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ABSTRACT 

Malaria, which is caused by the Plasmodium parasite and transmitted by mosquitoes, continues to be a major global health issue. The worldwide 
health community continues to work toward finding a conclusive answer to the malaria problem, but it is still elusive. Developing a successful 
malaria vaccine has proven difficult due to the Plasmodium parasite’s complicated life cycle and ability to change and develop resistance to 
interventions rapidly. Amidst this backdrop, the advent of mRNA Lipid Nanoparticle (mRNA-LNP) vaccines, exemplified by their resounding success 
in mitigating the Coronavirus Disease 2019 (COVID-19) pandemic, has kindled newfound hope in vaccine development. This review examines the 
potential of leveraging mRNA technology to induce a robust immune response, thereby potentially revolutionising the landscape of malaria 
prevention through the development of breakthrough malaria vaccines. The intricate interplay between the efficacy of the mRNA-LNP vaccine 
against COVID-19 and its prospective utility in addressing malaria is also deliberated upon. 
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INTRODUCTION 

The Global Technical Strategy for Malaria (2016-2030) aims to 
reduce 90% of malaria incidence and fatality rates worldwide; thus, 
fresh, effective preventative antimalarial techniques are required 
[1]. Malaria is caused by five parasite species, two of which, 
Plasmodium falciparum and Plasmodium vivax, pose the greatest 
threat [2]. Numerous challenges interfere with malaria elimination 
efforts, encompassing environmental factors, insecticide resistance 
impeding vector control, high rates of asymptomatic infections, and 
parasite resistance to various antimalarials [3]. Multiple techniques 
are currently employed to create vaccines against different phases of 
parasite growth [4, 5]. Vaccines reduce the risk of infection by 
working with the body’s natural defences to safely develop 
immunity to disease [6]. Indeed, the number of studies aiming at 
developing such vaccines has grown exponentially in the past 
decade [7]; however, they have been hindered by several issues, 
some of which can be resolved by applying strategies that have been 
employed to rapidly create vaccines against Coronavirus Disease 
2019 (COVID-19) [8]. Therefore, recent vaccine research 
advancements and identifying promising candidates have stimulated 
renewed optimism for developing efficacious malaria vaccines [9]. 

In 2020, the success of mRNA Lipid Nanoparticle (mRNA-LNP) 
vaccines in COVID-19 treatment made headlines worldwide [10]. 
This pioneering technology, leveraging messenger RNA to induce an 
immune response targeted at the Coronavirus, has played a pivotal 
role in mitigating the spread of the virus during the pandemic [10, 
11]. mRNA-LNP vaccines are advantageous in terms of rapid design, 
production, and flexibility in vaccine development; thus, the 
application is not limited to COVID-19 alone but to other infectious 
diseases such as malaria [12, 13]. The complex nature, biology and 
genetic diversity of the Plasmodium parasite pose significant 
challenges in treating and managing malaria. Hence, mRNA-LNP 
vaccines hold promise for effective protection against this malaise 
[9]. This review examines the potential of leveraging mRNA 
technology to induce a robust immune response, thereby potentially 
revolutionizing the landscape of malaria prevention through the 
development of breakthrough malaria vaccines. The intricate 
interplay between the efficacy of the mRNA-LNP vaccine against 
COVID-19 and its prospective utility in addressing malaria is also 

deliberated upon. Search strategies were employed by querying 
databases such as PubMed, Scopus and Google Scholar utilising 
'malaria', 'vaccine', 'mRNA', 'COVID-19', and 'Plasmodium' as search 
terms to identify relevant literature published within the last ten 
years (2014-2024). 

