approaches for modelling 
and optimizing this technique have been proposed and put into 
practice [46]. Instead of solely focusing on established techniques, 
researchers investigate novel approaches, such as applying machine 
learning algorithms. These tools include the Partial Least Squares 

(PLS) method and ANN [47], which are recognized as universal 
approximators [48]. 

ANN have diverse applications 

They can be predictors for process analytical technology (PAT) 
sensor data or substitute approaches such as the PLS algorithm. 
ANN can also be employed to ascertain model parameters rather 
than minimizing the sum of most minor square errors between 
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experimental and simulated datasets. In addition, ANNs can be 
employed to adjust the process and model parameters of the digital 
twin based on real-time operational data. ANN can also be applied in 
process models, including hybrid models. An all-encompassing 
framework for comprehensive process design and operation has 
already been devised [49, 50]. 

Many studies on ANNs utilized as regressors are employed for process 
optimization. An ANN is initially constructed to forecast specific 
values. Next, a conventional optimization algorithm is employed to 
optimize using the inputs and outputs of the ANN. Some examples 
include the studies conducted by Golubović et al. [51], Nagrath et al. 
[52], and Pirrung et al. [53]. In their study, Golubović et al. [51] 
employed ANNs to optimize the retention factor of mycophenolate 
mofetil (MFM) and its breakdown products. The ANN utilized buffer 
composition, flow rate, and column temperature to predict the 
retention factors. The dataset utilized was experimental and consisted 
of 33 samples. The dataset was based on the Central Composite Design 
(CCD), which can detect both linear and quadratic effects. The ANN 
surpassed the performance of the normal MLR and allowed for a 
decrease in the time of the experiment from 6.2 min to 5.2 min. The 
limits of this approach may include constraints on the area and 
information of the CCD design space, as well as the required 
experimental effort. Conducting these tests on a large-scale 
preparative chromatography may potentially be unfeasible. 
Conversely, this strategy does not require knowledge or modelling of 
the process. No prior knowledge of artificial neural networks is 
required, as the network was optimized through iterative 
experimentation.  

Nagrath et al. [52] employed simulated data, as opposed to 
Golubović et al. [51], to address the limitations of experimental data. 
This approach is particularly advantageous when dealing with 
increasingly intricate tasks. According to Nagrath et al. [52], the 
increasing number of parameters has become a significant problem 
in optimization processes that rely purely on mechanical models, as 
suggested by Narayanan et al. [54]. The factors contributing to this 
issue are local minima and the total computational time. Hence, it is 
suggested that ANNs be employed to predict the target variable to 
optimize preparative chromatography. The proposed method for 
separating three components involved manipulating the 
simulations' gradient slope, feed load, flow rate, and column length. 
The impact of these factors on the desired outcomes, such as yield, 
production rate, and maximum concentration, was assessed to 
establish a training dataset. 

Furthermore, an additional dataset was generated to account for 
less stringent conditions, mitigating the potential bias of zero 
productivity on the middle component due to its overlap with the 
left and right components. Moreover, this approach demonstrated 
favourable optimization outcomes and significantly profited from 
reduced calculation durations. However, prior knowledge is 
essential for modelling the process and generating appropriate data 
for training the ANN, as demonstrated by the additional dataset for 
the middle component. Furthermore, while the ANN may exhibit 
adaptability for the taught system, it necessitates a thorough 
retraining process when applied to other systems or different 
numbers of components. Hence, it is imperative to consider the 
additional exertion required for data formulation, creation, and ANN 
training to make a well-informed choice between the ANN 
methodology and the traditional approach. 

