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ABSTRACT 

If ignored, Diabetes Mellitus (DM), a chronic metabolic disease marked by high levels of blood glucose, can have serious negative effects on one's 
health. The efficacy, safety, and patient compliance of traditional treatment approaches, like insulin injections and oral me dications, are frequently 
hampered. Nanoparticle-based methods have shown promise in recent years as improved diabetes management techniques. Enhanced 
bioavailability, prolonged therapeutic effects, and targeted drug delivery are just a few of the special benefits that come with using nanoparticles. An 
overview of current perspectives on using nanoparticles for diabetes control is given in this review. The properties, production processes, and 
potential uses of several types of nanoparticles, such as polymeric, lipid-based, and inorganic nanoparticles, in the management of diabetes are 
covered. These nanoparticles allow for the precise delivery of therapeutic agents, such as insulin or anti-diabetic medications, to specific target 
tissues, like the liver or pancreas. It discusses how inorganic nanoparticles, Polymeric Nanoparticles (PNPs), and Lipid-Based Nanoparticles (LNPs) 
contribute to improved drug solubility, targeted delivery, and controlled release. Several methods for synthesizing polymeric  nanoparticles are 
described. It also discusses the potential anti-inflammatory and antioxidant properties of some nanoparticles and how crucial they are to lowering 
diabetes-related issues. By incorporating the most recent research, this review offers a comprehensive summary of the current developments in the 
use of nanoparticles for diabetes control, paving the way for enhanced therapeutic outcomes and tailored interventions.  
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INTRODUCTION 

Diabetes Mellitus (DM) is a complex metabolic disorder marked by 
persistent high blood glucose levels (hyperglycemia) caused by 
anomalies in the secretion or action of insulin. It involves chronic 
and diverse dysfunctions in carbohydrate, fat, and protein 
metabolism, following a progressive and heterogeneous pattern [1, 
2]. There are mainly two types of DM. Although there is a strong 
hereditary component to type 1 DM (T1DM), environmental factors 
are also believed to be involved in the etiology of the disease. The 
autoimmune destruction of β cells may be triggered by these factors, 
or they may quicken a continuing process. Though conclusive 
causality is yet unknown, viral illnesses such as enteroviruses, 
Cytomegalovirus, coxsackie virus B, mumps, and rubella have been 
linked to T1DM [3]. Type 2 Diabetes (T2D), is characterized by a 
progressive dysfunction in insulin secretion coupled with insulin 
resistance [4]. It constitutes about 90% of all cases of diabetes [5]. 
Aging, obesity, a family history of diabetes, physical inactivity, and 
embracing contemporary lifestyles have all been linked more 
frequently to T2D [2]. The United States, India, Brazil, China, the 
United Kingdom, Russia, Algeria, Saudi Arabia, Nigeria, and Germany 
have the highest rates of new T1DM diagnoses among children 
under the age of fifteen (around 96,000 cases yearly), based on 
information made public by the International Diabetes Federation 
(IDF) in 2017. This represented about 60% of all new cases [6]. By 
2030, the number of individuals with T2D globally is estimated to 
make it to 7079 per 100,000, highlighting persistent growth in all 
parts of the world. Concerning indications indicate that prevalence is 
on the rise in lower-income nations [7]. Diabetes is more than just a 
condition marked by elevated blood sugar. It usually has a great deal 
of problems. Hyperosmolar nonketotic coma and hyperglycemic 
acidosis are two acute effects of uncontrolled diabetes. Many tissue 
injuries that result in cardiovascular disorders, renal failure, eye 
damage, seizures, podiatric ulcers, compromised immunity, and 
reduced eyesight are among the long-term effects. Several other 
dysfunctions have been recognized, such as imbalances in 
electrolytes, high weight, organ inflammation, stroke, lipid 
abnormalities, and peripheral coronary diseases [8, 9]. DM affects 
millions of people, and its effects go beyond personal health to put a 
burden on economics and healthcare systems around the world. 
There is a need for immediate clinical preventative and public health 
actions [10]. 

