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ABSTRACT 

Objective: One substance found in the leaves of Garcinia cowa Roxb that has anticancer properties is garcinisidone-A. The study aims to simulate 
the docking of garcinisidone-A (Gar-A), molecular dynamics, and predict the ADME by predicting the binding of the HER2 protein in breast cancer 
cells and developing new drug candidate options for cancer treatment, often starting with computational analysis. 

Methods: The research method involves computational utilization of pkCSM applications, Gar-A docking simulation with the HER2 protein using 
Gnina software version 1.0.2, and molecular dynamics conducted with GROMACS 2022.2 and CHARMMGUI applications. 

Results: Gar-A has a molecular weight of less than 500, a Log P value of greater than 5, a limited amount of water solubility, a low level of skin 
permeability, good intestinal permeability, and a Convolutional Neural Network (CNN) pose score on the HER2 protein of 0.6178. It also does not 
readily cross the blood-brain barrier, and total clearance values indicate rapid elimination via other excretory routes or enzyme metabolism. Gar-A 
is thought to have interactions with HER2. There are hydrogen bond interactions with amino acids Lys753 and Asp863, carbon-hydrogen bonds 
with amino acids Leu785, Ser783, Thr862, and alkyl bonds with amino acids Leu726, Leu852, and Ile767. The stability of the Gar-A-substrate 
interaction could have been more evident during 100 ns molecular dynamics simulation.  

Conclusion: The physicochemical properties of Gar-A align with Lipinski's rule for drug candidates. ADME predictions indicate good intestinal 
permeability for Gar-A; however, it suggests it cannot penetrate the blood-brain barrier. The docking results reveal that Gar-A has a value close to 
one which indicates similar action to its natural ligand and molecular dynamics simulations that Gar-A is less stable. The results illustrate that Gar-A 
has the potential as a breast anticancer. 
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INTRODUCTION 

Breast cancer is the most significant cause of death worldwide and 
the most common cancer in women. Globocan data show that in 
2020, there were 65,858 new breast cancer cases out of 396,914 
new cancer cases in Indonesia [1]. Breast cancer cells have a very 
high proliferation and differentiation ability due to cells expressing 
abnormal proteins or genes [2]. One of the most essential genes in 
breast cancer carcinogenesis is HER2 when overexpressed [3]. 
Research is conducted to obtain anticancer drugs by searching for 
natural compounds derived from plants such as Garcinia cowa Roxb, 
found in West Sumatra. Cytotoxic activity test research that has been 
carried out on this plant extract includes research on ethanol extract 
from Garcinia cowa (G. cowa) fruit peel, which has a cytotoxic effect 
on T47D breast cancer cells with an IC50 value of 19.33 µg/ml and 
ethanol extract of the bark also has a cytotoxic effect with an IC50 
value of 5.10 µg/ml [4–6]. The dichloromethane fraction from fruit 
peel can induce apoptosis in cervical cancer cells tested on the HeLa 
cell line [7]. Compounds isolated from the bark of G. cowa include 
rubraxanthone, α-mangostin, and cowanin, all of which have strong 
cytotoxic activity in vitro against MCF-7 cells and H-460 cells [8]. The 
ethanol extract of G. cowa leaves provides a cytotoxic effect on T47D 
breast cancer cells with an IC50 value of 6.13±3.51 μg/ml and has a 
strong antioxidant effect with a value of 41.36±1.25 μg/ml [9, 10]. 
Compounds successfully isolated from Kandis tamarind leaves have 
been reported, namely methyl 2,4,6-trihydroxy-3-(3-methylbut-2-
enyl)benzoate, garcinisidone-A (Gar-A) and 3-(1-methoxycarbonyl-
4,6-dihydroxyphenoxy)-6-methoxy-3, 5-di(3-methyl-2-butenyl)-1,4-
benzoquinone. Only Gar-A was active against H-460 lung cancer cells 
among the three isolated compounds, effective against MCF-7 breast 
cancer cells [11].  

G. cowa exhibited the most potent leishmanicidal activity. To 
comprehend the interaction between phytochemicals derived from G. 
cowa (including cowanin, cowanol, cowaxanthone, norcowanin, 
rubraxanthone, and basic xanthones) and enzymes within the 
Leishmania donovani parasite, an in silico study was conducted, 
employing molecular docking analysis. The outcomes underscored the 
substantial potential of these phytochemicals as effective anti-
leishmanial agents [12]. The anticancer activity of the gar-a compound 
can be tested in silico by utilising proteins available in the protein 
database (PDB).  

