ABSTRACT
This study aimed to evaluate the effectiveness of herbal and synthetic mucoadhesive formulations and mouthwashes to reduce the grade and pain of Oral Mucositis (OM) through a systematic review and meta-analysis. Selection of articles published between 2014 and 2023 using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) with specific keywords and through electronic databases (PubMed, Cochrane, Scopus, and Google Scholar) was carried out. Inclusion and exclusion criteria were established to limit the search for articles. The quality assessment of the articles used the Oxford Quality Scoring System. All 22 articles could be assessed by systematic review, but only 16 articles could be meta-analysis. The meta-analysis assessment used Jeffrey’s Amazing Statistics Program (JASP) software. The mucoadhesive formulations of 1% Satureja hortensis extract gel, phenytoin tablets, 3% Camomile topical gel and the mouthwash consisting morphine 2%, povidone-iodine 10 ml, turmeric, dentoxol, zinc chloride, sodium bicarbonate had affected to reduce the degree and pain of OM. Meta-analysis showed mucoadhesive had a mean effect size of -0.06 on the grade and -0.12 on the pain of the OM, while mouthwash had a mean effect size of -1.27 on the grade and -1.64 on the pain of the OM. To conclude, mucoadhesive formulations and mouthwashes have the potential to reduce the grade and pain of OM.

Keywords: Oral mucositis, Mucoadhesive, Mouthwash, Pain, Therapy

INTRODUCTION
Oral Mucositis (OM) is damage to the oral mucosa as a complication of cancer treatment that is characterized by extensive swelling and ulceration, as well as redness and pain [1-3]. The prevalence of OM in head and neck cancer is over 20% with chemotherapy and 91% with radiotherapy. The onset of OM is usually 5–14 d after treatment [2]. The clinical effect of OM is severe pain with severe oral lesions that cause discomfort and disrupt swallowing function. This leads to impaired nutritional intake in head and neck cancer patients, which affects their quality of life. For this reason, the prevention and treatment of OM is an important part of cancer therapy [1]. OM therapy is divided into two categories, namely pharmacotherapy and non-pharmacotherapy. Pharmacotherapy for OM is the use of drugs, both synthetic and herbal [4].

One of the pharmacological therapies for OM is the use of mouthwashes containing both synthetic and herbal ingredients. Many previous studies have discussed the effectiveness of mouthwashes containing both synthetic and herbal ingredients. These include mouthwashes containing analgesics such as opioids, as well as magic mouthwashes such as benzocaine, thick lidoaine, kaolin-pectin, ml of magnesium, diphenhydramine, or chlorhexidine, and herbal ingredients such as Curcuma xanthorrhiza [2, 3]. Many studies have been conducted and there is strong evidence for the effective use of mouthwashes in OM. However, research and statistical analyses on the use of mucoadhesives formulations in OM, both synthetic and herbal, are still limited. Similarly, statistical analyses looking at both as OM therapies are lacking. This systematic review and meta-analysis was conducted to try to provide statistical information on the effectiveness of mucoadhesives and mouthwashes in reducing the grade and pain of OM.

MATERIALS AND METHODS
This systematic review and meta-analysis used the standard PRISMA protocol. PICo in this review consists of population, patient, or problem: head and neck cancer patients with OM due to chemotherapy, radiotherapy, or chemoradiotherapy; intervention was the use of different mucoadhesive formulations and mouthwash; comparison was a placebo or other active ingredients; outcome was the effectiveness of ingredients in reducing the grade and pain of OM and the safety of the ingredients used. Articles use were published between 2014 and 2023, and the searches were conducted electronically using Pubmed, Cochrane, Google Scholar, and Scopus without manual searching. The keywords used were mucoadhesive, mouthwash, gargle, mouth rinse, and OM, which were combined using Boolean operators in the form of AND/OR.

