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ABSTRACT 

Natural cyclic oligosaccharides called cyclodextrins (CDs) improve the bioavailability of drugs by the formation of inclusion complexes involving 
small and macromolecules of poorly soluble compounds in water. CDs act as a solubilizer and targeting agent for drugs with low water solubility, 
enabling them to effectively target specific cells. Where poorly water-soluble compounds interact with the hydrophobic cavity of CDs to enhance 
their solubility. CDs are effective drug delivery agents because of their essential function as processing complex carriers. Various ligands can be 
utilized to modify the surface of cyclodextrin to actively target drugs. It is possible to consider it to have amphiphilic characteristics by enduring a 
chemical transformation with long aliphatic chains, and a variety of amphiphilic CDs can produce nanoparticles without the usage of surfactants. 
CD-nanocarriersact as cargo with solubilizers for drugs and a targeting agent for specific receptors present in specific cells and release the drug. CDs 
have many applications, including the reduction of drug-induced gastrointestinal discomfort, avoiding interactions between drug-drug and drug-
excipient, and transforming drug products that are liquid into microcrystalline solid powders. Because of their biocompatibility and 
biodegradability, CDs have outstanding properties that make them particularly useful in the pharmaceutical and cosmetic industries. 
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INTRODUCTION 

Cyclodextrins (CDs) are the products of the starch breakdown 
performed by the enzyme glucosyl transferase [1]. The articles for 
the current review were sourced from specialized databases.(Range 
of years: 2000-2024) such as Elsevier, Pubmed, and Ovid using the 
keywords Cyclodextrin Solubilty. Other selections include articles 
from Springer, information from Internet sources, and Online 
published articles from Nature Medscape. Google Scholar may be a 
viable addition as a search option for cyclodextrin searches. CDs are 
cyclic oligosaccharides that occur naturally and resemble a cone in 
their shape. On the inside of the cavity, they show hydrophobic 
characteristics and have a hydrophobic coating on the outside [2]. It 
is possible to increase the bioavailability of drugs by utilizing 
cyclodextrins that are soluble in water [3]. This is accomplished by 
forming inclusion complexes with sections of large compounds and 
tiny molecules that have poor aqueous solubility [4]. Hydrophobic 
interactions inside cavity-containing molecules, such as in aqueous 
solutions CDs, can significantly enhance the solubility of drugs. The 

resulting drug is both chemically and physiologically accessible [5]. 
Patients can be given pharmaceutical drugs that aren't very water-
soluble or chemically stable using CDs. This makes it possible for 
more drugs to be given to patients [6]. As a consequence of this, 
CDs have the potential to convert molecules that possess biological 
activity but do not have the physiochemical features of drugs into 
drugs that have the required therapeutic effect [7]. CDs take on the 
role of hosts by allowing a portion of a drug molecule to be placed 
inside their core cavities to facilitate drug-containing inclusion 
complex formation [8]. Because of this modification, the Drugs’ 
physiochemical characteristics will be altered. For instance, by 
generating a Drug-CD inclusion complex, the product's aqueous 
solubility, physical and chemical stability, and distribution of the 
drug across biological membranes may all be enhanced [9]. During 
the process of complex formation, there is no creation or 
destruction of covalent bonds, and the drug particles that are 
bound inside the CD inclusion complex are present in a dynamic 
equilibrium with the drug compounds that are free in aqueous 
solutions [10] [fig. 1]. 

 

 

Fig. 1: Bucket shape CD forms inclusion complex 

 

In recent years, a strategy that is possible for the development of 
unique, optimized systems is the combination of CD derivatives [fig. 
2] with nanomaterials. This technique has emerged as an affordable 
option [11]. It has been illustrated in research that CDs can reduce 
the toxicity of various drugs and be biologically compatible when 
compared to other pharmaceutical excipients. For this reason, they 
have the potential as components in new drug compositions, 
including the modification of current medicinal products [12, 13]. 

