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ABSTRACT 

Objective: Pharmacoinformatics is an innovative approach rapidly evolving in pharmaceutical research and drug development. This study focuses 
on analysing Morus macroura, a plant species with untapped pharmacological potential. This investigation aims to leverage pharmacoinformatics 
techniques to unveil the hidden potential of Morus macroura in drug discovery and development.  

Methods: The study includes analyses of protein-protein interactions, deep learning docking, adsorption tests, distribution, metabolism, excretion, 
molecular dynamics simulations and free energy calculation using Molecular Mechanics Generalized Born Surface Area (MMGBSA). 

Results: Nine active compounds were identified in Morus macroura, namely Andalasin A, Guangsangon K, Guangsangon L, Guangsangon M, 
Guangsangon N, Macrourone C, Mulberrofuran G, Mulberrofuran K, and Mulberroside C. These compounds exhibit protein-protein interaction 
activities against a cytochrome P450 monooxygenase that catalyses the conversion of C19 androgens. These plant compounds influence aromatase 
excess syndrome, deficiency, and ovarian dysgenesis. Regarding drug-likeness, Mulberroside C and Macrourone C demonstrated good absorption 
potential by adhering to Lipinski's rule of five. Deep learning docking simulations yielded affinity results of-9.62 kcal/mol for Guangsangon M,-10.44 
kcal/mol for Macrourone C, and-10.99 kcal/mol for Guangsangon L. Subsequent molecular dynamics simulations indicated that Guangsangon L and 
Macrourone C remained stable during a 100 ns simulation.  

Conclusion: Morus macroura interacts with important proteins, particularly CYP19A1, which might influence health conditions like aromatase 
excess syndrome and ovarian dysgenesis. These findings provide potential paths for addressing specific health issues and advancing drug 
development. Molecular dynamics simulations indicated that Guangsangon L and Macrourone C remained stable during simulation. 
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INTRODUCTION 

Drug discovery and development is a complex and time-consuming 
process that involves the identification of potential drug targets, the 
design and synthesis of drug candidates, and the evaluation of their 
efficacy and safety. In recent years, pharmacoinformatics has 
emerged as a powerful tool for drug discovery and development, 
enabling the rapid and efficient analysis of large amounts of data to 
identify potential drug candidates [1].  

The significance of Morus macroura has grown due to its increased 
importance for its antioxidant and anti-inflammatory properties, as 
well as its high safety profile [2]. This plant is abundant in is 
prenylated flavonoids and Diels–Alder type adducts with both 
structural and biological significance [3]. Researchers have explored 
both the fruits and leaves of Morus macroura Miq. as a potential 
source of bioactive compounds for addressing Alzheimer's disease 
(AD). Chemical profiling of their extracts has revealed a rich variety 
of phytochemicals [4]. The comprehensive spectrum of Morus 
macroura's activities demands deeper analysis 

Notably, Morus Macroura contains key active compounds, andalasin A 
and mulberroside C, which have been extracted from its wood and 
exhibit weak antinematodal and moderate antifungal properties [5]. 
However, the diverse activities of Morus macroura need to be 
analyzed using pharmacoinformatics to understand the extent of 
Protein-Protein Interaction (PPI) influence on its usage. These PPIs 
could potentially serve as drug targets. Pharmacoinformatics can be 
employed to analyze these PPIs and identify the most promising drug 
targets. It is also essential to assess the drug-likeness of active 
compounds in Morus macroura to predict their absorption, 
distribution, metabolism, and excretion properties. This research aims 
to emphasize the need for a more profound exploration of Morus 

macroura's activities and how leveraging pharmacoinformatics, 
particularly in understanding PPIs, can uncover potential drug targets 
and assess the suitability of active compounds for further drug 
development. 

Two commonly used databases for pharmacoinformatics research 
are the Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
Online Mendelian Inheritance in Man (OMIM). KEGG disease 
pathways can help identify molecular pathways associated with 
specific diseases [6]. These pathways may offer potential drug 
targets. OMIM is a database that contains information about human 
genes and genetic diseases, aiding in the identification, design, and 
testing of drug targets [7]. Molecular docking simulations with deep 
learning can be utilized to investigate interactions between active 
compounds and proteins, while molecular dynamics simulations are 
necessary to assess the stability of the binding between active 
compounds and proteins. This study aims to provide a holistic 
understanding of the pharmacological effects of Morus macroura on 
proteins and genes for future drug development. 