Inclusion criteria were randomized control trials (RCTs) or prospective clinical trials conducted in humans and their efficacy in reducing the grade and/or pain of OM, articles were written in English, not systematic reviews, literature reviews, or case reports, had a Scopus index, and the text had to be complete. Exclusion criteria were duplicate research articles that were not relevant to the topic.

All selected articles were quality-rated using the Oxford Quality Rating System or the Jadad scale, which consists of questions that have different answers. These questions have the lowest and highest scores, as shown in table 1. The authors assessed the quality of the articles discussed and agreed to keep low-quality articles included in the inclusion criteria. An overview of the selected articles can be seen in table 2.

OM grade and pain variables were assessed using systematic review (descriptive/qualitative analysis) and then meta-analysis/quantitative analysis. Data were categorised using the criteria of mean, standard deviation (SD), and sample or population size (N). JASP software was used for statistical analysis to assess heterogeneity, mean effect, and bias. Tests of heterogeneity were performed at 95% intervals, with significance determined according to the rules for p-values (*p-value<0.05).

Forest plot analysis was used to assess the mean effect of the articles, which was estimated using the random effect (RE) value model. A distribution of values below zero on the forest plot indicates a small or no significant effect, while values above zero indicate the significance of the results in the meta-analysis. Funnel plots were used to detect bias in this data analysis.
RESULTS
In this review, 22 articles were systematic reviews or descriptive analyses; however, only 16 articles included criteria for meta-

analysis. A detailed summary is provided in fig. 1 quality assessment was carried out on 22 articles, with the results of six low-quality articles and the remaining high-quality articles shown in Table 1.

![Fig. 1: PRISMA flowchart](image)

Table 1: Eligibility (quality assessment for all articles)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Question No.</th>
<th>Result</th>
<th>Skor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pakravan, et al, 2019, Iran [5]</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rezaeideh F, et al, 2019, Iran [7]</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>Allison, et al, 2014, USA [8]</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Giralt et al., 2019, Germany [9]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lozano, et al., 2021, Spain [10]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Arshadi et al., 2018, Iran [11]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Elbadad, et al., 2022, Mesir [12]</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>Saheljamee, et al., 2015, Iran [13]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Jothi, et al., 2021, India [14]</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Mommmadi, et al., 2021, Iran [15]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P. Ruban David and K. Timple Shree, 2019, India [16]</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Oshvandi, et al., 2021, Iran [17]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sun, et al., 2019, China [18]</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lalla, et al., 2020, Chile [4]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dastan F, et al., 2020, Iran [19]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Agha-Hosseini, et al., 2021, Italy [20]</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Akhavan-Karbassi MH, et al., 2015, Iran [21]</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chaitanya B, et al., 2017, India [22]</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sarvazadeh, et al., 2015, Iran [23]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Charalambous et al., 2018, Cyprus [24]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aghamohammadi A, et al., 2021, Iran [25]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes: Questions consist of: Was there random? (Yes=1, Not=0); Was the described and adequate randomization process used? (Yes=1, Not=1); Would you classify this study as double-blind? (Yes=1, Not=0); Was it appropriate to use a double-blind procedure? (Yes=1, Not=1); Was there a reason why he dropped and withdrew? (Yes=1, Not=0)

The results of this review were that the mucoadhesive therapy showed significant results for Triamcinolone Acetonide (TA) film 0.5 mg, phenytoin tablet, melatonin 3% oral gel, Satureja hortensia extract 1% gel, and topical Chamomile 3% oral gel with p<0.00-0.005.
licorice film 0.18 mg was more effective than TA 0.5 mg, but not significantly (p = 0.875 for grade and p = 0.640 for pain). Mu Gard 5 ml was significant for preventing the occurrence of OM (p = 0.038), but not significant for reducing the grade and pain of OM. Clonidine buccal tablets at the different doses were not significant compared with benzodiazepine (p = 0.064). The use of mouthwashes showed only the grade of OM was significantly reduced, such as povidone-iodine (p<0.001), zinc chloride and sodium bicarbonate 5% (p = 0.001), turmeric (p = 0.001), zinc chloride (p = 0.001), honey (p between groups = 0.001), and propolis in both articles (p = 0.00 and p = 0.0026). Five mouthwashes are significant for reducing the grade and pain of OM, including vitamin B combined with Gene Time® (p between groups=0.001), a combination of 0.1% TA, 0.2% vitamin E, and 0.2% HA (between groups<0.001), rebamipide (p between groups = 0.001), morphine with p<0.001, and Zataria multiflora (p between groups = 0.001). Dentoxol is not significant for pain severity (p = 0.502). Aloe vera, compared with benzodiazepine, is not significant in reducing the grade of OM (p = 0.98).