Deep Neural Network (DNN) for chromatography 

Deep learning is a crucial aspect of chemistry's most advanced AI 
technologies. It is relied upon due to its capacity to process vast 
amounts of data effectively. Hence, deep learning significantly 
advantages from extensive and varied datasets (mainly when the 
connections between the input and output data are intricate); thus, 
it must also be appropriate for our datasets. Aside from the 
abundance and diversity of data, it is crucial to consider the 
appropriate modification of the DNN method (such as type, 
topology, and hyperparameter values), as it directly impacts the 
accuracy. Various specialized adaptations have been effectively 
created for neural networks. Consequently, our attention is directed 

towards the following options that possess potential and are well-
suited for our problem-solving objectives:  

 A Feedforward Neural Network (FFNN) is a DNN that transmits 
information from input to output nodes without feedback loops. 
Although FFNNs are less complex than their descendants, they have 
proven effective in investigating and representing chemical space 
[55]. Nevertheless, FFNNs are specifically designed to acquire 
knowledge about the connections among independent variables, 
rendering them potentially inappropriate for addressing specific 
problems. Nevertheless, we will use FFNN in our experiments as the 
reference method to facilitate comparison with more advanced 
architectures. 

 Convolutional neural networks (CNNs) [51] are a specific kind of 
deep learning network initially designed for image recognition. They 
are capable of identifying repetitive spatial patterns within the data. 
CNNs, or Convolutional Neural Networks, have become widely 
employed in various applications to handle data that exhibit grid 
patterns effectively. Graph CNNs have been utilized to forecast drug-
target interactions [56]. Widely utilized CNN architectures VGG-19, 
ResNet512, AlexNet, and DenseNet-201[57,58,59,60] were 
employed to predict cytotoxicity for eight cancer cell lines. 

 Moreover, CNNs have demonstrated their efficacy in accurately 
detecting steroids using deep learning RT modelling, as observed in 
gas chromatography analysis [61]. It is postulated that molecules 
possessing comparable chemical substructures or functional groups 
can exhibit similar behaviour and establish patterns that 
convolutional layers can identify and process. It elucidates the 
reasons why CNNs are appropriate for addressing our problems. 
Given that we are working with sequences of symbols, we utilize 
models that employ 1D convolutions. 

 Long short-term memory (LSTM) neural networks, as described 
in reference [62], are well-suited for training on sequences because 
they incorporate a memory cell and feedback connections between 
cells. In contrast to Simple Recurrent Neural Networks (RNNs), 
LSTMs do not experience the issue of vanishing gradients. 
Consequently, the task of learning longer sequential dependencies is 
now easier. LSTMs employ supplementary internal mechanisms, 
known as gates, to regulate the flow of information and retain 
pertinent information as they analyze the sequence. The 
transmission of information from previous time points in a sequence 
holds great significance in understanding the meaning of chemical 
symbol sequences. For instance, the symbols O and H, when 
considered individually, are less informative compared to the 
compound (OH), which represents a hydroxyl group. Similarly, the 
symbol c1 in aromaticity notation is less significant than the 
complete sequence cc1ccccc1, where c1 indicates the beginning and 
end of an aromatic ring. Hence, the sequential nature of the input 
data justifies the decision to use LSTMs for our research.  

DISCUSSION 

Developing algorithms (of varying complexities) to analyze large 
volumes of data and extract meaningful information and patterns 
from even minute differences in individual measurements has been 
a prevalent trend in the literature. The primary catalyst for the early 
advancements in AI was likely its application in image recognition, 
vibrational spectroscopy, and mass spectrometry [63]. Analyzing 
chromatography data can be laborious, monotonous, and error-
prone, posing difficulties in consistently obtaining precise results. AI 
can significantly enhance the chromatography analysis process. AI 
can carry out tasks that usually necessitate human intelligence, such 
as sensing, reasoning, and learning. Using AI methodologies, 
chromatography analysis can be mechanized, optimized, and 
enhanced in precision and effectiveness. 

An application of AI in chromatography analysis involves the 
development of machine learning models capable of predicting the 
characteristics of unidentified samples using existing data. For 
instance, when employing chromatography equipment to segregate 
a blend of substances, a machine-learning model can be used to 
identify the peaks associated with each component and forecast its 
characteristics, such as molecular weight, polarity, and solubility. 
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Implementing this approach can substantially decrease the duration 
and exertion needed to analyze chromatography data, enhancing the 
outcomes' precision and dependability. AI can also be advantageous 
in chromatography analysis by facilitating the creation of automated 
systems that can enhance the efficiency of the chromatography 
process. AI algorithms can determine the most effective separation 
conditions, including the selection of stationary phase, mobile phase, 
and gradient elution parameters, to attain the utmost resolution and 
sensitivity. AI can be employed for real-time monitoring and control 
of the chromatographic process, allowing for timely alterations to 
the circumstances to achieve optimal performance. 