An innovative trend in the development of pharmaceuticals is the use of 
computing in chemical research, which uses resources like big data, 
databases, and artificial intelligence (AI). This approach facilitates a 
quicker and more adequate understanding of compound properties in 
the quest for new drug candidates [13, 14]. Some examples of drugs that 
have gone through the in silico process are Captopril, Dorzolamide, 
Saquinavir, Rupintrivir, Oseltamivir, and Nevirapine [15-17]. Employing 
computational methods, particularly machine learning, to model the 
interaction between substances and biological targets offers a 
preliminary insight into toxicological effects, physicochemical 
characteristics, and possible drug targets [18]. In light of these 
advancements, to foresee how Gar-A will interact with proteins and bind 
to HER2, a study was done to forecast the drug's absorption, distribution, 
metabolism, excretion, docking simulation, and molecular dynamics. 

The gap in research becomes apparent when it mentions that gar-a 
was effective against lung cancer cells, but its efficacy against breast 
cancer cells (MCF-7) needs further exploration. This sets the stage 
for the study that follows, which aims to investigate the anticancer 
activity of Gar-A on breast cancer cells and its interaction with the 
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HER2 protein using computational methods. In essence, the identified 
research gap revolves around the specific efficacy of Gar-A on breast 
cancer cells, necessitating a dedicated investigation to bridge this 
knowledge void and provide a more comprehensive understanding of its 
potential as an anticancer agent in the context of breast cancer. 

MATERIALS AND METHODS 

Absorption, distribution, metabolism, and excretion (ADME) 

The pkCSM website was utilised for ADME prediction in the study, and 
the website link provided is 
https://biosig.lab.uq.edu.au/pkcsm/prediction [18]. Once access is 
secured, the compounds of interest are submitted in the subsequent 
step. On the pkCSM site, the chemical structure or information of the 
compounds can be submitted by users, and this submission method may 
include writing SMILES notation, uploading molecular files, or providing 
relevant details about the compounds. After the compounds are 
submitted, the pharmacokinetic properties, specifically the Absorption, 
Distribution, Metabolism, and Excretion (ADME) properties of the 
submitted compounds based on their chemical structures, are predicted 
by pkCSM. The results of these predictions, including numerical values 
and indicators detailing the ADME predictions for each compound, are 
generally categorised into absorption, distribution, metabolism, and 
excretion. The subsequent step involves the interpretation of the results 
obtained from pkCSM. Preparation for virtual screening is carried out 
using the data obtained from pkCSM. The data is prepared by 
considering the thresholds and criteria for ADME predictions. 

Simulation of docking 

The investigation for simulations utilised a Graphics Processing Unit 
(GPU) 1660 Super running CUDA version 11.6. The docking simulation 
process incorporated the HER2 target protein (PDB 3PP0), sourced from 
the Protein Data Bank website (https://www.rcsb.org). Identifying 
HER2 as one of the most crucial genes in breast cancer carcinogenesis 
when overexpressed [19] formed a crucial component in the 
investigation, guiding the selection of HER2 as the target for binding with 
the gar-a test compound. Gnina software version 1.0.2, with an Oriented 
docking system for the active site, was employed for the docking 
simulation, utilising Deep Learning as the assessment function [20]. The 
protein was separated from its natural ligand compound for preparation 
and a comparison ensued between the natural ligand from 
crystallography and the docking result. This step aimed to assess the 
Root Mean Square Deviation (RMSD) value, with a validation parameter 
set at RMSD score<2, signifying the similarity between the software's 
ability to simulate molecular docking and the results obtained through 
crystallography. Automatic generation of rectangular prisms occurred 
using CNN verbose software in Gnina, determining the maximum x, y, 
and z coordinates. The simulation employed a grid box with a 
completion set 64 and auto box ligands. Gar-A molecular geometry 
underwent improvement using tight binding from xTB version 6.0.4 
[21]. The docking interaction between the protein and Gar-A was 
predicted using Discovery Studio version 2022. 