MATERIALS AND METHODS 

Potential target analysis 

In the pursuit of target prediction, the PhytoChemical Interactions DB 
(PCIDB), which can be accessed at 
https://www.genome.jp/db/pcidb/kna_species/6819. Concurrently, 
gene annotations relevant to human diseases were obtained from the 
National Center for Biotechnology Information (NCBI), accessible 
through this link: https://www.ncbi.nlm.nih.gov/gene/. To delineate 
potential Morus macroura targets associated with diseases, we 
considered overlapping targets. To identify significant disease-related 
target groups, we relied on protein-protein interaction (PPI) data 
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sourced from STRING, accessible at https://string-db.org/. Our focus 
organism was "Homo sapiens," and a stringent threshold of a score 
greater than 0.900 with a size cutoff exceeding 10 was applied [8]. 

ADMET analysis 

We assessed the ADME (Absorption, Distribution, Metabolism, and 
Excretion) analysis of the compounds derived from Morus macroura, 
with potential application as pharmaceuticals. Our study involved 
utilizing the SWISS-ADME web server for predicting the ADME profile, 
accessible at http://www.swissadme.ch/. This server provides 
essential parameters encompassing lipophilicity, aqueous solubility, 
pharmacokinetic properties, and drug-likeness criteria [9]. 

Deep learning docking 

Proteins and ligands were separated using Discovery Studio 2020 
software, available at https://discover.3ds.com/. Geometric 
optimization was carried out using Avogadro software, with the 
Merck Molecular Force Field (MMFF94) serving as the force field. 
The receptor utilized in these simulations was the structure of 
human placental aromatase cytochrome P450 in complex with 
androstenedione, identified by its PDB ID: 3EQM [10]. Molecular 
docking simulations were performed using Python-based cloud 
computing on Google Colab [11]. For molecular docking simulations, 
the Deep Learning algorithm (Convolutional Neural Network) was 
implemented using Gnina software, version 1.0.3 [12, 13]. The grid 
box was established using the autobox ligand file to determine the 
binding site, which involved creating a prism around the ligand, with 
additional spacing in each dimension. 

Molecular dynamics and free energy calculation 

The protein employed was the structure of human placental 
aromatase cytochrome P450 in a complex with androstenedione, 
identified by its PDB ID: 3EQM [10]. Input file preparation and 
homology modeling were conducted using CHARMM-GUI [14]. 
Ionization was achieved using NaCl at a concentration of 0.15 M. The 
system employed Periodic Boundary Conditions with Particle-Mesh 
Ewald (PME) and Fast Fourier Transform (FFT). The CHARMM36M 
force field was applied to both the protein and ligand [15] and the 
TIP3P water model was used [16]. Hydrogen mass repartitioning 
was performed [16]. The equilibration process involved the NVT 
ensemble, followed by production simulations with the NPT 
ensemble at a temperature of 310 K. All simulations were executed 
using Gromacs 2023.1 software, with a total simulation time of 100 
ns [17, 18]. Free energy calculations were carried out using 
gmx_MMPBSA [19].  

RESULTS 

The PPI networks to identify significant disease-related target 
groups for Homo sapiens organism (Fig. 1). 

 

 

Fig. 1: Protein-protein interaction network derived from morus 
macroura 

 

The study of ADME (Absorption, Distribution, Metabolism, and 
Excretion) properties of bioactive compounds is critical in drug 
development and understanding the pharmacokinetics of natural 
products. Morus macroura, a plant known for its medicinal 
properties, contained several compounds with diverse ADME 
characteristics. The study investigated the ADME properties of eight 
Morus macroura compounds, focusing on their lipophilicity, 
gastrointestinal absorption, and interactions with key CYP enzymes 
(table 1). The Log S values indicated the lipophilicity of the 
compounds. Compounds such as Andalasin A, Guangsangon K, and 
Mulberrofuran K had very low Log S values, indicating poor 
solubility. On the other hand, Mulberroside C had a higher Log S 
value, indicating better solubility. All compounds exhibited low GI 
absorption, which suggested that these compounds faced challenges 
in crossing the intestinal barrier and getting into the bloodstream, 
impacting their bioavailability. The interactions with CYP enzymes 
were crucial for understanding the potential for drug-drug 
interactions. Among the compounds, Guangsangon L and 
Macrourone C interacted with CYP2C9 and CYP3A4, indicating a 
potential for metabolism interactions. It's noteworthy that most of 
the compounds did not interact with several CYP enzymes, 
suggesting a reduced likelihood of interactions with drugs 
metabolized by these enzymes. 