Furthermore, AI may be utilized to create data processing 
algorithms capable of extracting significant insights from the vast 
volumes of chromatography data produced in contemporary 
analytical laboratories. AI algorithms can detect patterns and trends 
in data, such as the correlations between the characteristics of 
various chemicals or the alterations in the composition of a mixture 
over time. Such analysis can yield significant knowledge about the 
fundamental chemistry of the sample and aid in detecting possible 
contaminants or impurities. 

Various AI algorithms, such as ANN, DNN models like FFNN’s [55], 
CNNs [51, 56-61], LSTM [61], and RNNs [64], can be widely used to 
enhance the efficiency and accuracy of chromatography. Additional 
research is required to enhance the AI models to adapt them to 
specific chromatographic methods and substances utilized in analysis. 

CONCLUSION 

To summarise, AI can transform chromatography analysis by 
facilitating expedited, more precise, and more effective data 
processing. AI can streamline the chromatographic analysis process, 
saving time and minimizing the potential for human error. This 
enables scientists to dedicate their attention to intricate and 
demanding analytical issues. With the ongoing evolution and 
increasing technology adoption, we can anticipate additional 
progress in chromatography analysis and the broader realm of 
analytical chemistry. 

FUNDING 

Nil 

AUTHORS CONTRIBUTIONS 

SKP-Conceptualization, Data collection, reviewing, manuscript 
writing, DK-Planning, Supervision, Reviewing Manuscript. All 
authors reviewed the results and approved the final version of the 
manuscript. 

CONFLICT OF INTERESTS 

Declared none 

REFERENCES 

1. Guiochon G. Preparative liquid chromatography. J Chromatogr A. 
2002 Aug 2;965(1-2):129-61. doi: 10.1016/s0021-
9673(01)01471-6, PMID 12236522. 

2. Altenhoner U, Meurer M, Strube J, Schmidt Traub H. Parameter 
estimation for the simulation of liquid chromatography. J 
Chromatogr A. 1997 May 2;769(1):59-69. doi: 10.1016/S0021-
9673(97)00173-8. 

3. Eisele P, Killpack R.  Ullmann’s encyclopedia of industrial 
chemistry Wiley: Chichester, UK. Vol. 101. Propene; 2010. 

4. Zobel Roos S, Schmidt A, Mestmacker F, Mouellef M, Huter M, 
Uhlenbrock L. Accelerating biologics manufacturing by modeling 
or: is approval under the QbD and PAT approaches demanded 
by authorities acceptable without a digital-twin? Processes. 
2019 Feb 13;7(2):94. doi: 10.3390/pr7020094. 

5. Helgers H, Schmidt A, Lohmann LJ, Vetter FL, Juckers A, Jensch C. 
Towards autonomous operation by advanced process control-
process analytical technology for continuous biologics antibody 
manufacturing. Processes. 2021 Jan 18;9(1):172. doi: 
10.3390/pr9010172. 

6. European Medicines Agency. EU guidelines for good 
manufacturing practice for medicinal products for human and 

veterinary use-annex 15: Qualification and validation. Available 
online: https://www.ema.europa.eu/en/human-
regulatory/research-development/scientific-
guidelines/Quality/Quality–Quality-design-qbd. 

7. Guidance for industry PAT–A framework for innovative 
pharmaceutical development, manufacturing, and quality 
assurance. Washington DC: United States Department of Health 
and Human Services; 2004. 

8. Jones D, Snider C, Nassehi A, Yon J, Hicks B. Characterising the 
Digital Twin: A systematic literature review. CIRP J Manuf Sci 
Technol. 2020 May 1;29:36-52. doi: 
10.1016/j.cirpj.2020.02.002. 