Molecular dynamics 

The molecular dynamics model simulation was conducted using 
Gromacs 2022.2 [22]. Initially, proteins were subjected to pre-
treatment with CHARMMGUI. The first step involved access to the 
CHARMM-GUI website by opening a web browser and navigating to 
http://www.charmm-gui.org/. The force field Amber19Sb, with 
hydrogen mass partitioning [23, 24], was applied for a protein 
treatment. This process was streamlined by CHARMM-GUI, which 
automatically generated tailored input files for GROMACS. The GAFF2 
force field was utilised for ligands [25, 26]. Following system 
preparation, the subsequent step was the downloading of GROMACS 

from the official website at http://www.gromacs.org/. After GROMACS 
was obtained, the software files were extracted, and environment 
variables on the computer were configured to set up the GROMACS 
environment. Returning to CHARMM-GUI, GROMACS-compatible 
topology and coordinate files were obtained for the computer system. 
These files served as the basis for creating GROMACS input files, 
including the molecular dynamics parameter file, topology file, and 
coordinate file. The OPC water model was used [27, 28]. In this 
research, minimization involved 50,000 steps with a maximum force 
set at less than 1000.0 kJ/mol/nm. With the input files in place, the 
subsequent steps involved energy minimization and equilibration. For 
equilibration, a canonical ensemble (NVT) with a Verlet scheme cutoff, 
a Coulomb-type Particle Mesh Ewald (PME), and a 100 ps step were 
employed [29]. Isothermal-isobaric equilibration (NPT) ensued using 
Parinello-Rahman pressure coupling, involving a stepwise equilibration 
of the system to achieve the desired temperature and pressure, running 
short MD simulations with position restraints on specific atoms [30]. A 
temperature of 310 K was maintained throughout the 100 nanoseconds 
of the production simulation, initiating the production MD run for the 
desired simulation time using GROMACS commands (gmx grompp and 
gmx mdrun). Once the simulation is complete, analyse the trajectory files 
generated during the MD run. Utilise GROMACS tools like gmx rms and 
gmx rmsf to extract information such as RMSD and RMSF, providing 
insights into the system's behaviour. All simulation parameters, results, 
and analyses were documented for future reference or publication, 
ensuring a comprehensive record of the entire simulation process [31]. 

Data analysis 

Computational analysis, starting with the development of new 
medication options for the treatment of cancer, is frequently 
initiated by the pkCSM computational method. Proteins were 
simulated with Gnina software to simulate Gar-A, generating 
important physicochemical data about the compound and allowing 
for docking simulations to determine the best conformation. Further 
molecular dynamics simulations were conducted to assess the 
stability of both the test compound and protein. 

RESULTS 

The permeability is an important parameter in screening ligand-based 
drug similarity based on Lipinski's Rule of Five. The permeability is 
influenced by lipophilicity (log P), the number of hydrogen bond 
donors, hydrogen bond acceptors, and Molecular Weight (MW). 
Lipinski's Rules of Five provide criteria for evaluating the potential of a 
compound as a promising drug candidate. The thresholds are as 
follows: Log P should be less than 5, the number of hydrogen bond 
donors should be less than 5, the number of hydrogen bond acceptors 
should be less than 10, and the molecular weight should be less than 
500 g/mol [32, 33]. The analysis of gar-a can be seen in table 1. 

The binding energy value of Gar-A with HER2 was -7.56 kcal/mol. 
This indicates that the predicted binding of Gar-A with HER2 is an 
impulsive response anticipated to have a powerful interaction. The 
interaction of Gar-A with HER2 is in the form of hydrogen bonds 
with amino acids lysine and aspartic acid and forms carbon-
hydrogen bonds with amino acids leucine, serine, threonine, pi 
sigma bonds with amino acid valine, pi alkyl bonds on leucine, 
isoleucine, alkyl bonds with amino acids alanine and leucine (fig. 1). 
The interaction between ligand and receptor is a pi-alkyl bond; this 
interaction occurs due to the interaction between aromatic and alkyl 
groups. The interaction occurs between amino acids Leu796 and 
Ala751. Pi-Sigma interaction is Val734. Alkyl-alkyl interactions are 
present in amino acids Leu726, Leu852, and Ile767. Hydrogen bond 
interactions with amino acids Lys733 and Asp863, and carbon-
hydrogen bonds with amino acids Leu785, Ser783, and Thr 862.