 

Table 1: The ADME properties of the morus macroura compounds 

Compounds Log S (ESOL) GI Absorption CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4 
Andalasin A -6.13; Poorly soluble Low No No Yes No No 
Guangsangon K -6.52; Poorly Soluble Low No No No No No 
Guangsangon L -5.54; Moderately Soluble Low No No Yes No Yes 
Guangsangon M -6.77; Poorly Soluble Low No No No No No 
Guangsangon N -6.77; Poorly Soluble Low No No No No No 
Macrourone C -7.50; Poorly Soluble Low No No No No Yes 
Mulberrofuran G -7.44; Poorly Soluble Low No No No No No 
Mulberrofuran K -8.60; Poorly Soluble Low No No No No No 
Mulberroside C -3.79; Soluble Low No No No No No 
 

Table 2: Lipinski's rule estimation of the morus macroura compounds 

Compounds Molecular weight 
(≤ 500) (g/mol) 

MLOGP (≤ 4.15) 
(log Po/w) 

Num. H-bond 
acceptors (≤ 10) 

Num. H-bond 
donors (≤ 5) 

Lipinski rule 

Andalasin A 488.49 2.20 8 8 Yes; 1 violation: NhorOH>5 
Guangsangon K 626.61 0.68 11 8 No: 3 violation: MW>500, NorO>10, 

NHorOH>5 
Guangsangon L 476.47 1.14 8 6 Yes: 1 violation: NhorOH>5 
Guangsangon M 610.61 1.44 10 7 No: 2 violation: MW>500, NHorOH>5 
Guangsangon N 610.61 1.44 10 7 No: 2 violation: MW>500, NhorOH>5 
Macrourone C 492.60 3.19 6 4 Yes; 0 violation 
Mulberrofuran G 562.57 3.21 8 5 Yes: 1 violation: MW>500 
Mulberrofuran K 628.67 4.03 8 4 Yes: 1 violation: MW>500 
Mulberroside C 458.46 -0.08 9 5 Yes; 0 violation 

http://www.swissadme.ch/�
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Lipinski's Rule of Five, developed by Christopher Lipinski, was a 
widely used guideline in drug discovery to assess the drug-
likeness and pharmacokinetic properties of small molecules. It 
stated that for a compound to have good oral bioavailability, it 
should meet specific criteria related to molecular weight, 
lipophilicity (log P), the number of hydrogen bond acceptors, and 
the number of hydrogen bond donors (table 2). The study 
evaluated the suitability of eight Morus macroura compounds 
using Lipinski's Rule of Five, aiding in the prediction of their 
potential as potential drug candidates. Out of the eight compounds 
from Morus macroura, only Macrourone C and Mulberroside C 

fully complied with Lipinski's Rule of Five, with no violations. 
Andalasin A, Guangsangon L, Mulberrofuran G, and Mulberrofuran 
K met most of the criteria but had one violation each. 
Guangsangon K, Guangsangon M, and Guangsangon N each had 
multiple violations, making them less likely to be considered good 
drug candidates according to Lipinski's Rule. 

Administration, distribution, metabolism, and elimination (ADME) 
radar parameters of Morus macroura compounds with provides 
essential parameters encompassing lipophilicity, aqueous solubility, 
pharmacokinetic properties, and drug-likeness criteria (fig. 2). 

 

 
Andalasin A 

 
Guangsangon K 

 
Guangsangon L 

 
Guangsangon M 

 
Guangsangon N  

Macrourone C 

 
Mulberrofuran G 

 
Mulberrofuran K 

 
Mulberroside C 

Fig. 2: Administration, distribution, metabolism, and elimination (ADME) radar parameters of Morus macroura compounds 
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In deep learning docking, the affinity and CNN Pose Score are crucial 
parameters for assessing the interactions between compounds and 
their target proteins. These metrics help in understanding the 
binding strength and pose accuracy of the ligands (table 3). We 
analyze the affinity and CNN Pose Scores of various compounds, 
including Andalasin A, Guangsangon K, Guangsangon L, 
Guangsangon M, Guangsangon N, Macrourone C, Mulberrofuran G, 
Mulberrofuran K, Mulberroside C, and the native ligand. Andalasin A 
exhibited an affinity of -5.32 kcal/mol, indicating a moderately 
strong binding to its target protein. Guangsangon K showed a 
slightly stronger binding affinity with a score of -6.26 kcal/mol 
compared to Andalasin A. Guangsangon L displayed the highest 
affinity among the listed compounds with a score of-10.99 kcal/mol, 
suggesting a strong and favorable binding interaction. Guangsangon 
M and Guangsangon N had affinity scores of -9.62 and -8.39 
kcal/mol, respectively, indicating relatively strong binding 
interactions. Macrourone C also showed a high affinity score of -
10.44 kcal/mol, similar to Guangsangon L. In contrast, 
Mulberrofuran G and Mulberrofuran K exhibited positive values of 
5.88 and 0.38 kcal/mol, respectively. These positive values suggest 
repulsive interactions or poor binding affinity. Mulberroside C 
displayed an affinity of -8.93 kcal/mol, indicating a strong binding 
affinity similar to several other compounds on the list. The native 
ligand had an affinity of -10.68 kcal/mol, indicating a strong and 
favorable binding interaction, similar to Guangsangon L and 
Macrourone C. 