9. Schmidt A, Helgers H, Vetter FL, Juckers A, Strube J. Digital twin 
of mRNA-based SARS-COVID-19 vaccine manufacturing towards 
autonomous operation for improvements in speed, scale, 
robustness, flexibility and real-time release testing. Processes. 
2021 Apr 23;9(5):748. doi: 10.3390/pr9050748. 

10. Gerogiorgis DI, Castro Rodriguez D. A digital twin for process 
optimisation in pharmaceutical manufacturing. In: Computer 
aided chemical engineering. Vol. 50. Elsevier; 2021 Jan 1. doi: 
10.1016/B978-0-323-88506-5.50041-3. 

11. Wang G, Briskot T, Hahn T, Baumann P, Hubbuch J. Estimation of 
adsorption isotherm and mass transfer parameters in protein 
chromatography using artificial neural networks. J Chromatogr 
A. 2017 Mar 3;1487:211-7. doi: 10.1016/j.chroma.2017.01.068, 
PMID 28159368. 

12. La Porta CA, Zapperi S. Explaining the dynamics of tumor 
aggressiveness: at the crossroads between biology, AIand 
complex systems. In: Seminars in cancer biology. Vol. 53. 
Academic Press; 2018. 

13. Le EPV, Wang Y, Huang Y, Hickman S, Gilbert FJ. Artificial 
intelligence in breast imaging. Clin Radiol. 2019 May 1;74(5):357-
66. doi: 10.1016/j.crad.2019.02.006, PMID 30898381. 

14. Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug 
discovery via artificial intelligence. Trends Pharmacol Sci. 2019 Aug 
1;40(8):592-604. doi: 10.1016/j.tips.2019.06.004, PMID 31320117. 

15. Hippe Z. Problems in the application of artificial intelligence in 
analytical chemistry. Anal Chim Acta. 1983 Jan 1;150:11-21. doi: 
10.1016/S0003-2670(00)85455-0. 

16. Brady M. AIand robotics Artif. Intell. 1985. 
17. Bahiraei M, Heshmatian S, Moayedi H. Artificial intelligence in 

the field of nanofluids: a review on applications and potential 
future directions. Powder Technol. 2019 Jul 15;353:276-301. 
doi: 10.1016/j.powtec.2019.05.034. 

18. Richardson A, Signor BM, Lidbury BA, Badrick T. Clinical 
chemistry in higher dimensions: machine-learning and 
enhanced prediction from routine clinical chemistry data. Clin 
Biochem. 2016 Nov 1;49(16-17):1213-20. doi: 
10.1016/j.clinbiochem.2016.07.013, PMID 27452181. 

19. Kalayil NV, D’Souza SS, Khan SY, Paul P. AIin pharmacy drug 
design. Artif Intell. 2022;15(4). 

20. Sujith T, Chakradhar T, Marpaka S, Sowmini K. Aspects of 
utilization and limitations of AIin drug safety. Asian J Pharm Clin 
Res. 2021;14(8):34-9. 

21. Poostchi M, Silamut K, Maude RJ, Jaeger S, Thoma G. Image 
analysis and machine learning for detecting malaria. Transl Res. 
2018 Apr 1;194:36-55. doi: 10.1016/j.trsl.2017.12.004, PMID 
29360430. 

22. Nayak J, Vakula K, Dinesh P, Naik B, Pelusi D. Intelligent food 
processing: journey from artificial neural network to deep 
learning. Comput Sci Rev. 2020 Nov 1;38:100297. doi: 
10.1016/j.cosrev.2020.100297. 

23. Engkvist O, Norrby PO, Selmi N, Lam YH, Peng Z, Sherer EC. 
Computational prediction of chemical reactions: current status 
and outlook. Drug Discov Today. 2018 Jun 1;23(6):1203-18. doi: 
10.1016/j.drudis.2018.02.014, PMID 29510217. 

24. Panteleev J, Gao H, Jia L. Recent applications of machine learning 
in medicinal chemistry. Bioorg Med Chem Lett. 2018 Sep 
15;28(17):2807-15. doi: 10.1016/j.bmcl.2018.06.046, PMID 
30122222. 