 

Table 1: The physical and molecular characteristics of gar-a 

No Physical and chemical features Data for gar-A Rule of lipinski 
1.  Weight in molecules 426.465 Less than 500 Da 
2.  Log P 5.1543 Less than 5 
3.  Bond that can be rotate 5 Not Available 
4.  Acceptor of Protons 7 Less than 10 
5.  Donor of protons 3 Less than 5 
6.  Area of contact 180.368 Not Available 

https://biosig.lab.uq.edu.au/pkcsm/prediction�
https://www.rcsb.org/�


M. Furqan et al. 
Int J App Pharm, Vol 16, Special Issue 1, 2024, 99-104 

International Conference on Contemporary Science and Clinical Pharmacy, Indonesia-2023          | 101  

Table 2: ADME prediction of gar-A 

No Process Data 
1. Absorption  

Solubility in water -3.68 (log. mol/l) 
P-glycoprotein substrate Yes 
Absorption in the intestines 100 (%) 
Permeability of skin -2.735 (log Kp) 
Permeability of Caco-2 -0.257 (log Papp in 10-6 cm/s) 

2 Distribution  
Volume of distribution -0.001 (Log L/kg) 
Permeability of BBB -1.268 (Log BB) 
Permeability of the CNS -2.738 (Log PS) 

3 Metabolism  
CYP1-A2 No 
CYP2-C19 Yes 
CYP3-A4 Yes 

4 Excretion  
Clearance in total 0.322 (log ml/min/kg) 

 

Table 3: Bond energy of the Gar-A with HER2 (3PP0) protein 

PDB ID Convolutional neural network score of pose Affinity (kcal/mol) Convolutional neural network affinity 
3PP0 0.6178 -7.56 6.946 

 

 

Fig. 1: Visualisation of the interaction between the HER2 protein and Gar-A (PDB ID; 3PP0) 

 

 

Fig. 2: RMSD results of native ligand and garcinisidone-a with simulation stability within 100 ns 
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In molecular dynamics simulations aimed at assessing the stability 
of Gar-A against HER2 protein over a total time of 100 ns, two key 
data points are typically obtained: RMSD (Root Mean Square 
Deviation) and RMSF (Root Mean Square Fluctuation). The stability 
analysis examines the RMSD plot, as shown in fig. 2, representing the 
complex formed between the natural ligand and the Gar-A complex 
throughout the 100 ns simulation. The analysis of RMSD plots for 
both complexes, the natural ligand and Gar-A indicates relatively 
lower stability in the formed complexes. The strength of the Gar-A 
and natural ligand complexes is achieved after the simulation 
exceeds 100 ns, with Gar-A fluctuating from 0.2 to 0.59 nm. 
Conversely, the natural ligand exhibits RMSD movements within the 
0.2 to 0.4 nm range. Comparing these RMSD plot analyses with 
docking data describing the complex states between protein 
molecules and Gar-A during the simulation reveals that Gar-A 
experiences significant fluctuation in its RMSD values, suggesting 
dynamic interactions during the simulation process. 

DISCUSSION 

Based on previous research, it seems that various methods employ a 
diverse range of cancer cells. However, there has been no in silico 
research regarding the utilization of phytochemical compounds 
derived from G. cowa leaves, especially Gar-A. The relationship 
between Gar-A and HER2 protein in predicting absorption, 
distribution, metabolism, excretion, as well as docking and 
unexplored molecular dynamics for the development of promising 
new drug candidates in HER2-overexpressing breast cancer has not 
been investigated. 

The log P value measures Gar-A hydrophobicity or lipophilicity, 
indicating how much it favours lipid environments. A higher log P 
value (>5) suggests increased hydrophobicity, potentially leading to an 
extended stay in lipid bilayers and wider distribution in the body. 
However, this extended stay in the bilayer can reduce the selectivity of 
binding to the target enzyme, potentially leading to higher toxicity. 
Conversely, excessively negative log P values may hinder the 
compound from passing through lipid bilayer membranes. However, it 
is crucial to note that this extended stay may reduce selectivity in 
binding to the target enzyme, possibly resulting in higher toxicity [32, 
33]. 