Malaria vaccine development obstacles and current state 

Despite significant advancements in malaria research, developing an 
effective vaccine remains challenging [14]. The complex life cycle of 
the Plasmodium parasite involves multiple stages and interactions 
with the host’s immune system, making it difficult to target 
effectively with a single vaccine [15, 16]. Additionally, the genetic 
diversity of the parasite leads to various strains, each requiring 
distinct immune responses for protection [17, 18]. The traditional 
approach to vaccine design is expensive and time-consuming, while 
the conventional approach aims to maximize efficacy and, at the same 
time, minimize prospective negative effects [19]. Conventional vaccine 
approaches have struggled to address these complexities, highlighting 
the need for innovative technologies like mRNA-LNP vaccines [20]. 
While malaria management efforts have successfully reduced the 
disease’s impact in many areas, a highly effective vaccine remains 
elusive [21]. Recent advances in malaria vaccine research have 
brought about several promising candidates in clinical trials [22]. The 
current malaria vaccine candidates focus on parasites in the pre-
erythrocytic, erythrocytic, and sexual stages [23]. 

RTS, S/AS01 (Mosquirix) [24], and R21/Matrix-M [25] are 
prominent malaria vaccine candidates [26], with other promising 
pre-erythrocytic vaccine candidates are in the pipeline [27]. 
Additionally, several other vaccine approaches are under 
development, each targeting different stages of the Plasmodium 
parasite’s life cycle, as shown in fig. 1. These candidates offer unique 
mechanisms of action and advantages, contributing to the diverse 
strategies employed in malaria vaccine research [28]. RTS, S/AS01E 
is a subunit vaccine composed of the Circumsporozoite Protein 
(CSP) antigen from P. falciparum combined with the AS01 adjuvant 
system [29]. The CSP antigen is a key component of the parasite's 
sporozoite stage, which invades human liver cells during the initial 
stages of malaria infection [30]. By targeting CSP, the vaccine aims to 
stimulate an immune response that prevents the parasite from 
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establishing infection in the liver, thereby reducing the likelihood of 
clinical malaria [9, 30]. The CSP-based RTS, S was shown to have a 
statistically significant efficacy against severe malaria in young 
children. It reduced clinical malaria episodes by around 36% in 
young African children and about 26% in newborns who got four 
vaccine doses [7]. The R21/Matrix-M vaccine is also a protein-based 
subunit vaccine that targets the CSP antigen of the Plasmodium 
falciparum parasite [31]. It combines the R21 antigen with the 
Matrix-M adjuvant, developed by Novavax, to enhance the immune 
response [26]. Children aged 5 to 17 mo who were recruited from a 
highly seasonal malaria transmission scenario in Burkina Faso were 
reported to be safe and highly immunogenic in a phase 2b trial 
employing CSP-based R21 with Matrix-M adjuvant, with a protective 
effectiveness of over 74% [32]. The R21/Matrix-M malaria vaccine 
represents a significant leap forward in the global fight against 
malaria, with its high efficacy, affordability, and potential to save 
countless lives [26]. 

Limitations of prominent malaria vaccines 

Despite the initial success of the RTS, S/AS01ΕS vaccines, it also 
faces several limitations [33]. Its efficacy tends to wane over time, 
and booster doses are needed to sustain long-term immunity. Age-
specific variations in vaccine response pose challenges, particularly 
in children [9]. Moreover, the vaccine does not confer complete 
protection against malaria; despite its preventive benefits, malaria 
cases still occur post-vaccination [9, 34], and production and 
availability remain constrained, particularly in malaria-endemic 
regions [33]. While the R21/Matrix-M malaria vaccine promises 
efficacy and safety in clinical studies, it faces several limitations. 
These include concerns about its generalizability beyond the African 
populations where it was exclusively tested [35], potential safety 
issues similar to those observed with the RTS, S/AS01 vaccines, and 
uncertainties regarding long-term protection and efficacy beyond 
the 12-month mark [9]. Additionally, limitations in understanding its 
immune response, the feasibility of a four-dose schedule, and the 
exclusion of specific age groups from trials raise questions about the 
vaccine's broader applicability and practical deployment [34].  