Even with the extensive use of several antidiabetic medications for 
diabetes control, a full and effective recovery is still unattainable. 
Problems include the danger of hypoglycemia, difficulty in 
intelligently altering dose forms depending on glucose fluctuations, 
and insufficient drug concentrations in target locations owing to 
chemical instability and vulnerability to degradation. In addition, 
there are obstacles such as limited bioavailability, short plasma half-
life, restricted therapeutic window, short absorption efficiency, and 
inadequate patient compliance [11]. It is well recognized that taking 
insulin orally causes limited bioavailability and inadequate 
therapeutic impact because of the polypeptide's physiological 
instability, which is caused by the Gastrointestinal Tract’s (GIT) 
enzymatic and chemical breakdown coupled with its rapid systemic 
clearance [12]. Improving diabetes treatment requires addressing 
these problems. Herein lies the pivotal role of nanoparticles in 
revolutionizing diabetes treatment. Because of their distinctive 
biological, physical, optical, chemical, and magnetic characteristics, 
nanoparticles are useful for diagnostic applications, especially in 
glucose biosensors that detect diabetes early. One common enzyme 
in biosensors, Glucose Oxidase (GO), has difficulties because of its 
low electron transfer efficiency. To improve the efficacy of enzyme-
based biosensors, nanomaterials with greater conductivity, such as 
graphene and Gold Nanoparticles (AuNPs), are being investigated. 
Nanoparticles such as graphene, AuNPs, Cadmium Telluride (CdTe) 
quantum dots, and carbon nanotubes have been used in several 
studies, showing enhanced sensitivity and better electron transport 
characteristics in glucose biosensors. Notably, protein nanoparticles 
exhibit attomolar sensitivity and function as ultrasensitive probes 
for the detection of disease indicators, including autoantibodies 
linked to T1DM. The use of nanoparticles in biosensors can progress 
in the area of diagnosis allowing early management of diabetes [13]. 
Drug delivery methods using nanoparticles are essential for 
increasing the bioavaliability and bioactivity of pharmaceuticals. 
These multipurpose nano-formulations can be used to treat illnesses 
ranging from minor ailments to life-threatening conditions, as well 
as in nanoscale Drug Delivery Systems (DDS), nanomachines, and 
nanorobots. By addressing drug absorption, distribution, 
metabolism, and excretion, nanoparticles dramatically improve 
pharmacokinetic parameters and improve therapeutic results. 
Enhanced bioavailability and solubility, prolonged drug release, 
targeted distribution, lower dose needs, and fewer adverse effects 
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are just a few of the notable benefits of nanoparticles [14]. Because 
of their specific reaction to certain stimuli and ability to release their 
payloads solely at the region of interest, stimuli-responsive 
nanoparticles formulations have demonstrated great promise in 
addressing issues related to premature or off-target drug release 
[15]. Enhancing the transport of nanoparticles across the layer of 
epithelium can be achieved by receptor-mediated endocytosis, 
specifically through transcytosis. Ligand functionalization promotes 
particular receptor recognition, which increases cellular absorption. 
Examples of ligands that do this include vitamin B12, Apical Sodium-
Dependent Bile Acid Transporter (ASBT), Neonatal Fc Receptor 
(FcRn), CSKSSDYQC (CSK) peptide, folic acid, transferrin, butyrate, 
and zwitterions [16] (fig. 1). Combination therapy can be made 
possible by the ability of nanoparticles to co-deliver multiple 
medications simultaneously, addressing various areas of diabetic 
pathology at once [17]. Personalized medicine in the treatment of 
diabetes is made possible by nanoparticles, which allow for the 