Cyclodextrin acts as a solubilizer 

CDs are practical functional excipients that have grabbed a lot of 
interest and are frequently used [14]. The pharmacological 
perspective is based on the ability of these components the interact 
with weakly water-soluble drugs and drug molecules, resulting in an 
enhancement in their apparent water solubility [15]. The capability 
of CDs to develop dynamic inclusion complexes formed through non-
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covalent interactions in a solution determines the process for this 
solubilization [16, 17]. The ability to design aggregates and related 
domains and additional solubilizing properties may include the 
capability of CDs for producing and stabilizing supersaturated drug 
solutions, in addition to the capability of non-inclusion-based 
complex formations. These additional solubilizing qualities can be 
found in some solubilizers. The oral bioavailability of 
Biopharmaceutics Classification System (BCS) Class II and IV 
category of drugs can be improved by the enhancement in solubility 
[18], which can also increase the rate of dissolution [19]. Based on 
its capacity to mask undesired physicochemical characteristics, 

there are now several cyclodextrin-based products available in the 
market. The use of CD as solubilizers, kinetic and thermodynamic 
methods, and parameters for cyclodextrin-mediated drug 
solubilization [20]. CDs are a class of cyclic oligosaccharides that are 
composed of glucopyranose units that are connected by α-(1, 4) 
bonds. The natural CDs that are commonly utilized are α, β, and γ-
CD, which are composed of 6, 7, and 8 glucopyranose units, 
respectively [21] [fig. 3]. CD particles possess a distinct 
configuration featuring a cavity that exhibits hydrophobic 
properties, while its exterior displays hydrophilic characteristics, 
which enables the encapsulation of a guest molecule [22] [fig. 4]. 

 

 

Fig. 2: Derivatives of CDs for enhancement of solubility 

 

Alpha-cyclodextrin (α-CD) 

α-CD is composed of six glucose units [23] and is utilized in the 
chiral separation process in addition to its role as a complexing 
agent in the production of food, cosmetics, and agricultural 
chemicals [24]. It is allowed to be used as an inert ingredient in non-
food pesticide products, and it is utilized as a carrier, stabilizer, 
absorbent, and encapsulating agent for food additives, flavorings, 
and vitamins. Inertness to light and heat, stability in alkaline and 
acid solutions [25], and a water solubility that is only moderately 
affected are some of the functional features of α-CDs [26, 27]. It is 
also referred to as cyclohexaamylose or cyclomaltohexaose. α-CD is 
a soluble dietary fibre that does not absorb water and is made from 
corn starch. The dissolution rate of α-CD in water is 13 g/100 ml 
when the temperature is at room temperature, which is 77° 
Fahrenheit. The solubility of α-CD in water increases when the 
temperature is turned up to 140° Fahrenheit. Molecules that are 
resistant to water, such as α-CD [28]. Due to this characteristic, α-CD 
has the ability to encase fat molecules within its structure, 
preventing fat from being absorbed by the body. There is a 
possibility that α-CD can function as a drug transporter through the 
cornea [29]. In addition, α-CD may directly disrupt membrane 
structures, in particular in the lipoidal epithelial cell layers, which 
results in a destabilization of the barrier and an increase in both its 
own and the drug's permeability. This is especially true in the case of 
the lipoidal epithelial cell layers [30]. 

Beta-cyclodextrin (β-CD) 

The cyclic oligosaccharide known as β-CD is comprised of seven 
glucose units that are bonded together as α-(1, 4) isomers [31]. It is 