 

 

Fig. 1: Malaria vaccines and classification based on their 
mechanism of action 

 

Pre-erythrocytic vaccines 

Several promising vaccine candidates have been identified, focusing 
on surface antigens on the sporozoites, the infectious form of the 
malaria parasite transmitted by mosquitoes [36]. Transmission of 
Plasmodium depends on the completion of its developmental cycle 
in the mosquito, a process that occurs alongside the digestion of the 
blood meal and egg development in the mosquito [37]. One of the 
primary targets for vaccine development is the CSP, which is 
essential for the parasite's development in both the mosquito and 
human hosts [38]. RTS, S/AS01, the phase 3 vaccine targeting PfCSP, 

has limited efficacy and short-lived protection despite World Health 
Organization (WHO) approval for children. R21, targeting PfCSP, 
shows improved immunogenicity and protection when combined 
with the Matrix-M adjuvant [30]. Thrombospondin-related 
Anonymous Protein (TRAP) is another promising vaccine candidate, 
eliciting protective immune responses in animal models. 

Additionally, co-immunization with multiple pre-erythrocytic 
vaccine antigens has shown potential for sterile protection in rodent 
malaria models [39]. The PfSPZ vaccine developed by Sanaria 
Incorporation uses radiation-attenuated Plasmodium sporozoites to 
stimulate immune responses against liver-stage parasites [40]. 
Initial trials have shown promise, but challenges include the need 
for cold storage and intravenous administration [7]. ChAd63-MVA 
ME-TRAP, a viral vector vaccine, employs the ChAd63-MVA platform 
to deliver a key Plasmodium protein. It aims to generate strong T-
cell responses and has demonstrated positive results regarding 
antibody and cellular immune responses [41]. 

Blood-stage vaccines 

The AMA1-C1/Alhydrogel and R32LR AMA-1 vaccines target the 
Apical Membrane Antigen 1 (AMA1), inhibiting erythrocyte invasion 
and reducing parasite growth. They have shown efficacy in clinical 
trials, with the potential to mitigate disease [42]. Several Merozite 
Surface Proteins (MSP) and invasion complex proteins mediate 
erythrocyte invasion. It has been found that MSP1 and MSP2 have 
large levels of genetic variation, which might hamper malaria 
vaccine development [43]. Another study found that MSP1 includes 
conserved B-cell epitopes, suggesting that MSP1 might be a good 
vaccine candidate against P. vivax malaria [44]. 

Transmission-blocking vaccines 

Pfs25-based vaccines disrupt parasite transmission by inducing 
antibodies that prevent mosquito development [45]. Various 
platforms, such as virus-like particles and protein-conjugate 
vaccines, have been explored, showing promise in preclinical studies 
[46]. Pfs230-based vaccines target a protein crucial for parasite 
fertilization in mosquitoes, and these vaccines seek to induce 
antibodies that block parasite development [47]. Although still in the 
early stages, they can break the malaria transmission cycle [47, 48]. 
These diverse malaria vaccine candidates offer different strategies 
to combat the disease, ranging from targeting liver-stage parasites to 
disrupting transmission, and they contribute to the advancement of 
malaria vaccine research. By combining these vaccine strategies, 
malaria control can be approached from multiple angles, potentially 
increasing the likelihood of successful vaccine development [7, 49]. 

DNA and viral-vector vaccines 

DNA vaccines directly inject the plasmid DNA encoding parasite 
antigens [50]. These antigens are expressed within host cells, 
stimulating cellular and humoral immune responses. While DNA 
vaccines have the benefit of being easy to produce and stable, they 
have experienced difficulty eliciting robust immune responses in 
clinical trials, necessitating the development of innovative delivery 
systems and adjuvants [23]. Adenoviruses and poxviruses have been 
designed to express malaria antigens and elicit robust immune 
responses. Viral-vector vaccines can efficiently deliver antigens to 
target cells, triggering cellular and humoral immune responses [51, 
52]. These vaccines often require booster doses to maintain long-
lasting immunity. Viral vectors provide a versatile platform for 
developing vaccines against various stages of the Plasmodium 
parasite’s life cycle [49]. 

Challenges and the role of innovative technologies 

The challenges and limitations associated with traditional malaria 
vaccine candidates underscore the importance of innovative 
technologies like mRNA-LNP vaccines. These challenges, ranging 
from immunogenicity [9], antigenic diversity [7], vaccine delivery 
[53] and manufacturing scalability [54], have hindered the progress 
of malaria vaccine development. mRNA-LNP vaccines can address 
many challenges by providing rapid design, increased 
immunogenicity, adaptable antigen targeting, simplified delivery, 
and scalable manufacturing [55]. The advantages of mRNA-LNP 
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technology open up opportunities to overcome longstanding 
obstacles in malaria vaccine development and accelerate progress 
toward effective malaria control and elimination strategies [23]. 
This adaptability could facilitate the development of combination 
vaccines that induce broad and durable protection against various 
stages of the parasite’s life cycle [56]. 