customization of DDS to best suit the needs of each patient [18]. 
Nanoparticles may reduce the need for invasive procedures by 
offering alternative techniques for administering drugs, including 
buccal or transdermal delivery [19, 20]. Inhaled insulin is 
administered directly into the bloodstream by inhalers. It is 
encapsulated in nanoparticles inside dry powder formulations. 
Insulin breakdown is avoided using this technique. It does, however, 
require patients to undergo frequent, somewhat expensive 
pulmonary function testing [21]. Nanoparticles are a promising new 
tool in regenerative medicine that can help deliver therapeutic 
molecules for tissue regeneration and repair in issues associated 
with diabetes [22]. We thoroughly searched the databases in 
MEDLINE, Scopus, Science Direct, PubMed, and Google Scholar. 
Diabetes mellitus, polymeric nanoparticles, lipid-based 
nanoparticles, and inorganic nanoparticles were among the search 
phrases used. We went through more than 90 published papers from 
2001 to 2024. 

 

 

Fig. 1: Benefits of nanoparticles over conventional drug delivery system [23] 

 

Polymeric nanoparticles 

The term "Polymeric Nanoparticles (PNPs)" describes particles 
made of polymers at the nanoscale. Large molecules known as 
polymers are composed of monomers, which are repeating 
components. These polymers can produce nanoparticles with 
special characteristics and are used when they are organized at the 
nanoscale [24]. The main ingredient in PNPs is polymer, which is 
combined with other elements to create the particles. Natural and 
synthetic polymers are the two main kinds of polymers used in the 
formation of PNPs. Natural polymers, including gelatin, chitosan, 
albumin, sodium alginate, and synthetic polymers like 
polycaprolactone, Poly(Lactide Co-Glycolides) (PLGA), 
polyglycolides, Poly malic acid, Poly(methyl methacrylate) and 
polylactides are commonly used [25, 26]. Achieving adaptation goals 
such as biocompatibility, biodegradability, and guaranteeing non-
antigenicity and non-toxicity depend heavily on the choice of 
polymers [27]. Researchers may modify the stability, targeting 
capabilities, and drug-release kinetics of PNPs by choosing certain 
polymers [28]. In the GIT, chitosan nanoparticles have 
mucoadhesive qualities and the ability to affect molecular processes 
such as lysosome degradation, claudin-4 redistribution, tight 
junction weakening, and enhanced paracellular permeability [29, 
30]. Alginate is a pH-responsive and mucoadhesive polymer. The 
polymer's guluronic acid acts like a magnet for divalent ions, 
forming a gel-like net that captures and stores insulin within the 
nanoparticles through an ion exchange process [31]. PNPs exist in 
various forms such as Polymeric Nanospheres, Polymeric 
Nanocapsules, Polymeric Micelles, Polymeric Nanogels, Polymeric 
Dendrimers, Polymeric Nanorods, Polymeric Nanofibers [32, 33]. 
The target location, the kind of medication contained, and the 
intended drug release profile all influence the choice of PNPs. 
Researchers consistently investigate novel polymeric substances 
and compositions to enhance the effectiveness and stability of 
pharmaceutical delivery mechanisms [34, 35]. Some of the recent 

work on PNPs in the field of diabetes management is mentioned in 
table 1. 

Synthesis methods for polymeric nanoparticles 

Single emulsification method 

It is the oldest technique for creating nanoparticles from preformed 
polymers and is particularly used for encapsulating hydrophobic 
compounds and drugs that are primarily insoluble in water. During 
emulsification and subsequent evaporation, the drug and polymer are 
dissolved together in an organic phase in this process, which helps to 
produce the interfaces that are essential for drug entrapment. But when 
it comes to hydrophilic drugs like peptides, proteins, and vaccinations, 
their effectiveness diminishes. The use of the emulsification technique 
for hydrophilic drugs is limited because it leads to quick diffusion of 
these compounds into the outer aqueous phase, which causes poor 
loading and low encapsulation efficiencies [36]. 