Meta-analysis assessment could be based on five mucoadhesive articles (five articles for the grade four articles for pain of OM). Mouthwash was eleven articles (eleven articles for the grade and four articles for pain of OM). Statistical evaluation showed homogeneous data on mucoadhesive for grade OM, Q = 0.672 with p-value = 0.880>0.05 (α) while pain OM with Q = 0.472 and p-value = 0.976>0.05 (α). The mouthwash data for grade OM showed heterogeneous results, Q= 27.710 with a p-value of 0.002<0.05 (α), while for pain the data presented were homogeneous, Q = 4.664 with p-value = 0.198>0.05(α).

Forest plots (fig. 2a and 2b) explain the effectiveness of mucoadhesive formulations seen in reducing the grade severity of OM with a mean effect was-0.12. The effectiveness of the mouthwash (fig. 3a and 3b) showed a mean effect of -1.64 for pain, while the effect grade of OM was -1.22. These results show that the efficacy of the mucoadhesive formulations and mouthwashes were not significant in reducing the grade and pain of OM.

The funnel plot showed that there was no bias in the articles about mucoadhesive formulations in reducing the grade and pain of OM, and mouthwashes in reducing the pain of OM (fig. 4a, 4b, and 5b). At the same time, there was a bias in articles about mouthwashes reducing the degree of OM (fig. 5a).

Adverse effects (AE) were reported for some of the ingredients, such as of mucoadhesive clonidine tablets, which caused xerostomia, and melatonin 3% oral gel, which affected the gastrointestinal tract (GIT). The AE of Dentoxol mouthwash caused nausea and morphine mouthwash caused a burning sensation.
Table 2: General article descriptions