The CNN Pose Score is a measure of how accurately the ligand has 
docked in the binding site of the target protein. A score closer to 1.0 
suggests a more accurate pose. Andalasin A had a CNN Pose Score of 
0.5631, indicating a reasonably accurate pose prediction. 
Guangsangon K exhibited a score of 0.4346, which suggests a less 
accurate binding pose prediction. Guangsangon L displayed a CNN 
Pose Score of 0.7654, indicating a relatively accurate binding pose 
prediction. Guangsangon M and Guangsangon N had scores of 0.5154 
and 0.6154, respectively, suggesting moderately accurate pose 
predictions. Macrourone C had a CNN Pose Score of 0.6008, indicating 
a moderately accurate binding pose. Mulberrofuran G and 
Mulberrofuran K had scores of 0.4531 and 0.4086, respectively, 
suggesting less accurate pose predictions. Mulberroside C exhibited a 
CNN Pose Score of 0.6117, indicating a moderately accurate binding 
pose prediction. The native ligand had the highest CNN Pose Score on 
the list, with a score of 0.9104, indicating a highly accurate binding 
pose prediction. 

In summary, the affinity values reveal the strength of binding 
interactions, with Guangsangon L, Macrourone C, Guangsangon L 
and the native ligand showing strong affinities. The CNN Pose Scores 
provide insights into the accuracy of ligand binding poses, where the 
native ligand, Guangsangon L, and Macrourone C demonstrated 
relatively accurate binding predictions. These results are essential 
for understanding the potential of these compounds as drug 
candidates or for further optimization in drug discovery processes.

 

Table 3: Molecular docking simulation results 

Compounds Affinity 
(kcal/mol) 

CNN pose 
score 

Hydrogen interaction Hydrophobic interaction 

Andalasin A -5.32 0.5631 Ser478, Met374, Leu372. Arg115 Ile133, Ala438, Ala306, Val370, Thr310, Leu477 
Guangsangon K -6.26 0.4346 Cys437, Ser478 Val373, Val370, Phe134, Ile133, Ala306, Val313 
Guangsangon L -10.99 0.7654 Leu477, Arg115, Met374, Pro429, 

Ala438 
Trp224, Ala438, Ile133 
 

Guangsangon M -9.62 0.5154 Ile132, Trp141, Arg435, Gly436 Ala306, Ile133, Phe430, Val370, Val373 
Guangsangon N -8.39 0.6154 Cys 437, Leu477, Asp309 Phe430, Val370, Thr310, Ile133 
Macrourone C -10.44 0.6008 Arg115, Ala438 Val370, Trp224, Ile133, Ala306, Leu152, Cys437, Ala443 
Mulberrofuran G 5.88 0.4531 Arg115, Arg145 Ile70, Ile133, Ile132, Ala438, Cys437, Val373, Phe430, 

Val370, Ala306 
Mulberrofuran K 0.38 0.4086 Ser478, Cys437 Val370, Val373, Phe134, Ile133, Cys437, Ala306, Val313 
Mulberroside C -8.93 0.6117 Leu477, Met374, Gly431 Val370, Phe430, Cys437, Val373 
Native ligand -10.68 0.9104 Arg115, Met374, Ala306 Trp224 
 

Information 

CNN: Conventional Neural Networks  

The binding mode of Guangsangon L, Guansangon M, Macrourone C, 
and Native Ligand show a similar pattern trend in molecular docking 
simulation (fig. 3). 