Double emulsion-solvent evaporation method (W1/O/W2) 

With the addition of a crucial third emulsion phase for increased 
encapsulation efficiency and quick solidification, it is an improved 
method for the encapsulation of hydrophilic drugs. The process 
requires the evaporation of the organic solvent to transform the 
emulsion into a nanoparticle suspension. Because W/O/W emulsion 
is thermodynamically unstable, a rapid procedure is essential. 
Double-emulsion droplet rapid solidification greatly increases 
encapsulation efficiency. During the first water-in-oil emulsion, it is 
critical to quickly deposit a polymer barrier to maximize efficiency 
and inhibit drug penetration into the organic phase. This is 
accomplished by either raising the concentration of the stabilizer in 
the inner aqueous phase to enhance viscosity or employing a high 
concentration of a high molecular weight polymer in the oil phase. 
Recovering, cleaning, and lyophilizing the nanoparticles are steps in 
the finalization processes shown in fig. 2 [36]. 
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Fig. 2: Preparation of polymeric nanoparticles by double solvent evaporation method [37] 

 

Nanoprecipitation 

A nanoprecipitation technique entails dissolving the drug and the 
polymer in a water-miscible organic solvent. Next, while stirring 
continuously, this solution is gradually added drop by drop to an 
aqueous phase. When there is water present, the solvent diffuses 
quickly, causing nanoparticles to develop on their own as shown in 
fig. 3 the benefit of this technique is its simplicity, which makes it a 

rather simple and scalable procedure. Precise control over the 
mixing process is a difficulty in traditional nanoprecipitation 
procedures, making it difficult to precisely regulate interactions 
during nanoparticles production. When compared to more 
sophisticated technologies like flash nanoprecipitation and 
microfluidic-based approaches, these techniques could produce 
bigger particle sizes with wider size distributions [38]. 

 

 

Fig. 3: Preparation of polymeric nanoparticles by nanoprecipitation technique [39] 

 

Table 1: Recent advancements in PNPs in the management of DM 

Polymers used Drug 
encapsulated 

Synthesis method Size (nm) Encapsulation 
efficiency % 

Effect in in vivo and in vitro Reference 
(s) 

Polyethylene glycol (PEG)  Insulin Self-assembly 
method of 
nanoprecipitation 

91.06±2.01 53.94±0.05 Enhanced the stronger hypoglycemic 
response in diabetic rats, Achieved a 
remarkable 9.28% relative bioavailability 

[40] 

Eudragit RSPO Alogliptin Nanoprecipitation 290.34±3.24 95.45±2.65 Enhanced oral bioavailability and anti-
diabetic effect 

[41] 

Eudragit  Empagliflozin Emulsification 
solvent evaporation 

270.03 95.82 Showed significant antidiabetic action in 
in vivo and in vitro studies. 

[42] 

Chitosan and gum arabic Glycyrrhizin Ionotropic gelation 181.4 nm 99.8 Significant anti-diabetic effect [43] 

Eudragit, tween 80 and 
Polyvinyl Alcohol (PVA) 

Sitagliptin Combined technique 
of solvent evaporation 
and nanoprecipitation 

135.29±5.12 
nm 

82.34±3.27 Produce sustained and prolonged action, 
enhance the permeation across the 
intestinal mucosa, and successfully 
reduce the elevated blood sugar level 

[44] 

Poly (ε-caprolactone), PVA Nateglinide Emulsion solvent 
evaporation 

310.40±11.42 64.09± 4.27%  [45] 

Chitosan Polydatin  Modified ionic 
gelation method 

144.25±3.37 96.74±0.39% Prolonged release pattern, much greater 
antidiabetic effectiveness in diabetic rats 
compared to free Polydatin 

[46] 

 PLGA Diospyros 
melanoxylon 
Roxb. 