<table>
<thead>
<tr>
<th>No</th>
<th>Authors, years and countries</th>
<th>Research design</th>
<th>Population (Patients)</th>
<th>Cancer therapy</th>
<th>Ages (Years)</th>
<th>Intervention</th>
<th>Control</th>
<th>Duration</th>
<th>Assessment tools</th>
<th>Outcome</th>
<th>Efficacy</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pakravan, et al., 2019, Iran [5]</td>
<td>RCT</td>
<td>60</td>
<td>Radiotherapy</td>
<td>>18</td>
<td>30 patients: TA, 0.5 mg film</td>
<td>30 patients: placebo</td>
<td>4 w</td>
<td>VAS and WHO</td>
<td>Significant (pain and grade)</td>
<td>Physical test</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ghalayani P, et al., 2014, Iran [6]</td>
<td>RCT</td>
<td>60</td>
<td>Radiotherapy</td>
<td>>18</td>
<td>30 patients: TA, 0.5 mg film</td>
<td>30 patients: licoic film (polyphenol 0.18 mg)</td>
<td>4 w</td>
<td>VAS and WHO</td>
<td>No significant (pain and grade)</td>
<td>No discussed</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Rezaezadeh F, et al., 2019, Iran [7]</td>
<td>RCT</td>
<td>22</td>
<td>Chemotherapy</td>
<td>20-63</td>
<td>11 patients: tablet phenytoin</td>
<td>11 patients: phenytoin 0.5% mouthwash</td>
<td>2 w</td>
<td>VAS and WHO</td>
<td>Significant (pain and grade)</td>
<td>Systemic absorption</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Allison, et al., 2014, USA [8]</td>
<td>RCT</td>
<td>78</td>
<td>Irradiation</td>
<td>>18</td>
<td>37 Patients: Mu Gard 5 ml</td>
<td>41 patients: sham-control (SC) 5 ml</td>
<td>4 w</td>
<td>VAS and WHO</td>
<td>Significant (pain and grade)</td>
<td>No discussed</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Giralt, et al., 2019, Germany [9]</td>
<td>RCT</td>
<td>118</td>
<td>Radiation or chemotherapy</td>
<td>>18</td>
<td>65 and 62 patients: tablet clonidine 5mg and 100 µg</td>
<td>56 patients: bensydamina+fluoxazone</td>
<td>5 w</td>
<td>VAS and WHO</td>
<td>Significant (pain and grade)</td>
<td>No discussed</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lezcano, et al., 2021, Spanyol [10]</td>
<td>RCT</td>
<td>84</td>
<td>Radiotherapy</td>
<td>>18</td>
<td>42 patients: melatonin 3% oral gel</td>
<td>42 patients: placebo gel</td>
<td>7 w</td>
<td>RTOG-NCI</td>
<td>Significant (pain and grade)</td>
<td>No AE</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Arshadi, et al., 2018, Iran [11]</td>
<td>RCT</td>
<td>60</td>
<td>Chemotherapy</td>
<td>3-14</td>
<td>30 patients: Satureja hortensis extract 1% gel</td>
<td>30 patients: placebo 1% gel</td>
<td>5 d</td>
<td>VAS and WHO</td>
<td>Significant (pain and grade)</td>
<td>No discussed</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Elhadad, et al., 2022, Mesir [12]</td>
<td>RCT</td>
<td>45</td>
<td>Chemotherapy</td>
<td>>30</td>
<td>15 patients: Group II: topical Chamonik 3% oral gel</td>
<td>15 patients: Group I conventional of therapy symptomatic and miconazole oral gel</td>
<td>3 w</td>
<td>NRS and WHO</td>
<td>Significant (pain and grade)</td>
<td>No reported</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Salehjamee, et al., 2015, Iran [13]</td>
<td>RCT</td>
<td>26</td>
<td>Radiotherapy</td>
<td>26-80</td>
<td>13 patients: Aloe vera mouthwash</td>
<td>13 patients: bensydamina 0.15% mouthwash</td>
<td>8 w</td>
<td>WHO</td>
<td>Significant (pain and grade)</td>
<td>No discussed</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Mohammadi, et al., 2021, Iran [15]</td>
<td>RCT</td>
<td>144</td>
<td>Radiotherapy</td>
<td>>18</td>
<td>48 patients: zinc chloride 0.2% and sodium bicarbonate 5% mouthwash</td>
<td>48 patients: placebo</td>
<td>3 w</td>
<td>WHO</td>
<td>Significant (grade)</td>
<td>No explained</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Oshivanl, et al., 2021, Iran [17]</td>
<td>RCT</td>
<td>96</td>
<td>Chemotherapy</td>
<td>>18</td>
<td>48 patients: zinc chloride mouthwash</td>
<td>48 patients: placebo mouthwash</td>
<td>3 w</td>
<td>WHO and NCI-CTC</td>
<td>Significant (grade)</td>
<td>No explained</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Sun, et al., 2019, China [18]</td>
<td>RCT</td>
<td>100</td>
<td>Radiotherapy</td>
<td>24-67</td>
<td>50 patients: vitamin B plus Gene Tim® mouthwash</td>
<td>50 patients: vitamin B mouthwash</td>
<td>3 w</td>
<td>VAS and WHO</td>
<td>Significant (grade and pain)</td>
<td>No AE</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Lalla, et al., 2020, Chile [19]</td>
<td>RCT</td>
<td>109</td>
<td>Radiotherapy</td>
<td>>18</td>
<td>55 patients: dentoxol mouthwash</td>
<td>54 patients: control</td>
<td>2 w</td>
<td>RTOG, OMDQ, and WHO</td>
<td>Significant (grade)</td>
<td>No significant (pain)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Agha-Hoseini, et al., 2021, Italy [20]</td>
<td>RCT</td>
<td>59</td>
<td>Radiotherapy</td>
<td>18</td>
<td>29 patients: combinations of TA,1%, vit. E 0.2%, and HA0.2% mouthwash</td>
<td>30 patients: TAO.1% mouthwash</td>
<td>4 w</td>
<td>WHO and VAS</td>
<td>Significant (pain and grade)</td>
<td>No explained</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Chattany R, et al., 2017, India [22]</td>
<td>RCT</td>
<td>60</td>
<td>Chemo-radiotherapy</td>
<td>34-75</td>
<td>30 patients: rebamipide 20 ml</td>
<td>30 patients: placebo</td>
<td>16 d</td>
<td>NRS and RTDs</td>
<td>Significant (pain and grade)</td>
<td>No AE</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Charalambous M, et al., 2018, Cyprus [24]</td>
<td>RCT</td>
<td>72</td>
<td>Radiotherapy</td>
<td>>18</td>
<td>36 patients: honey 20 ml</td>
<td>36 patients: normal saline 20 ml</td>
<td>7 w, repeated 6 months</td>
<td>OMWI and RTG</td>
<td>Significant (grade)</td>
<td>No discussed</td>
<td></td>
</tr>
</tbody>
</table>