safe to consume, non-toxic, non-hygroscopic, chemically stable, and 
easy to separate into its parts [32]. β-CD is used as a complexing 
agent in the drug delivery process because of its ability to produce 
an inclusion complex with a drug molecule [33]. β-CD complexes 
amplify the bioavailability, aqueous solubility, and dissolution rate 
of the pharmaceuticals they are combined with, making them an 
efficient method for the administration of drugs that are only 
moderately soluble in water [34]. β-CDs have found applications not 
only in the pharmaceutical industries and textiles but also in food 
technology, agriculture, environmental protection, biological and 
chemical analysis, color cosmetics, and the cosmetics industry [35]. 
β-CDs are extensively utilized in the pharmaceutical industry 
because of their ability to improve drug stability and solubility 
through complex formation in the solid state. This ability is the 
primary reason for the widespread usage of β-CDs in the 
pharmaceutical industry [36]. β-CD is by far the most common type 
of cyclodextrin, and for a good reason: not only is it inexpensive, but 
it's also simple to produce and gentle on the skin. A molecule can be 
housed in the hydrophobic cavity of the β-CD molecule, which has 
the shape of a hollow truncated cone. This can be accomplished 
through a mechanism known as a host-guest of inclusion complex 
[37]. β-CD can be utilized to great efficiency to achieve the task of 
removing cholesterol from cell membranes. Several studies have 
demonstrated that when cells are subjected to β-CDs, the cholesterol 
that is normally found within the cells is removed [38]. Although β-
CDs can be easily dissolved in water and the solubility of β-CD is not 
as good as that of its derivative, hydroxypropyl-β-CD [39] (fig. 4) 
carboxy, which is a cyclodextrin that has been hydroxypropylated. 
According to the studies that have been published, the use of 
hydroxypropyl-β-CD[40], which is a derivative of β-CD with higher 
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water solubility and increased safety, is often utilized to increase the 
solubility of hydrophobic drugs [41]. Table 1 displays the various 
derivatives of natural CDs that are at one's disposal. The significant 
role of β-CD is that it acts as a host in inclusion complexes with the 
guest molecules. There is a stoichiometric component to the 
molecular processes that make up the inclusion complex. CDs can 
change the physicochemical characteristics of the active compound 
without changing the characteristics that are inherent to the active 
molecule because they are able to incorporate the guest molecule 
within the internal cavity of the CDs as a host at a ratio of 1:1 [34]. 
This allows the CDs to alter the physicochemical characteristics of 
the active molecule. Changes in the dissolving rate, solubility, 
stability, and bioavailability of particular pharmacological 
compounds are among the things that fall under this category [42]. 

Gamma-cyclodextrin (γ-CD) 

γ-CD is a cyclic alpha-(1, 4)-linked oligosaccharide that is composed 
of eight glucose units[43]. In the food industry, it is utilized as a 
carrier, flavor adjuster, and stabilizer [44]. Moreover, it has been 
granted permission for use as a non-active component in non-food 
pesticide formulations. Hydrolyzed starch syrups undergo a reaction 
with the enzyme cyclodextrin-glycosyl transferase, which results in 
the formation of the product [45]. Because the inner surface of the 
torus-shaped molecule is less polar than its outer surface, γ-CD, like 
other CDs, exhibits the ability to create inclusion complexes with a 
wide range of organic compounds [46]. γ-CD is soluble quite quickly 
in water and dimethyl sulfoxide; however, it is not soluble very well 
in methanol [47]. The non-coplanar structure of γ-CD leads to the 
high solubility of the drug [48]. 

 

 

Fig. 3: Different types of CDs (α, β, and γ) 

 

 

Fig. 4: Dimensions of different CDs α-CD, β-CD, and γ-CD (height, inner cavity diameter, outer diameter) 

 

Table 1: Cyclodextrins and its derivatives 

Cyclodextrins Substituted (R) Number of D-glucopyranose subunits References  
α-Cyclodextrin H 6 [48, 49] 
β-Cyclodextrin H 7 [46, 47, 49] 
γ-Cyclodextrin H 8 [45, 47, 49] 
Carboxymethyl-β-Cyclodextrin CH2CO2H or H 7 [42, 45, 48] 
Carboxymethyl Ethyl-β-Cyclodextrin CH2CO2H, CH2CH3 or H 7 [47, 48, 50, 51] 
Diethyl-β-Cyclodextrin CH2CH3 or H 7 [47, 49, 50] 
Dimethyl-β-Cyclodextrin CH3 or H 7 [43, 46, 48, 50] 
Sulfobutylether-β-cyclodextrin (CH2)4-SO3Na 7 [43, 45, 49, 51] 
Hydroxypropyl-β-Cyclodextrin CH2CHOHCH3 or H 7 [46, 47, 50, 51] 
Hydroxyethyl-β-Cyclodextrin CH2CH2OH or H 7 [48, 49, 51] 
Methyl-β-Cyclodextrin CH3 or H 7 [47, 49, 51] 
Hydroxypropyl-γ-Cyclodextrin CH2CHOHCH3 or H 8 [45, 51] 

 