Emulsion solvent 
evaporation 

365.7 nm 60.67%.  [47] 

Chitosan, Polyethylene 
Glycol (PEG), PLGA  

Pioglitazone Single emulsion 
solvent evaporation 

813.25 48.93 Prolonged potency of nanoparticles in 
vivo than pure drug 

[48] 

Conjugated Linoleic Acid 
(CLA) linked to Carboxymethyl 
Chitosan (CMCS forming CLA–
CMCS (CC), Grafting Arginine 
to CC via amide bonding 
resulting in a novel CLA–
CMCS–Arg (CCA) polymer. 

Insulin A combination of 
several techniques 

203.4±3.42 83.78±3.73 Enhanced transdermal delivery, 
controlled release 

[49] 

Acryloyl crosslinked dextran 
dialdehyde 

Human insulin  75 nm 48.68 Glucose-sensitive insulin release [50] 

Waxy maize starch (>98% 
amylopectin) 

Insulin Combination of 
gelatinization and 
coacervation 

100–300 69.73 Glucose-sensitive insulin release [51] 
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Lipid-based nanoparticles (LNPs) 

Lipids and surfactants are the main constituents of LNPs, while 
occasionally other functional molecules are also present. The 
structural framework of the nanoparticles is formed by lipids, which 
act as the building blocks. Surfactants help to stabilize the 
nanoparticles, keep them from aggregating, and make sure they are 
distributed uniformly. To impart certain qualities, such as ligand 
targeting for targeted distribution, additional functional molecules 
may be added [52]. Active Pharmaceutical Ingredients (API) loading 
in a lipid system can improve solubility in water, leading to high 
bioavailability. Additionally, lipid-based systems prevent API 
oxidation, breakdown, and decomposition while improving delivery 
and storage [53]. LNPs provide easy surface modification and 
tailored distribution via many pathways. Pharmaceutical research is 
becoming more interested in them because they offer stability, less 
toxicity, and controlled release. The in vivo destiny of LNPs is 
determined by their size, composition, and surface features [54]. 
There are various types of lipid-based DDS namely liposomes, 
niosomes, Solid Lipid Nanoparticles (SLNs), Nanostructured Lipid 
Carriers (NLCs), cubosomes, exosomes, etc. each of them having 
specific advantages over others [52, 55-57]. 

Liposomes 

Hydrophilic as well as hydrophobic drugs can be encapsulated in 
liposomes, which are spherical structures with an aqueous space 
within and hydrophobic lipid bilayers outside that protect the drugs 
from enzyme destruction. Similar to cell membranes, their bilayer 
shape improves absorption by intestinal cells. There are three 
varieties of liposomes: cationic, anionic, and neutral. Because of 
their hydrophilic and electroneutral surface, neutral liposomes are 
better at penetrating mucus [16]. 

Solid lipid nanoparticles  

SLNs are 50–1000 nm-sized colloidal DDS. They consist of a solid 
biodegradable lipid core made up of fatty acids, complicated 
glyceride mixes, and mono-, di-, or triglycerides. An exterior aqueous 
surfactant dispersion of Tween 80, poloxamers, soy lecithin, or 
sodium dodecyl sulfate stabilizes the lipid core [57, 58]. The use of 
physiological lipids, the avoidance of organic solvents, a potentially 
broad application range (intravenous, pulmonary, cutaneous), 
sustained drug release, better stability, better % entrapment 
efficiency and Drug Loading percentage (%DL), compatibility with 
hydrophilic and lipophilic drugs, biocompatibility and 
biodegradability, cost-effectiveness, and high-pressure 

homogenization as a tried-and-true manufacturing process are all 
benefits of SLN [59-61]. 