Notes: TA: triamcinolone acetonide; HA: hyaluronic acid; WHO: World Health Organization; VAS: visual analog scale; RTOG-NCI: radiation therapy oncology group-national cancer institute; NRS: numeric rating scale; NCI-CTC: national cancer institute-common toxicity criteria; OMWI: oral mucositis weekly questionnaire; DMAS: oral mucositis assessment scale.
Table 3: list of active ingredients in mucoadhesive formulations for the management of OM

<table>
<thead>
<tr>
<th>Various intervention form</th>
<th>References</th>
<th>Active ingredients</th>
<th>Mucoadhesive vehicle (Polymer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILM</td>
<td>[5]</td>
<td>TA</td>
<td>PEG (polyethylene glycol)</td>
</tr>
<tr>
<td>FILM</td>
<td>[6]</td>
<td>LICORICE</td>
<td>PEG (polyethylene glycol)</td>
</tr>
<tr>
<td>TABLET</td>
<td>[7]</td>
<td>Phenytoin</td>
<td>HPMC: Chitosan; Na-CMC</td>
</tr>
<tr>
<td>VISCOS LIQUID</td>
<td>[8]</td>
<td>Mu-Gard</td>
<td>Hydrogel (MAH)</td>
</tr>
<tr>
<td>TABLET</td>
<td>[9]</td>
<td>Clonidine</td>
<td>α2-adrenoceptor clonidine hydrochloride</td>
</tr>
<tr>
<td>GEL</td>
<td>[12]</td>
<td>Matricaria chamomilla l (Chamomile)</td>
<td>Hydrogels (Carbopol® 945S), HPMC</td>
</tr>
</tbody>
</table>

Notes: HPMC: hydroxypropyl methylcellulose, Na-CMC: carboxymethyl cellulose sodium salt, MAH: mucoadhesive hydrogel, PLA: Polylactic acid, PLGA-PEG: poly lactic-co-glycolic acid-PEG: polyethylene glycol