Strategies for combating severe acute respiratory syndrome 
coronavirus-2 with vaccines 

During the COVID-19 pandemic, various strategies were employed 
to combat Severe Acute Respiratory Syndrome Coronavirus-2 
(SARS-CoV-2) [57]. The advancement of genomic sequencing and 
technology greatly facilitated the creation of COVID-19 vaccines 
[58]. Vaccine development proved to be a speedy process due to the 
adaptability and swiftness of the different vaccination technologies 
available, including those against inactivated viruses, mRNA-based 
vaccines, live-attenuated vaccines, DNA vaccines, viral-vector-based 
vaccines, and vaccines targeting protein subunits [59]. Each 
vaccination platform had unique characteristics that set it apart 
from others and potentially influenced the safety, efficacy, and 
duration of the induced protective phase of the vaccine [60]. 

One of the significant vaccine strategies employed during this period 
was mRNA-based vaccines [12]. These vaccines relied on quickly 
translating antigens into the target cells to induce a rapid immune 

response. However, they were also prone to degradation due to 
RNases’ swift breakdown of their single-stranded mRNA structure 
[61]. Several ways were explored to increase the capacity of mRNA 
vaccines to deliver mRNA to the cytoplasm for translation, including 
using complexing agents based on nanoparticles like lipids and 
polymers [62]. mRNA vaccines were considered useful because they 
could resemble real infections and effectively activate the immune 
system to prevent the spread of the virus [63]. 

During this time, two notable mRNA-based COVID-19 vaccines were 
Comirnaty® or BNT162b2 (Pfizer-BioNTech) and mRNA-1273 
(Moderna) [64]. These vaccines were lipid nanoparticle-
encapsulated and encoded the complete viral surge of SARS-CoV-2, 
with the addition of the prefusion conformation bound into two 
proline mutations (P2S) to trigger antibody reactions that render 
the virus inactive [65]. The FDA approved the Emergency Use 
Authorization (EUA) for these vaccines for COVID-19 prophylaxis in 
December 2020. Subsequently, they were sold as Comirnaty® on 
August 23, 2021, providing 95% protection against COVID-19 [66]. 
These vaccination drives aimed to stop the virus’s spread and 
safeguard the general public’s health by stimulating and increasing 
memory T-cells to kill the SARS-CoV-2 virus upon infection (fig. 2). 
Studies have shown that mRNA COVID-19 vaccines (Pfizer-BioNTech 
and Moderna) reduced the risk of infection by 91% for fully 
vaccinated individuals [67].

 

 

Fig. 2: Mechanism of action of BNT162b2 [68] 

 

mRNA lipid nanoparticle (mRNA-LNP) vaccine 

Until recent times, the instability and inefficacy of in vivo mRNA 
distribution have constrained the efficacy of mRNA vaccines. These 
problems have been mostly resolved by recent technological 
developments, such as Lipid Nanoparticle (LNP) delivery methods 
[55]. mRNA-LNP vaccines are composed of various components such 
as phospholipids, cholesterol, lipids and others that contribute to their 
effectiveness, as shown in fig. 3 [10]. Ionizable lipids facilitate mRNA 
delivery into cells by responding to endosomal pH changes, allowing 
mRNA-LNPs to escape into the cytoplasm for protein translation [69]. 
Polyethylene glycol provides stability to the nanoparticles, preventing 
premature mRNA degradation during storage and transport [70]. 
Liposomes, composed of phospholipids and cholesterol, are 
recognized as safe and biocompatible carriers for delivery [71]. 
Cholesterol enhances the structural stability of lipid nanoparticles, 
maintaining the integrity of the cargo mRNA. Other lipids, such as 
helper and structural lipids, contribute to the overall stability and 
encapsulation of mRNA in the nanoparticles [72]. 