CD Application as a solubilizer in formulation 

CDs are becoming an increasingly attractive choice for use as a 
functional excipient. From a pharmaceutical perspective, this is a 
result of the fact that these compounds, through interaction, have 
the potential to raise the apparent water solubility of drugs and 
therapeutic candidates that have a low level of water solubility. It 

has been found that the drug's unionized form exhibits a higher 
tendency to penetrate the CD cavity, which results in a more 
significant solubility increase by CDs [20]. In the BCS, drugs that are 
currently classified in the Class II category (high permeability and 
poor solubility) and even or sometimes the Class IV category (low 
permeability and low solubility) have the potential to be moved to 
the Class I category (high permeability and high solubility) as a 
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result of the solubility increases brought about by CDs [49]. The 
utilization of CDs does not enhance the bioavailability of drugs that 
fall into the BCS Class III category (which is characterized by low 
permeability and high solubility). In addition, CDs are only useful 
when used for a solubility-increasing capacity for drugs ranging 
from medium to high potency if the drug also possesses a high 
complexation enhancer. This is due to the fact that the highest 
possible level of drug bioavailability is typically accomplished with 
the least amount of CD that is exploited [4, 50]. 

CD in carbonic anhydrase inhibitor 

Glaucoma can be treated with both topical and systemic carbonic 
anhydrase inhibitors (CAIs), which work by lowering the pressure 
inside the eye [51]. The poor water solubility properties of CAI 
agents reduce the body's ability to absorb drugs, which in turn leads 
to insufficient therapeutic efficacy. Researchers formulated a novel 
aqueous CAI eye drop that makes use of self-assembled drug-CD 
nanoparticles to increase and prolong drug delivery to the eye [52]. 
Certain CDs, such as hydroxypropyl derivatives of β and γ-CD (HP-β-
CD and HP-γ-CD), sulfobutylether β-CD (SBE-β-CD) and randomly 
methylated β-CD (RM-β-CD) among others, have had their molecular 
structures altered to make them more soluble in order to enhance 
their biological and physiochemical capabilities [53](fig. 4). The 
incorporation of water-soluble polymers, such as hydroxypropyl 
methylcellulose (HPMC), sodium carboxy-methylcellulose, and 
polyvinylpyrrolidone can enhance βand γ-CD solubilization. HPMC is 
the most effective at increasing CAI solubilization by β and γ-CD 
[54]. Ophthalmic Dorzolamide is a CAI which is widely used to treat 
Glaucoma. Dorzolamide have poor aqueous solubility when it comes 
to the formulation of eye drops and it can lead to the irritation of the 
eye as well as other potential adverse effects. The greatest affinity of 
Dorzolamide was found with RM-β-CD and γ-CD [55]. HPMC 
performed the best in terms of mucoadhesion and stability done on 
Dorzolamide-CD complexes; by the formation of this complex, the 
solubility of the drug enhanced and led to the maximum 
concentration and therapeutic activity to the eye after topical 
administration [56]. 

CD in anti-inflammatory drugs 

Inflammation is a biological process that is triggered whenever the 
immune system identifies a potential danger [57], such as a virus, 
damaged cells, or poisonous substances. This may result in the 
release of inflammatory chemicals [58]. HP-β-CD is an effective 
carrier used with anti-inflammatory drugs for the treatment of 
atherosclerosis by a reduction in plasma triglyceride levels and 
inflammatory cytokines, as well as an increase in the amount of HDL 
cholesterol in the plasma, which was accomplished by the 
reprogramming of macrophages [59, 60]. The activation of the 
terminal complement pathway and a reduction in the expression of 
particular receptors on monocytes provided evidence that HP-β-CD 
interacted with cholesterol crystals to reduce the accumulation of 
triglycerides. After administration of the HP-β-CD, there was also a 
reduction in the levels of cytokines that promote inflammation. The 
effect was analyzed using data from other deposits, such as 
monosodium urate crystal, but it was ineffective; this indicates that 
the effect is selective for cholesterol crystals [61]. α-CD inhibits 
complement-mediated inflammation brought on by cholesterol 
crystals in a manner that is comparable to that of HP-β-CD [62]. For 
example, the anti-inflammatory drug Nimesulide is used for the 
formation of an inclusion complex with β-CD as a carrier by the use of 
a Supercritical Anti-Solvent process [63]. The utilization of β-CD as a 
carrier in Supercritical Anti-Solvent coprecipitation has been found to 
be efficacious in enhancing the solubility of active ingredients, thereby 
improving their bioavailability. The dissolution rate of drugs was 
observed to increase upon the inclusion of Supercritical Anti-Solvent 
complexes. Moreover, the creation of inclusion complexes based on CD 
facilitated a substantial reduction in the number of carriers, reaching a 
molar ratio of Nimesulide-β-CD [64]. 