25. Szymanska E. Modern data science for analytical chemical data-a 
comprehensive review. Anal Chim Acta. 2018 Oct 22;1028:1-10. 
doi: 10.1016/j.aca.2018.05.038, PMID 29884345. 

https://doi.org/10.1016/s0021-9673(01)01471-6
https://doi.org/10.1016/s0021-9673(01)01471-6
https://www.ncbi.nlm.nih.gov/pubmed/12236522
https://doi.org/10.1016/S0021-9673(97)00173-8
https://doi.org/10.1016/S0021-9673(97)00173-8
https://doi.org/10.3390/pr7020094
https://doi.org/10.3390/pr9010172
https://doi.org/10.1016/j.cirpj.2020.02.002
https://doi.org/10.3390/pr9050748
https://doi.org/10.1016/B978-0-323-88506-5.50041-3
https://doi.org/10.1016/j.chroma.2017.01.068
https://www.ncbi.nlm.nih.gov/pubmed/28159368
https://doi.org/10.1016/j.crad.2019.02.006
https://www.ncbi.nlm.nih.gov/pubmed/30898381
https://doi.org/10.1016/j.tips.2019.06.004
https://www.ncbi.nlm.nih.gov/pubmed/31320117
https://doi.org/10.1016/S0003-2670(00)85455-0
https://doi.org/10.1016/j.powtec.2019.05.034
https://doi.org/10.1016/j.clinbiochem.2016.07.013
https://www.ncbi.nlm.nih.gov/pubmed/27452181
https://doi.org/10.1016/j.trsl.2017.12.004
https://www.ncbi.nlm.nih.gov/pubmed/29360430
https://doi.org/10.1016/j.cosrev.2020.100297
https://doi.org/10.1016/j.drudis.2018.02.014
https://www.ncbi.nlm.nih.gov/pubmed/29510217
https://doi.org/10.1016/j.bmcl.2018.06.046
https://www.ncbi.nlm.nih.gov/pubmed/30122222
https://doi.org/10.1016/j.aca.2018.05.038
https://www.ncbi.nlm.nih.gov/pubmed/29884345


S. K. Prasad & D. Kalpana 
Int J App Pharm, Vol 16, Issue 3, 2024, 14-21 

20 

26. Jimenez Carvelo AM, Gonzalez Casado A, Bagur Gonzalez MG, 
Cuadros Rodriguez L. Alternative data mining/machine learning 
methods for the analytical evaluation of food quality and 
authenticity-a review. Food Res Int. 2019 Aug 1;122:25-39. doi: 
10.1016/j.foodres.2019.03.063, PMID 31229078. 

27. Reichenbach SE, Zini CA, Nicolli KP, Welke JE, Cordero C, Tao Q. 
Benchmarking machine learning methods for comprehensive 
chemical fingerprinting and pattern recognition. J Chromatogr A. 
2019 Jun 21;1595:158-67. doi: 10.1016/j.chroma.2019.02.027, 
PMID 30833025. 

28. Zhong S, Zhang K, Wang D, Zhang H. Shedding light on ”Black 
Box” machine learning models for predicting the reactivity of HO 
radicals toward organic compounds. Chem Eng J. 2021 Feb 
1;405:126627. doi: 10.1016/j.cej.2020.126627. 

29. Zhang Y, Li A, Deng B, Hughes KK. Data-driven predictive models 
for chemical durability of oxide glass under different chemical 
conditions. NPJ Mater Degrad. 2020 May 26;4(1):14. doi: 
10.1038/s41529-020-0118-x. 

30. Mouellef M, Vetter FL, Zobel Roos S, Strube J. Fast and versatile 
chromatography process design and operation optimization 
with the aid of artificial intelligence. Processes. 2021 Nov 
25;9(12):2121. doi: 10.3390/pr9122121. 

31. Raymond L. The introduction of AIto help in the analysis of the 
chromatographic big data. J Chromatogr Sep Tech. 2019;10. 