 

Fig. 3: Nucleic acid-lipid nanoparticle carrier showing the 
active components, nucleic acid: red coils; cholesterol: yellow 
circles; helper lipid: brown phospholipid; cationic lipid: green 

phospholipid; and polyethylene glycol-grafted lipid: blue 
phospholipid 
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The mechanism of action of mRNA-LNP vaccines involves the 
efficient delivery of nucleic acids into host cells, as depicted in fig. 4 
[73]. The lipid nanoparticles encapsulate the mRNA, protecting it 
from degradation and facilitating cellular uptake [74]. Once inside 
the cell, the ionizable lipids respond to the endosomal pH, promoting 

the release of mRNA into the cytoplasm [75]. The host cell’s 
machinery then translates the mRNA to produce the target protein, 
triggering an immune response against the pathogen. This process 
mimics a natural infection, allowing the immune system to recognize 
and respond effectively to the pathogen [76].

 

 

Fig. 4: The mRNA-LNP vaccines’ intramuscular delivery and modes of action [73] 
 

Implications for vaccine development  

The complex interaction of these components within mRNA-LNP 
vaccines demonstrates the potential of this technology to 
revolutionize vaccine development [77]. The design and 
composition of mRNA-LNP vaccines allow for rapid adaptation to 
emerging infectious diseases and specific antigens [13]. The stability 
of these components ensures the integrity of the mRNA cargo, 
contributing to the vaccine’s long shelf life and efficacy [73]. 
Furthermore, encapsulating and protecting the mRNA payload from 
premature degradation enhances the chances of a successful 
immune response [13, 78]. This versatility and efficiency make 
mRNA-LNP vaccines a promising platform for addressing 
challenging diseases like malaria, where rapid and specific immune 
responses are crucial for effective protection [78]. 

Advantages of mRNA-LNP technology 

The advantages of mRNA-LNP technology in vaccine development are 
multifaceted [79]. mRNA-LNP vaccines can be rapidly designed and 
produced, allowing for swift responses to emerging infectious diseases, 
as shown in fig. 5 [80]. Targeting specific antigens on pathogens is 
another advantage of mRNA-LNP vaccines [81]. Traditional vaccines 
often use weakened or inactivated pathogens, while mRNA-LNP vaccines 
can be designed to elicit immune responses against specific proteins, 
enhancing vaccine efficacy [23, 55]. The surface chemistry of 
nanoparticles enables the conjugation of targeting compounds, such as 
antibodies and ligands, facilitating precise interactions with antigens and 
receptors on target cell surfaces. This capability enhances the targeted 
delivery of vaccines, allowing for direct administration to specific cells or 
tissues, thereby potentially improving immune responses while 
minimizing off-target effects [82].

 

 

Fig. 5: The mRNA vaccine’s mechanisms [80], (A) Translation of a mRNA vaccine in a lipid nanoparticle into a protein to trigger an immune 
response. (B) In vivo response to self-amplifying mRNA by RdRp complexing and subsequent protein translation to trigger an immune 

response. (C) An immune response is observed due to CD4+T helper cell expression and protein identification, concomitantly stimulating B 
and CD8+T cells. Neutralizing antibodies are produced by B cells, and memory B cells keep their memory for a future infection 
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Significance of COVID-19 mRNA-LNP vaccine success 
revolutionising vaccine development against malaria 

The resounding success of mRNA-LNP vaccines against the COVID-
19 pandemic marks a pivotal moment in the history of vaccine 
development [83]. These vaccines, epitomized by Pfizer-BioNTech’s 
Comirnaty® and Moderna’s mRNA-1273, represent a paradigm shift 
in how vaccines are conceptualized, designed, and deployed to 
combat infectious diseases [84]. The COVID-19 vaccines’ efficacy and 
safety profiles have shown the potential of mRNA-LNP technology to 
drive similar breakthroughs in addressing other recalcitrant 
diseases, including malaria [60, 85]. The traditional vaccine 
development approach, which involves cultivating weakened or 
inactivated pathogens, is resource-intensive and time-consuming. 
The mRNA-LNP approach, in contrast, harnesses the power of 
genetic information to instruct cells to produce antigens, triggering a 
potent immune response [13]. This strategy’s remarkable flexibility 
facilitates the rapid design and production of vaccines, allowing 
researchers to pivot swiftly in response to emerging infectious 
agents [23, 55]. 