DISCUSSION

Mucoadhesives and mouthwashes were found to be important in reducing the severity and pain of OM in the results of the systematic review in this paper. The mucoadhesive formulations discussed consisted of different shapes, such as a film, a tablet, a gel, and a viscous liquid. The thin mucoadhesive film, approximately 20 cm², is flexible, elastic, and soft, making it more comfortable for patients to use. The advantage of this form is that it is easily soluble, stable, and has a stronger bond to the oral mucosa [26]. The disadvantage of the film form is that it must be stored in a dry place with special packaging, as it is easily broken and hygroscopic [27-29]. Mucoadhesive tablets are small, flat, or oval, with a diameter of about 5-8 mm. This form has the advantages of controlled drug release, long release times, and continuity so that the drug is consumed less but remains in contact with the oral mucosa for longer. The disadvantage is that the form is not flexible, which reduces patient compliance with long-term use [27, 30]. The gel has the advantage of being easy to spread over the oral mucosa and easily absorbs fluid. Disadvantages include short mucosal bond, poor salivary solubility, instability, and poor accuracy [27, 31, 32]. Viscous fluid has the advantage of controlled and sustained drug release and can cover all parts of the oral cavity. The weakness is that it is susceptible to bacterial contamination, and the bond between the drug and the oral mucosa is easily broken, so contact with the oral mucosa is very low [33].

The active ingredients used are TA, phenytoin, melatonin, Satureja hortensis, licorice (Glycyrrhiza glabra), clonidine, and Matricaria chamomilla l (Chamomile). TA works by reducing the expression of the nuclear factor-kappa beta (NFκB) or P65 gene and by reducing the levels of pro-inflammatory cytokines, namely tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6, resulting in a reduction in ulceration and inflammation in the OM. TA has been shown to have anti-inflammatory effects by Boddupalli et al., Xia et al., Abbas et al., and Kim et al. [5, 34, 35].

Phenytoin has the property of accelerating wound tissue repair by increasing fibroblast release, stimulating collagen deposition, reducing wound exudate formation and blocking the sodium channel, thereby reducing inflammation in the OM. This significant reduction inflammation is consistent with the study by Baharvand et al. However, a different opinion was expressed by Hamian et al. Phenytoin is also antibacterial (reduces bacterial contamination) and may be analgesic, reducing pain in the OM [7, 36, 37]. Melatonin is a sleep aid and antioxidant that prevents and reduces mitochondrial deoxyribonucleic acid (DNA) damage, inhibits reactive oxygen species (ROS) and cell death, and inactivates inflammatory cytokines [10]. Its anti-inflammatory effects are mediated by inhibiting the expression of pro-inflammatory cytokines such as IL-1 or TNF-α, inducible nitric oxide synthase (iNOS)/inducible mitochondrial nitric oxide synthase (i-mtNOS) and cyclooxygenase-2 (COX-2), inhibition of NF-κB, which activates the innate immune system, and reduction of nucleotide-binding and oligomeration domain-like receptor family pyrin domain-containing 3 (NLRC3). It may, therefore play a role in the treatment and prevention OM within a few weeks, as suggested by Abdel M. et al. [38].

Satureja hortensis has antioxidant, anti-inflammatory, analgesic, anti-psychomotric, anti-diuretic, sedative, and anti-microbial properties [11, 39]. It is an alternative analgesic to the opioid class (morphine) in the treatment of OM, supported by the opinion of Delfan et al. The antioxidant mechanism through polyphenols can successfully stop the metabolism of phospholipids. It initiates intracellular pro-oxidative pathways, blocks ROS, and reduces oxidative stress leading to lipid oxidation [40].

Licorice (Glycyrrhiza glabra) inhibits the enzymatic pathways of 5-cyclooxygenase and lipoxygenase and can prevent the production of ROS and cell migration, leading to inhibition of arachidonic acid metabolism and vascular permeability, thereby reducing inflammation and providing antiviral and antibacterial effects. In a previous study, Ismail et al. used licorice in a mouthwash preparation before chemotherapy [6, 41, 42].