32. Keulen D, Geldhof G, Le Bussy OL, Pabst M, Ottens M. Recent 
advances to accelerate purification process development: a review 
with a focus on vaccines. J Chromatogr A. 2022 Aug 
2;1676:463195. doi: 10.1016/j.chroma.2022.463195, PMID 
35749985. 

33. Peichang L, Xiaoming L. Development of a high-performance 
liquid chromatograph with artificial intelligence. J Chromatogr A. 
1984 May 25;292(1):169-88. doi: 10.1016/S0021-
9673(01)96200-4. 

34. Liu D, Sun N. Prospects of artificial intelligence in the 
development of sustainable separation processes. Front Sustain. 
2023;4:1210209. doi: 10.3389/frsus.2023.1210209. 

35. Singh YR, Shah DB, Maheshwari DG, Shah JS, Shah S. Advances in 
AI-driven retention prediction for different chromatographic 
techniques: unraveling the complexity. Crit Rev Anal Chem. 
2023 Aug 31:1. doi: 10.1080/10408347.2023.2254379. 

36. Aghili NS, Rasekh M, Karami H, Azizi V, Gancarz M. Detection of 
fraud in sesame oil with the help of artificial intelligence 
combined with chemometrics methods and chemical 
compounds characterization by gas chromatography-mass 
spectrometry. LWT. 2022 Sep 15;167:113863. doi: 
10.1016/j.lwt.2022.113863. 

37. Leite MS, Santos MA, Costa EM, Balieiro A, Lima ÁS, Sanchez OL. 
Modeling of milk lactose removal by column adsorption using 
artificial neural networks: MLP and RBF. Chem Ind Chem Eng Q. 
2019;25(4):369-82. doi: 10.2298/CICEQ180606015L. 

38. Viejo CG, Fuentes S, Godbole A, Widdicombe B, Unnithan RR. 
Development of a low-cost e-nose to assess aroma profiles: an 
aIapplication to assess beer quality. Sens Actuators B. 2020 Apr 
1;308:127688. 

39. Warren Vega WM, Contreras Atrisco ZA, Ramirez Quezada MF, 
Romero Cano LA. A novel approach of artificial intelligence for the 
study of the relation of physicochemical profile and color acquired 
by Tequila 100% agave in its maturation process. J Food Compos 
Anal. 2023 Oct 1;123:105533. doi: 10.1016/j.jfca.2023.105533. 

40. Ghali UM, Usman AG, Chellube ZM, Degm MA, Hoti K. Advanced 
chromatographic technique for performance simulation of anti-
Alzheimer agent: an ensemble machine learning approach. SN 
Appl Sci. 2020 Nov;2:1-2. 

41. Satwekar A, Panda A, Nandula P, Sripada S, Govindaraj R, Rossi 
M. Digital by design approach to develop a universal deep 
learning AI architecture for automatic chromatographic peak 
integration. Biotechnol Bioeng. 2023 Apr 22;120(7):1822-43. 
doi: 10.1002/bit.28406, PMID 37086414. 

42. De Vooght Johnson R. AI produces peak prediction perfection. 
Wiley Anal Sci. 2021. 

43. Usman AG, Isik S, Abba SI, Mericli F. Artificial intelligence-based 
models for the qualitative and quantitative prediction of a 
phytochemical compound using HPLC method. Turk J Chem. 
2020;44(5):1339-51. doi: 10.3906/kim-2003-6, PMID 33488234. 

44. Keulen D, Geldhof G, Le Bussy OL, Pabst M, Ottens M. Recent 
advances to accelerate purification process development: a review 
with a focus on vaccines. J Chromatogr A. 2022 Aug 
2;1676:463195. doi: 10.1016/j.chroma.2022.463195, PMID 
35749985. 

45. Liu D, Sun N. Prospects of artificial intelligence in the 
development of sustainable separation processes. Front Sustain. 
2023;4:1210209. doi: 10.3389/frsus.2023.1210209. 

46. Beal LD, Hill DC, Martin RA, Hedengren JD. Gekko optimization 
suite. Processes. 2018 Jul 31;6(8):106. doi: 10.3390/pr6080106. 