The mRNA-LNP vaccine’s significance extends beyond its rapidity as 
it presents a unique opportunity to tailor vaccines for specific 
antigens, enhancing their efficacy. In conventional vaccines, broad 
immune responses may be elicited due to various antigens, leading 
to suboptimal targeting [86]. The mRNA-LNP technology allows the 
fine-tuning of vaccines to specifically target the pathogen’s key 
antigens, offering a higher likelihood of inducing robust and targeted 
immune responses [73]. This precise targeting aligns with the 
complex challenges posed by diseases like malaria, which demand a 
multifaceted approach to thwart the complex life cycle of the 
Plasmodium parasite [16]. The mRNA-LNP vaccines’ potential to 
provide broad protection against diverse pathogen strains is a 
critical advancement. In traditional vaccines, the evolving nature of 
pathogens can lead to vaccine-resistant strains emerging over time 
[54, 56]. The mRNA-LNP-specific protein sequence targeting 
approach holds the promise of conferring cross-protection against 
various strains of a pathogen, making it powerful in the fight against 
diseases marked by high genetic diversity, such as malaria [53]. 

Transitioning this success from COVID-19 to malaria vaccine 
development carries profound implications [9, 23]. There are 
chances to change the course of malaria control by utilizing the 
flexibility, adaptability, and precision of mRNA-LNP technology [87]. 
The complexities of the Plasmodium parasite’s life cycle and the 
challenges of achieving broad protection against its various stages 
are prime targets for the innovation mRNA-LNP vaccines offer [7]. 
The success of mRNA-LNP vaccines against COVID-19 heralds the 
potential to accelerate the development of a malaria vaccine by 
capitalizing on the same technological prowess that has redefined 
the landscape of pandemic response [23]. 

Current applications in mRNA-LNP-based malaria vaccine 
development 

The successful development and deployment of mRNA-LNP vaccines 
against COVID-19 showcase the potential of this technology in 
responding to global health crises [10, 13]. The rapid response 
capability during the pandemic could be leveraged for malaria 
vaccine development, speeding progress toward an effective 
solution [23]. Due to the complex parasite life cycle, pre-
erythrocytic, blood-stage, and transmission-blocking vaccines are 
three separate types being developed [7]. Vaccines that limit 
transmission target the female mosquitoes’ sexually mature 
parasites, disrupting the female mosquitoes’ sexual life cycle, 
stopping parasite development, and reducing transmission [88]. It is 
generally agreed that a vaccine targeting many stages and 
containing numerous antigen combinations will probably result in a 
highly effective vaccination to halt malaria transmission [7]. Several 
recent preclinical studies and animal model trials have 
demonstrated the immunogenicity and potential transmission-
blocking effects of mRNA-LNP malaria vaccines [89]. These studies 
offer compelling evidence of the technology’s effectiveness in 
inducing protective immune responses. A case study involves 
mRNA-LNP vaccines targeting the Plasmodium falciparum CSP 
(PfCSP), a critical antigen expressed during the pre-erythrocytic 

phase of the parasite’s life cycle [9, 56]. Preclinical studies in animal 
models have shown that mRNA-LNP vaccines encoding PfCSP can 
induce strong immune responses, including producing antibodies 
and T cells that recognize the protein. These immune responses can 
potentially prevent sporozoite invasion of liver cells and limit the 
infection’s initial stages [90]. 