CD in anti-diabetic drugs 

Diabetes is a chronic condition that impairs your body's ability to 
turn the nutrients in meals into fuel that it can use [65]. When there 
is an increase in the amount of sugar in the blood, the pancreas will 

respond by producing more insulin [66]. The complexation of a 
diabetes drug that had poor water solubility with β-CD in the 
presence of HPMC will improve the drug's water solubility as well as 
its bioavailability [67]. Various techniques, such as the kneading 
method, can be used to produce 1:1 and 1:2 molar ratios of drug-CD 
complexes. Cyclodextrin contributed to the increased solubility of 
the drug [68]. Repaglinide is an oral antidiabetic drug, and it is 
poorly soluble in water. Researchers synthesized Repaglinide 
formulation by the inclusion of complex formation with β-CD, RM-β-
CD, and HP-β-CD. Upon formation of the inclusion complexes the 
solubility of Repaglinide gets increased by the presence of β-CD, as 
well as its derivatives, RM-β-CD and HP-β-CD [69]. Repaglinide-β-CD 
complexes were found to be more successful at lowering blood 
sugar levels when compared to pure drug powder and tablets sold 
commercially [70]. 

CD in intranasal drugs 

Nasal drug delivery is a promising approach for the systemic 
distribution of high-potency drugs with low oral bioavailability 
because of the extensive gastrointestinal breakdown and the high 
hepatic first-pass effect. CDs are utilized to enhance the nasal 
absorption of these drugs by either enhancing their water solubility 
or increasing their nasal absorption. This is accomplished by 
increasing the surface area of the nasal mucosa. The safety of nasal 
absorption enhancers, specifically dimethyl-β-CD and RM-β-CD, has 
been adopted through toxicological studies on their local effects on 
the nasal mucosa. The study found that the toxicity of methylated β-
CDs was lower in the release of marker compounds adhering to 
nasal administration. The likelihood of systemic toxicity following 
the administration of nasal CD is considered low, given the 
administration of low doses and the absorption of only minimal 
quantities. CDs' mechanism of action is elucidated by their 
interaction with the nasal epithelial membranes and their capacity 
to temporarily interrupt tight junctions. Intranasal administration of 
Midazolam has attracted a lot of attention because it is a convenient 
method that eliminates the need for needle sticks [71]. However, the 
low quantity of Midazolam and high acidity of the intravenous 
formulation make it less than optimal for delivery through the 
nasal passages. To produce Midazolam, a buffer solution consisting 
of sulfobutylether and β-CD (SBE-β-CD) was mixed with water 
[72]. The nasal formulation is quite comparable to the intravenous 
form in terms of absorption rate, serum levels, and clinical 
sedative effect. There were no major detrimental effects that were 
observed [42, 73]. 

CD for targeting disease 

It is possible to connect several distinct ligands to the surface of CD 
in order to target the delivery of drugs [74]. Because of the 
adaptability of CDs, they are increasingly being used in the drug 
delivery processes of many routes, including oral, nasal, 
transdermal, parenteral, and rectal administration [75]. 

CD in gaucher disease 

The buildup of fat in the body, most noticeably in the liver and 
spleen, is the root cause of Gaucher disease [76]. Chaperones that 
can get the endogenous mutant enzyme to fold and move around 
normally could be a good option for Gaucher disease treatment 
involving enzyme replacement and substrate reduction, which both 
have a lot of drawbacks [77, 78]. It is conceivable to enhance the 
regulated delivery of chaperones to macrophages by forming 
ternary complexes between the chaperones, a trivalent 
mannosylated β-CD easily binds to the receptors present in the 
macrophage, which is known as macrophage mannose receptor [79]. 
This formation of the β-CD inclusion complex is useful for the 
delivery of chaperones in a macrophage mannose receptor. The 
macrophage mannose receptor easily engulfs the delivery route, and 
it can easily release the chaperones in the Gaucher disease [38, 80]. 