47. Mouellef M, Vetter FL, Zobel Roos S, Strube J. Fast and versatile 
chromatography process design and operation optimization 
with the aid of artificial intelligence. Processes. 2021 Nov 
25;9(12):2121. doi: 10.3390/pr9122121. 

48. Hornik K, Stinchcombe M, White H. Multilayer feedforward 
networks are universal approximators. Neural Netw. 1989 Jan 
1;2(5):359-66. doi: 10.1016/0893-6080(89)90020-8. 

49. Uhl A, Schmidt A, Hlawitschka MW, Strube J. Autonomous 
liquid–liquid extraction operation in biologics manufacturing 
with aid of a digital twin including process analytical technology. 
Processes. 2023 Feb 10;11(2):553. doi: 10.3390/pr11020553. 

50. Zobel Roos S, Schmidt A, Mestmacker F, Mouellef M, Huter M, 
Uhlenbrock L. Accelerating biologics manufacturing by modeling 
or: is approval under the QbD and PAT approaches demanded 
by authorities acceptable without a digital-twin? Processes. 
2019 Feb 13;7(2):94. doi: 10.3390/pr7020094. 

51. Golubovic J, Protic A, Zecevic M, Otasevic B, Mikic M. Artificial 
neural networks modeling in ultra performance liquid 
chromatography method optimization of mycophenolate mofetil 
and its degradation products. J Chemom. 2014 Jul;28(7):567-74. 
doi: 10.1002/cem.2616. 

52. Nagrath D, Messac A, Bequette BW, Cramer SM. A hybrid model 
framework for the optimization of preparative chromatographic 
processes. Biotechnol Prog. 2004;20(1):162-78. doi: 
10.1021/bp034026g, PMID 14763840. 

53. Pirrung SM, van der Wielen LAM, van Beckhoven RFWC, van de 
Sandt EJAX, Eppink MHM, Ottens M. Optimization of 
biopharmaceutical downstream processes supported by 
mechanistic models and artificial neural networks. Biotechnol 
Prog. 2017 May;33(3):696-707. doi: 10.1002/btpr.2435, PMID 
28054462. 

54. Natarajan V, Bequette BW, Cramer SM. Optimization of ion-
exchange displacement separations. I. Validation of an iterative 
scheme and its use as a methods development tool. J 
Chromatogr A. 2000 Apr 21;876(1-2):51-62. doi: 
10.1016/s0021-9673(00)00138-2, PMID 10823501. 

55. Karlov DS, Sosnin S, Tetko IV, Fedorov MV. Chemical space 
exploration guided by deep neural networks. RSC Adv. 
2019;9(9):5151-7. doi: 10.1039/c8ra10182e, PMID 35514634. 

56. Indolia S, Goswami AK, Mishra SP, Asopa P. Conceptual 
understanding of convolutional neural network-a deep learning 
approach. Procedia Comput Sci. 2018 Jan 1;132:679-88. doi: 
10.1016/j.procs.2018.05.069. 

57. Guerra E, de Lara J, Malizia A, Diaz P. Supporting user-oriented 
analysis for multi-view domain-specific visual languages. Inf 
Softw Technol. 2009 Apr 1;51(4):769-84. doi: 
10.1016/j.infsof.2008.09.005. 

58. He K, Zhang X, Ren S, Sun J. Deep residual learning for image 
recognition. In: Proceedings of the IEEE conference on computer 
vision and pattern recognition 2016. p. 770-8. doi: 
10.1109/CVPR.2016.90. 

59. Krizhevsky A, Sutskever I, Hinton GE. Image net classification 
with deep convolutional neural networks. Commun ACM. 2017 
May 24;60(6):84-90. doi: 10.1145/3065386. 

60. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely 
connected convolutional networks. In: Proceedings of the IEEE 
conference on computer vision and pattern recognition; 2017. p. 
2261-9. doi: 10.1109/CVPR.2017.243. 