 

 

 

Fig. 3: The interactions that occur  between Guangsangon L, Guangsangon M, and Macrourone C. These 3 compounds have the minimum affinity 
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Table 4: Free energy calculation results using the generalized born and surface area solvation (MMGBSA) approach 

Compounds ΔG (kcal/mol) 
Guangsangon L -31.47±2.51 
Guangsangon M -47.20±2.69 
Macrourone C -40.44±1.60 
Native Ligand -24.00±1.56 

The RMSD values of Guangsangon L, Guansangon M, Macrourone C, and Native Ligand illustrated the bond stability for 100 ns simulation (fig. 4). 
 

 

Fig. 4: RMSD values for 100 ns Guangsangon L (Black), Guansangon M (Red), Macrourone C (Green) and Native Ligand (Blue), illustrate 
the bond stability during the simulation, The RMSD values of Guangsangon L,  Macrourone C, and Native Ligand show a similar pattern 

trend for 100 ns simulation (fig. 4) 
 

 

Fig. 5: RMSF values for 100 ns Guangsangon L (Black), Guansangon M (Red), Macrourone C (Green) and Native Ligand (Blue), depict the 
amino acids that experienced fluctuations in the simulation. 

 

DISCUSSION 

Morus macroura exhibits protein-protein interactions with A 
cytochrome P450 monooxygenase, namely CYP19A1, which catalyzes 
the conversion of C19 androgens. CYP19A1 is linked to other proteins 
or genes, with green lines denoting gene neighborhood interactions, 
red signifying gene fusions, blue indicating gene co-occurrence, black 
lines representing co-expression connections, and purple indicating 
homologous associations. The predicted functional partners 
interconnected in this network include 3 beta-hydroxysteroid 
dehydrogenase (HSD3B1), Estradiol 17-beta-dehydrogenase 1 

(HSD17B1), 3 beta-hydroxysteroid dehydrogenase (HSD3B2), 3-oxo-
5-alpha-steroid 4-dehydrogenase 1 (SRD5A1), Testosterone 17-beta-
dehydrogenase 3 (HSD17B3), Steroid 17-alpha-hydroxylase 
(CYP17A1), Estradiol 17-beta-dehydrogenase 2 (HSD17B2), 3-keto-
steroid reductase (HSD17B7), 3-oxo-5-alpha-steroid 4-dehydrogenase 
2 (SRD5A2), and Sulfotransferase 1E1 (SULT1E1) (fig. 1). These 
functional partners encompass not only physically linked proteins 
within a protein complex or involved in temporary interactions but 
also those with more indirect associations [20]. Furthermore, data 
from KEGG Disease and OMIM indicate that this plant affects 
aromatase excess syndrome, deficiency, and ovarian dysgenesis.  
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We delved into the ADME (Absorption, Distribution, Metabolism, 
and Excretion) prediction results concerning the compounds from 
Morus macroura (table 1). Interestingly, Mulberroside C displayed 
notably good solubility within a range of values from-3.05 to-3.92. 
Solubility is a pivotal factor in drug development, dictating how 
effectively a compound can dissolve in bodily fluids and 
subsequently be absorbed by the body. This attribute bodes well for 
the compound's potential in the drug development process, as it can 
enhance its effectiveness and ability to traverse various stages, from 
formulation to successful absorption within the body [21, 22]. 
Furthermore, our analysis also spotlighted Guangsangon L, another 
compound from Morus macroura, which demonstrated moderate 
solubility, registering a value of-5.54. Although not as high as the 
solubility exhibited by Mulberroside C, moderate solubility remains 
favorable for drug development, suggesting that the compound can 
still perform effectively in its intended role.  

Unfortunately, all identified compounds in Morus macroura 
exhibited low GI (Gastrointestinal) absorption, implying that these 
compounds might not be readily absorbed through the 
gastrointestinal tract, which could have implications for their 
bioavailability and distribution in the body [23]. These findings shed 
valuable light on the potential of these compounds for drug 
development and their impact on therapeutic effectiveness. 

The compounds Andalasin A, Guangsangon L, and Macrourone C 
have distinctive interactions with the enzymes CYP2C9 and CYP3A4, 
which belong to the critical cytochrome P450 (CYP) family. These 
enzymes hold paramount importance in drug metabolism and 
elimination from the body. While Andalasin A and Guangsangon L 
are believed not to hinder CYP2C9's functionality, their presence 
doesn't significantly interfere with the drug pathways managed by 
this enzyme. Conversely, Macrourone C might inhibit the CYP3A4 
enzyme, a key player in metabolizing many drugs. Such inhibition 
can lead to pronounced alterations in drug metabolism, potentially 
elevating drug concentrations within the body [24, 25]. 