The number of hydrogen bonds, both donors and acceptors, is 
crucial for a compound's biological activity, influencing the energy 
required for the absorption process. Higher bonding capacity 
requires more energy for the absorption process. Hydrogen bond 
donors provide hydrogen atoms for bond formation, while hydrogen 
bond acceptors receive hydrogen atoms to form bonds [34]. Gar-A, 
with limited solubility in water, can be absorbed by P-Glycoprotein. 
This protein plays a crucial role in substrate distribution to organs, 
indicating good intestinal permeability (log Papp>5 cm/s) [35]. 

Molecular weight has emerged as a significant factor influencing 
drug distribution. Compounds with molecular weights exceeding 
500 g/mol may encounter challenges in efficiently crossing 
biological membranes, thereby impacting absorption kinetics and 
overall effectiveness. Consequently, the absorption of these drugs is 
likely to be prolonged, affecting their overall efficacy and absorption 
kinetics. It is a key consideration in drug design to optimise 
molecular weight for optimal membrane permeability and 
absorption rates. In contrast, compounds with smaller molecular 
weights will more easily penetrate biological membranes. The 
molecular weight of Gar-A being below 500, along with a log P>5, 
allows the prediction that Gar-A can be well-absorbed if given orally 
and meets one of the criteria for its potential as a drug candidate 
[36]. 

Gar-A has a low skin permeability, according to the skin permeation 
coefficient (log Kp) value of -2.735. The high permeability surface 
area product (log PS) and blood-brain barrier permeability (log BB) 
values show poorly distributed to the brain and unable to penetrate 
the CNS. The drug distribution process in the central nervous system 
relies on various factors, including blood flow to the brain, 
extracellular and intracellular fluid dynamics, pH conditions, low 
skin permeability, as well as values indicating poor distribution to 
the brain and inability to penetrate the CNS, indicate limited 

neurological impact [37]. Gar-A undergoes metabolism in the liver, 
mainly through the enzymes CYP2C19 and CYP3A4, with the 
CYP1A2 enzyme being the only one that does not metabolise it. 
Despite these metabolic pathways, the overall clearance value of 
0.322 ml/min/kg indicates rapid elimination, possibly through other 
enzyme metabolism or alternative excretion pathways. Metabolic 
pathways, particularly via CYP2C19 and CYP3A4 enzymes, 
contribute to rapid elimination, reinforcing the need for further 
investigation into alternative excretion pathways [38]. 

Regarding its interaction with the HER2 protein, the docking result 
indicates a negative binding energy. The negative binding energy 
implies spontaneous binding, as outlined in table 3. The critical energy 
value reflects the affinity of Gar-A to the target protein, with a more 
negative value indicating a more stable bond between Gar-A and the 
protein. Furthermore, the pose score required for molecular dynamics 
simulation is close to one, indicating a similarity in action to the 
natural ligand. This alignment in pose score supports the findings from 
the docking process and suggests that Gar-A exhibits a molecular 
interaction with HER2 protein akin to its natural ligand [39].  

Molecular dynamics simulations reveal that Gar-A exhibits 
decreased stability when forming protein complexes over 100 
nanoseconds. The instability of the molecular dynamics data is 
caused by less than optimal interaction energy between the 
compound and the receptor, as well as receptor conformational flux 
caused by the shape of the binding pocket not fitting properly. 
Limitations in modelling flexible molecular movements, inaccurate 
energy estimates for predicting attachment affinity, and 
complexities and limitations of scoring functions and docking 
techniques indicate potential areas for improvement and further 
investigation [40]. This study effectively establishes a connection 
between the research objectives and a detailed exploration of the 
molecular properties of Gar-A, highlighting its potential as a 
promising drug candidate for breast cancer with HER2 
overexpression. It also acknowledges the inherent limitations in 
computational modelling and simulation. 

CONCLUSION  

The physicochemical properties of Gar-A align with Lipinski's rule 
for drug candidates. ADME predictions indicate good intestinal 
permeability for Gar-A; however, it suggests it cannot penetrate the 
blood-brain barrier. In the context of its interaction with the HER2 
protein, the CNN pose score is 0.6178. This score and molecular 
dynamics simulation result over 100 ns indicate that Gar-A forms 
less stable complexes with the protein. The instability observed 
during the simulation suggests dynamic fluctuations in the 
interaction between Gar-A and HER2 proteins. 
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