61. Randazzo GM, Bileck A, Danani A, Vogt B, Groessl M. Steroid 
identification via deep learning retention time predictions and 
two-dimensional gas chromatography-high resolution mass 
spectrometry. J Chromatogr A. 2020 Feb 8;1612:460661. doi: 
10.1016/j.chroma.2019.460661, PMID 31708215. 

https://doi.org/10.1016/j.foodres.2019.03.063
https://www.ncbi.nlm.nih.gov/pubmed/31229078
https://doi.org/10.1016/j.chroma.2019.02.027
https://www.ncbi.nlm.nih.gov/pubmed/30833025
https://doi.org/10.1016/j.cej.2020.126627
https://doi.org/10.1038/s41529-020-0118-x
https://doi.org/10.3390/pr9122121
https://doi.org/10.1016/j.chroma.2022.463195
https://www.ncbi.nlm.nih.gov/pubmed/35749985
https://doi.org/10.1016/S0021-9673(01)96200-4
https://doi.org/10.1016/S0021-9673(01)96200-4
https://doi.org/10.3389/frsus.2023.1210209
https://doi.org/10.1080/10408347.2023.2254379
https://doi.org/10.1016/j.lwt.2022.113863
https://doi.org/10.2298/CICEQ180606015L
https://doi.org/10.1016/j.jfca.2023.105533
https://doi.org/10.1002/bit.28406
https://www.ncbi.nlm.nih.gov/pubmed/37086414
https://doi.org/10.3906/kim-2003-6
https://www.ncbi.nlm.nih.gov/pubmed/33488234
https://doi.org/10.1016/j.chroma.2022.463195
https://www.ncbi.nlm.nih.gov/pubmed/35749985
https://doi.org/10.3389/frsus.2023.1210209
https://doi.org/10.3390/pr6080106
https://doi.org/10.3390/pr9122121
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.3390/pr11020553
https://doi.org/10.3390/pr7020094
https://doi.org/10.1002/cem.2616
https://doi.org/10.1021/bp034026g
https://www.ncbi.nlm.nih.gov/pubmed/14763840
https://doi.org/10.1002/btpr.2435
https://www.ncbi.nlm.nih.gov/pubmed/28054462
https://doi.org/10.1016/s0021-9673(00)00138-2
https://www.ncbi.nlm.nih.gov/pubmed/10823501
https://doi.org/10.1039/c8ra10182e
https://www.ncbi.nlm.nih.gov/pubmed/35514634
https://doi.org/10.1016/j.procs.2018.05.069
https://doi.org/10.1016/j.infsof.2008.09.005
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1016/j.chroma.2019.460661
https://www.ncbi.nlm.nih.gov/pubmed/31708215


S. K. Prasad & D. Kalpana 
Int J App Pharm, Vol 16, Issue 3, 2024, 14-21 

21 

62. Hochreiter S, Schmidhuber J. Long short-term memory. Neural 
Comput. 1997 Nov 15;9(8):1735-80. doi: 
10.1162/neco.1997.9.8.1735, PMID 9377276. 

63. Ayres LB, Gomez FJV, Linton JR, Silva MF, Garcia CD. Taking the 
leap between analytical chemistry and artificial intelligence: a 
tutorial review. Anal Chim Acta. 2021 May 29;1161:338403. doi: 
10.1016/j.aca.2021.338403, PMID 33896558. 

64. de Araujo Padilha CE, de Araujo Padilha CA, de Santana Souza 
DF, de Oliveira JA, de Macedo GR, dos Santos ES. Recurrent 
neural network modeling applied to expanded bed adsorption 
chromatography of chitosanases produced by Paenibacillus 
ehimensis. Chem Eng Res Des. 2017 Jan 1;117:24-33. doi: 
10.1016/j.cherd.2016.09.022.

 

https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1016/j.aca.2021.338403
https://www.ncbi.nlm.nih.gov/pubmed/33896558
https://doi.org/10.1016/j.cherd.2016.09.022

	INTRODUCTION
	Search strategy

	DISCUSSION
	CONCLUSION
	FUNDING
	AUTHORS CONTRIBUTIONS
	CONFLICT OF INTERESTS
	REFERENCES