Clonidine is an anti-hypertensive agent that can reduce pro-inflammatory cytokines by binding between receptors and leukocytes in macrophages. According to Pultito et al., Clonidine lauria mucoadhesive tablets can reduce the grade of OM by up to 45% [9].
Matricaria chamomilla L. (Chamomile) has anti-inflammatory and
analgic effects, according to a study by Mahood et al. According to
Natarajan et al., the anti-inflammatory effect is caused by inhibition
of nitric oxide (NO) synthesis and i-NOS. According to Avalone et al.,
the analgesic and anti-inflammatory effects are due to the presence
of flavonoids and apigenin. According to Longley et al., Chamomile
can heal wounds, which is supported by Klaschka and Modiano’s opinion
that Chamomile reduces the grade and duration of OOM [12, 43].

Active ingredients in mucoadhesive formulations can adhere to
the oral mucosa because they use polymers. The polymers used in this
review are PEG, HPMC, chitosan, and Na-CMC. PEG, a non-ionic,
soluble, and biocompatible polymer, can be combined with other
polymers, such as PAA to prolong adhesion and with PLGA to
increase contact time with the oral cavity [44–46]. HPMC, a
hydrophilic cellulose ether polymer, swells on contact with water,
dissolves in water, organic solvents or both, has a controlled drug
release mechanism, and adheres strongly to the oral cavity. Chitosan
is a natural polymer derived from chitin, insoluble in water but
soluble in dilute weak acids. It is a polycation whose solubility is pH
dependent; at high pH this polymer precipitates and binds strongly
to mucosa membranes, except for the oral mucosa. Na-CMC, a water-
soluble anionic polymer derived from cellulose, has higher
mucoadhesive properties than HPMC but depends on the pH of the
medium [46].

The polymers used in this paper are hydrogel, PLA, and PLGA.
Hydrogel is a polymer with a very high level of hydrophilic and
hydrophobic bonds that are lost on contact with water, swells easily,
has a high level mucosal adhesion, is biocompatible, and can form
gel layers [33, 47, 48]. PLA and PLGA are synthetic polymers that
degrade naturally, and have good biocompatibility and biodegradability,
as well as good mucosal adhesion [49]. PLA polymer is a nanoparticle copolymer synthesized from PLA and PGA, a
drug delivery system used for targeted drug release. PGA has
better mucoadhesive properties than PLA [10, 33].

The significance of the effect of mucoadhesive formulations for OOM
in this systematic review was dependent on the drug, as the polymer
is only the vehicle for drug delivery. Polymers can be combined and
adapted to dosage forms, and the properties of the active
ingredients are complementary. This is the same as described in
previous systematic reviews where herbal ingredients were
combined with mucoadhesive formulations for the treatment of
recurrent aphthous stomatitis. In addition to the mucoadhesive
formulations in this paper, mouthwashes were also evaluated for
their efficacy against OOM using active ingredients such as Aloe vera,
benzydamine, morphine, povidone-iodine, turmeric, dentoexol, zinc
chloride, sodium bicarbonate, multivitamin B plus gene time®,
propolis, combination (TA, vitamin E, and hyaluronic acid),
rebanipide, and honey, as well as Zataria multiflora. Each of these
ingredients, both mucoadhesive formulations and mouthwashes, has
properties that have a significant effect on grade and pain of OOM [11,
18, 22, 50–53].

According to a previous systematic review by Manharan et al.,
mouthwashes has efficacy in reducing the grade and pain of oral OOM
based on the properties of each active ingredient; however,
supporting evidence is still limited [54]. Both herbal and synthetic
agents were used in this review to investigate their efficacy against
OOM. The meta-analysis written by Yu et al. showed that herbal
ingredients heated OOM faster than synthetic ingredients [55]. Herbal
mouthwashes are an excellent way to maintain healthy oral hygiene in
general [56]. Meanwhile, in this paper, the synthetic materials that
have the fastest effect on OOM are synthetic materials with
teoretical explanations that still need to be explored. All of the
synthetic materials in this systematic review and meta-analysis can
be used to prevent OOM. This has been confirmed by several
researchers, such as Akagi et al. and Kuo et al., and the results
significantly reduced the severity of OOM [50, 57].