Specifically, the compounds only Macrourone C and Mulberroside C 
fully complied with Lipinski's Rule of Five adhere to Lipinski's rules, 
as indicated in table 2. Lipinski's criteria serve as a foundational 
framework for assessing the potential of molecules to be orally 
active drugs, particularly concerning solubility and absorption [26]. 
Conversely, another molecule of interest, Mulberroside C, stands out 
for its conformity with Lipinski's criteria, positioning it as a 
favorable candidate in oral drug development. It's pivotal to report 
that compounds adhering to these criteria typically exhibit enhanced 
bioavailability, thereby increasing their potential efficacy and safety 
when administered orally.  

The ADME (Absorption, Distribution, Metabolism, and Excretion) 
profile of compounds derived from Morus macroura is augmented 
with a radar chart, meticulously delineating six pivotal ADME 
parameters with a compound's potential for oral bioavailability. 
These parameters include LIPO (lipophilicity), SIZE (size), POLAR 
(polarity), INSOLU (insolubility), INSATU (instauration), and FLEX 
(flexibility), as elegantly illustrated in fig. 2. The colored sectors 
within the chart specify the domains of chemical features served for 
facilitating oral bioavailability. In a profound explanation gleaned 
from the ADME profile analysis, the compounds Mulberroside C and 
Guangsangon L emerge as exemplars of congruence across all 
parameters, encompassing the realms of lipophilicity, size, polarity, 
insolubility, saturation, and flexibility. 

Molecular docking simulations, among these compounds, 
Guangsangon L exhibited the highest affinity with a score of-10.99 
kcal/mol and displayed a strong interaction involving several amino 
acids, including Leu477, Arg115, Met374, Pro429, and Ala438 (fig. 3) 
and conventional Neural Networks (CNN) Pose Score of 0.7654. The 
closer this value approaches 1, the more closely it resembles the 
binding shape of the native ligand (table 3). Additionally, two 
compounds displayed positive affinities, indicating that the reactions 
wouldn't occur spontaneously, as observed in Mulberrofuran G and 
Mulberrofuran K. Positive affinity values also suggest unstable 
bonding. Three compounds, Guangsangon M, Macrourone C, and 
Guangsangon L, were predicted to have strong affinities for 
Aromatase cytochrome P450, and further molecular dynamics 

simulations were conducted (fig. 4 and 5). These simulations are 
crucial for understanding the stability of interactions between the 
ligand and receptor. 

Molecular docking can provide a static representation of the ligand-
receptor interactions, while molecular dynamics offers insight into 
dynamic interactions. Both molecular docking and molecular 
dynamics simulations employed data from the native ligand (4-
Androstene-3-17-Dione) for validation and evaluation purposes. The 
simulations with the native ligand provided information about 
ligand potential, interaction identification, and mechanistic insights. 

The results of the molecular dynamics simulations indicated that 
Guangsangon L and Macrourone C remained stable during a 100 ns 
simulation, as evidenced by Root Mean Square Deviation (RMSD) 
data (fig. 4). Root-Mean-Square Fluctuation (RMSF) data were used 
to assess protein flexibility and identify crucial residues for protein 
function (fig. 5). 

Finally, binding stability analysis was performed using the 
Generalized Born and Surface Area Solvation (MMGBSA) method. 
Guangsangon M and Macrourone C exhibited the lowest ΔG 
energies (table 4). A lower ΔG value in free energy calculations 
signifies a higher affinity of the ligand for the drug target. Affinity 
measures the strength of the interaction between the ligand and 
the drug target, and a lower ΔG value indicates a stronger 
interaction. MMGBSA combines molecular mechanics (MM) with 
the Generalized Born Surface Area (GBSA) model to predict ligand 
affinity for the drug [27]. 

CONCLUSION 

Morus macroura exhibits complex protein-protein interactions, 
particularly with CYP19A1, and has potential implications for diseases 
such as aromatase excess syndrome and ovarian dysgenesis. All 
compounds displayed low GI absorption, which may affect their 
bioavailability. Some compounds that meet the standards for making 
drugs that can be taken by mouth, such as Mulberroside C and 
Macrourone C. Deep learning docking simulations yielded affinity 
results of-9.62 kcal/mol for Guangsangon M,-10.44 kcal/mol for 
Macrourone C, and-10.99 kcal/mol for Guangsangon L. Following the 
molecular dynamics simulation, it was observed that Guangsangon L 
and Macrourone C maintained stability throughout a 100 ns 
simulation.  
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