Nanostructured lipid carriers  

With a distinct lipid matrix nanostructure, a new class of NLCs has 
surfaced that improves drug loading and maintains stability throughout 
storage. This technique, which produces lipid particle dispersions with 
solid concentrations ranging from 30% to 80%, involves high-pressure 
homogenization. By combining liquid and solid lipids, the novel method 
produces a matrix that has a lower melting point yet is still solid at body 
temperature [59]. Three types of NLCs exist Type I has an imperfect 
crystal core that hinders drug expulsion; Type II has an amorphous, 
structureless core because the solid lipid is polymorphic; and type III is 
an oil-in-solid fat-in-water (O/F/W) system that works well for drugs 
that are more soluble in liquid lipid/oil than in solid lipid. Because of 
their unique structures and compositions, NLCs minimize problems that 
are related to SLNs and provide better stability, reduced drug ejection, 
and greater drug loading [62, 63]. 

Cubosomes 

Cubosomes are nanocarriers with bicontinuous cubic phases formed 
by dispersing cubic liquid crystalline aggregates in an aqueous 
medium. Using amphiphilic lipids like glycerol monooleate and 
phytantriol, cubosomes self-assemble in an aqueous medium to form 
structures that resemble honeycombs and range in size from 100 to 
500 nm. Cubosomes are noteworthy for having a large surface area 
and a microstructure that is identical to parent cubic aggregates. 
This makes them promising for several uses, such as drug delivery 
and nanotechnology [64]. 

Niosomes 

Niosomes are nonionic surfactant-based vesicles. The structure and 
physical characteristics of niosomes are comparable to those of 
liposomes. Additionally, they are prepared as single-or multilamellar 
vesicles using the same techniques and conditions [65]. Despite 
having similarities niosomes are an alternative to liposomes because 
of their advantages over the latter. Given that the phospholipids that 
make up liposomes are chemically fragile, niosomes have superior 
chemical stability. Niosomes are less expensive than liposomes and 
don't require the same handling, storage, or purification procedures 
for phospholipids as liposomes do [66]. Table 2 presents recent 
advancements in LNPs within the realm of diabetes management, 
including the type of drug encapsulated, other components utilized, 
preparation methods, and key advantages. 

 

Table 2: Recent advancements: characteristics and advantages of lipid-based nanoparticles 

Lipid-based NP 
type 

Drug encapsulated Other component used Preparation method Key advantages Reference 
(s) 

Thiamine/nonmod
ified liposome 

Recombinant human 
insulin 

Soybean phosphatidylcholine, 
cholesterol, thiamine, niacin 

Reversed-phase 
evaporation 

72-81% glucose level reduction [67] 

Nano liposome Recombinant Cas9-
RNP complex 

Lecithin, cholesterol, 1,2-dioleoyl-
sn-glycerol-3-[(N-(-5-Amino-1-
Carboxypentyl) Iminodiacetic Acid) 
Succinyl} (Nickel salt) DOGS-NTA-Ni 

Lipid film formation, 
fluorescent labeling 

Successful gene editing with low 
cytotoxicity, stable in vivo delivery 

[68] 

Solid lipid 
nanoparticles 

Gliclazide Glyceryl behenate, poloxamer 188 Ultra-sonication 
technique 

Biphasic in vitro release consisting 
of a prolonged release phase after 
an initial burst effect, a 5-fold 
increase in GLZ oral BA loaded in 
slns, better anti-diabetic action 

[69] 

Pegylated slns Metformin 
hydrochloride 

Phospholipon®, sorbitol, 
polyethylene glycol 4000, beeswax, 
Tween® 80 

Fusion method Pegylated slns showed greater diabetic 
control than the commercial 
formulation (Glucophage ®) after 24 h. 

[70] 

SLN suspensions Extracts of P. Acaciae 
and P. Curviflorus 

Sodium Dodecyl Sulfate (SDS) Emulsion solvent 
evaporation 

Better antihyperglycemic and 
antioxidant activities. 

[71] 

SLNs Murraya koenigii 
leaves extract 
(murrayanol) 

 Solvent diffusion 
method 

Prolonged release, superior to 
commercially available synthetic 
anti-diabetic medications. 