CD in prostate cancer 

The growth of cancerous cells in the tissues of the prostate is the 
defining characteristic of the condition known as prostate cancer 
[81]. The prostate-specific membrane antigen (PSMA) is a protein 
found in the plasma membrane of prostate cancer cells that 
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expresses itself and has been revealed to have potential as a 
therapeutic target [82]. Using β-CDin the cancer cells has been 
modified to have dipeptide-like urea arms, which is a well-known 
model of a selective ligand against PSMA; researchers were able to 
make a drug delivery and targeting system for prostate cancer cells 
that works with the formation of β-CD inclusion complex. The CD-
drug complex can directly target prostate cancer cells [83]. Normal 
prostate cells exhibit extremely low levels of PSMA (non-tumoral 
cells). When combined with β-CD, which has been functionalized 
with a PSMA ligand, the anticancer drug doxorubicin can cause 
prostate tumoral cells to be more susceptible to its lethal effects. 
There is optimistic reason about the potential of this method for 
selectively delivering medicines to prostate cancer cells [84]. 

CD in HIV 

The human immunodeficiency virus (HIV) is a pathogen that impairs 
the functionality of the immune system, which results in the 
progression of AIDS (acquired immunodeficiency syndrome) [85, 
86]. The patient's ability to adhere to a daily dosing schedule is the 
single most important factor in determining whether or not 
antiretroviral preexposure prophylaxis (PrEP) will be effective in 
preventing HIV transmission [87]. The combination of β-CD and 
nelfinavir resulted in sustained plasma concentrations that exceeded 
the protein-adjusted threshold necessary to inhibit viral replication 
and prohibit the drug penetration into organs critical for HIV-1 
transmission [88]. Upon the formation of the inclusion complex, 
there is the enhancement of the effectiveness of extended PrEP 
administration utilizing β-CD in conjunction with Nelfinavir via a 
nanofluidic implant [89]. 

CD in Alzheimer's disease 

Alzheimer's disease is a neurological condition that, over time, 
gradually destroys a person's cognitive ability [90]. Curcumin (CUR) 
is beneficial in the treatment of Alzheimer's disease because of its 
antioxidant and anti-inflammatory effects [91]. Because of its low 
solubility and high volatility, CUR has only a limited range of 
applications [92]. To analyze and contrast administration, researchers 
synthesized hydroxypropyl-β-CD-encapsulated CUR complexes (CUR-
HP-β-CD inclusion complexes) [93, 94]. The study revealed that CUR in 
CUR-HP-β-CD inclusion complexes is stable in vitro, even at high 
concentrations of the compound. In the meantime, CUR-HP-β-CD 
inclusion complexes revealed improved cellular absorption of CUR in 
cell lines. In the CUR-HP-β-CD inclusion complex CUR is shown to have 
cytotoxicity reduction properties and antioxidant effects. CUR-HP-β-
CD inclusion complexes are used as a carrier for drug delivery of CUR 
for usage in Alzheimer's disease [95-97].  

CONCLUSION 

Because of the passage of time, high throughput screening processes 
have evolved into routine practice in the pharmaceutical industry to 
locate potentially useful drug treatments. However, many 
potentially useful ideas for drugs have not been developed because 
of their poor solubility. As a consequence of this, formulators today 
require a greater variety of formulations and, as a direct 
consequence of this, excipients in order to meet the ever-increasing 
demands placed on modern pharmaceuticals. In this context, CDs 
provide a significant amount of value; these derivatives of starch are 
powerful solubilizers that make it possible for liquid forms of drugs 
to be taken orally or injected intravenously. In addition, they can 
enhance the oral bioavailability of solids by enhancing the dissolving 
rate, which in turn increases the molecule's apparent solubility. This 
is accomplished by improving the apparent solubility of the 
compound Even though the formation of inclusion complexes is the 
fundamental process connected to the potential solubilization of 
CDs, the effects of non-inclusion complexation and supersaturation 
may also play significant roles under specific situations [Not only are 
CDs utilized in the design of formulations and the early testing of 
drug molecules, but numerous CDs, including α-CD, β-CD, γ-CD, HP-
β-CD, RM-β-CD, and SBE-β-CD, have evolved into indispensable 
resources for the formulation process the use of CD as a solubilizer 
in pharmaceuticals appears to have a bright future, particularly in 
light of the numerous CD-containing formulations that are already 
available on the market and the relatively recent introduction of 

several new CD-containing products this subfield of research is still 
going strong as a result of the expanding use of well-known CDs and 
the development of novel derivatives 
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