The co-immunization of multiple antigens using mRNA-LNP vaccines 
has been explored by combining antigens from different stages of 
the parasite’s life cycle, which aims to create vaccines with broader 
protection [42]. In a recent study, co-immunizing PfCSP and Pfs25 
mRNA-LNPs demonstrated potential transmission-blocking effects 
[56]. Pfs25 targets the surface 25 protein expressed by mature 
sexual-stage parasites [91]. The mRNA-LNP vaccine-induced 
immune responses against both antigens could disrupt the parasite’s 
sexual life cycle and reduce transmission. These properties 
emphasize the versatility of mRNA-LNP technology in creating 
multi-antigen vaccines with diverse protective mechanisms [56]. 
Thus, the mRNA-LNPs vaccine has the potential to confer protective 
immunity against malaria, and effective strategies to stop the spread 
of malaria are anticipated to come from a mix of vaccinations that 
target both the infection stage and the sexual/midgut phases, which 
is essential for reaching elimination goals [9, 56]. A recent study by 
Scaria et al. [92] demonstrated the efficacy of mRNA vaccines 
targeting malaria transmission-blocking antigens Pfs25 and 
Pfs230D1 by integrating signal peptides and transmembrane 
domains in mRNA constructs to enhance antigen expression and 
cellular targeting. Constructs with incorporated GPI anchors or TM 
domains elicit robust immune responses compared to conventional 
protein conjugates. Moreover, concurrently delivering multiple 
antigens within mRNA vaccines enhances their efficacy [92]. Fotaran 
et al. [93] investigated the feasibility of utilising unmodified self-
amplifying mRNA (samRNA) vaccines packaged in cationic 
liposomes for intradermal immunization to target the blood-stage 
antigen PfRH5. Skin tattooing was employed as the delivery method, 
and robust dermis antigen production was evidence of efficient 
delivery and expression. This finding lends credence to the potential 
inclusion of mRNA-encoded antigens in future vaccine approaches 
[9, 93]. 

Challenges of the mRNA-LNP vaccine for malaria 

While mRNA-LNP technology is promising, several challenges must 
be addressed in malaria vaccine development. Optimal vaccination 
dose is a challenge that could arise in this line of research. There is a 
need to optimize vaccine dosing and formulation to achieve optimal 
immune responses and ensure safety [56]. Formulation and 
administration routes must be identified to produce the necessary 
immune responses while guaranteeing safety [94]. Long-term 
research is required to assess the durability and sustainability of 
vaccine-induced immunity [53]. Rigorous studies in nonhuman 
primates and, eventually, humans are required to assess safety, 
efficacy, and potential combination strategies [56]. Moreover, 
challenges related to scaling up production, cost, and integration 
into existing malaria control measures must be addressed if the 
vaccine is ultimately effective [9]. 

Future directions for research 

Based on the findings of current applications in mRNA-LNP-based 
malaria vaccine development in rodents, future research could focus 
on conducting similar studies in animals closely related to humans. 
The resultant finding would help determine the vaccine's safety and 
efficacy in larger animal models and assess the potential for 
translation to human trials. Additionally, future studies could 
explore incorporating other malaria antigens into the vaccine to 
increase its efficacy and potentially provide broader protection 
against different parasite strains. Further optimization of mRNA 
constructs to enhance antigen expression and immunogenicity could 
be researched. Advancing this research could contribute to 
developing effective mRNA vaccines for malaria control and 
elimination. Moreso, optimizing the delivery methods and enhancing 
antigen presentation of samRNA vaccines for intradermal 
immunization against malaria. Refining intradermal delivery 
techniques, such as improving tattooing methods or exploring 
alternative delivery systems, could significantly enhance vaccine 
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efficacy while minimizing adverse effects. Additionally, strategies 
aimed at augmenting antigen presentation, such as incorporating 
additional adjuvants or targeting specific antigen-presenting cells, 
hold promise for boosting the immune response elicited by samRNA 
vaccines. 

CONCLUSION 

The successful control of the COVID-19 pandemic by mRNA vaccines 
has shown its efficacy in disease control. mRNA-LNP technology 
presents a promising avenue for malaria vaccine development. Its 
ability to facilitate rapid design, target specific antigens, and provide 
broad protection against diverse strains offers hope for an effective 
malaria vaccine. By overcoming obstacles and addressing challenges, 
mRNA-LNP vaccines have the potential to revolutionize malaria 
control, contributing significantly to global efforts to eliminate 
malaria and improve public health worldwide. Continued research 
and investment in mRNA-LNP technology will be critical to 
advancing malaria vaccine development and realizing the goal of a 
malaria-free world. 
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