This review complements the previous review on mucoadhesive
formulations and mouthwashes. They are designed to prolong drug
retention on the oral mucosa, control drug release and helpfully
reduce the duration of drug administration and improve patient
compliance. However, the form and method of use of mucoadhesive
formulations is sometimes not acceptable to patients, so the use of
mouthwash is preferred. When preparing mucoadhesive formulations,
their molecular weight, flexibility, cross-linking hydration,
polymer loading, and concentration need to be considered [7, 27, 30,
32]. In the opinion of the authors, these factors are not important
for meta-analysis in this review. In the future, this article can be used
as a protocol in the selection and administration of therapy for
the prevention and/or treatment for OOM.

The limitations of this study arise from issues such as the
heterogeneity of the included articles, an insufficient number of
articles, variations in analytical data between articles, the use of
different measurement tools, and the lack of differentiation in the
variables measured for herbal or synthetic ingredients. These
challenges make it difficult to collect data, compare results, analysis
results and draw conclusions.

CONCLUSION

Mucoadhesive formulations and mouthwashes have the potential to
effectively reduce the severity and pain associated with OOM. The use
of mucoadhesive formulations, particularly those containing herbal
ingredients, shows a faster response. On the other hand, mouthwashes containing synthetic ingredients tend to produce
faster results. The available evidence supports the use of both of these
agents as complementary treatments for the prevention and
management of oral mucositis.

ACKNOWLEDGMENT

We extend our gratitude to H. Bernil Maskun, Drs., M. Stat, for his
valuable contribution in data analysis using JAPS software. Moreover,
the authors would like to express their gratitude for the financial
support provided by Padjadjaran University for the publication of this work.

AUTHORS CONTRIBUTIONS

Dhini Karina: literature review, Data curation and Writing-original
draft; Irna Sufiawati: Conceptualization, Review and editing,
Supervision, Critical Evaluation, and Visualization; Vatchala Rani
Ramaamoorthy: Review and editing, Evaluation, Visualization, and
Proofreading.

CONFLICT OF INTERESTS

Declare none

REFERENCES

1. Michael G. Greenber St Martin, Lockhart peter B C stephen J.
2. Brown TJ, Gupta A. Management of cancer therapy-associated
oral mucositis. JCO Oncology Practice. 2020;16(3):103–9. doi:
Reduction of salivary tumor necrosis factor-alpha levels in
response to magic mouthwash with Curcuma xanthorrhiza in
cancer patients undergoing chemotherapy. JRP. 2018;23(1):55–
Efficacy and safety of Dentoxol® in the prevention of radiation-
induced oral mucositis in head and neck cancer patients (ESDOM):
A randomized, multicenter, double-blind, placebo-
A novel formulation for radiotherapy-induced oral mucositis:
Comparison of triamcinolone acetonide mucoadhesive film
with licorice mucoadhesive film on radiotherapy-induced oral
mucositis: a randomized double-blinded clinical trial. Asia Pac J

D. Karina et al.

10.1177/0300060519831171
10.3290/j.ohpd.a33091
10.1002/cncr.28553
10.1016/j.rpor.2020.09.012
10.22159/ajpcr.2021.v14i1.39687
10.1016/j.ejon.2018.04.003
10.1016/j.jon.2019.05.015
10.1016/j.jo.2013.07.007
10.21037/apjg.2021.35.10.574
10.21037/apjg.2021.35.10.574
10.1016/j.ijg.2018.02.020
10.1016/j.ijg.2018.02.020
10.1016/j.ijg.2018.02.020
10.2270/ejodrv.2019.022903
10.9778/03874JoC.2020.09.002
10.1016/j.jon.2019.05.015
10.21037/apjg.2021.35.10.574
10.1016/j.ijg.2018.02.020