[72] 

SLNs Tetrahydrocurcumin Glyceryl monostearate, soy lecithin, 
tween 80 

Emulsification 
followed by 
sonication 

Rapid burst at first followed by 
control release, greater 
bioavailability, and antidiabetic 
action than ordinary drug dispersion 

[73] 

Cumbersome Gliclazide Glyceryl monooleate, poloxamer 
407  

Emulsification 
method 

A doubled up on the bioavailability 
relative to plain gliclazide suspension 

[56] 

Niosomes Metformin hcl and 
glipizide 

Tween 80, phosphate buffer saline, 
cholesterol, chloroform, methanol 

Thin film hydration Sustained release of the drugs [55] 
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Inorganic nanoparticles 

Inorganic nanoparticles are nanoscale particles composed of non-
carbon-based elements, including metals, metal oxides, and other 
inorganic materials [74]. Because of their inherent qualities, which 
are unavailable and unpossessed in their conventional polymer-
based or organic counterparts, such as tunable morphology, 
desirable physiological stability, simple functionalization, and 
unique physiochemical properties like optical, acoustic, electrical, 
and magnetic natures, inorganic nanoparticles among these designs 
hold great promise [75]. Within the realm of medicine, inorganic 
nanoparticles are being investigated for targeted drug delivery. This 
approach involves encasing or attaching drugs to the surface of the 
nanoparticles, so enabling controlled release and improved 
therapeutic effectiveness [76]. Several inorganic elements have 
demonstrated antidiabetic properties in vitro and/or in vivo. These 

elements include silver, iron, magnesium, zinc, copper, chromium, 
selenium, vanadium, palladium, platinum, nickel, titanium, gold, 
molybdenum, cerium, manganese, and tungsten. They do this 
through a variety of mechanisms, such as increasing levels of 
antioxidant enzymes, glucose utilization, and insulin sensitivity [77]. 
Inorganic nanoparticles, including zinc oxide and silver 
nanoparticles, display antibacterial characteristics that can help in 
wound healing, particularly significant for diabetes patients prone to 
delayed wound healing [78]. Some inorganic nanoparticles such as 
AUNP have antiangiogenic properties, which might affect the 
development of new blood vessels while plant-mediated synthesis of 
silver nanoparticles possesses potential antimicrobial applications 
and helps control diabetic retinopathy [79, 80]. Table 3 provides an 
overview of Inorganic nanoparticles, detailing their synthesizing 
method, size in nanometers (nm), surface functionalization, and 
antidiabetic mechanism. 

 

Table 3: Characteristics of inorganic nanoparticles and their role in antidiabetic mechanisms 

Inorganic 
nanoparticles 

Synthesizing method Size 
(nm) 

Surface functionalization Antidiabetic mechanism Reference 
(s) 

 AuNPs Bioreduction of auric chloride 
using phytoconstituents present 
in eclipta alba (green synthesis) 

26.6  Eclipta alba Prevent β-cell damage induced by 
streptozotocin in rin-5f cells. 

[81] 

Silver nanoparticles Green synthesis  250–
800  

Galaxaura Elongata {GE}, 
Turbinaria Ornata {TO} and 
Enteromorpha Fexuosa {EF} 

 [82] 

Mesoporous silica 
nanoparticles 

The Stober method with silane 
polymerization 

50–130 Morin  Compared to traditional inhibitors, Morin 
interacts with alpha-amylase and alpha-
glucosidase more well at the molecular level. 

[83] 

Selenium 
nanoparticles 

Chemical synthesis  50  Catathelasma ventricosum 
polysaccharides 

Improve cholesterol levels, blood sugar, 
antioxidant enzyme activity, and body weight. 

[84] 

Zinc oxide 
nanoparticles 

Solution combustion synthesis 29  Areca catechu leaves extract Inhibit carbohydrate digestive enzymes [85] 

Silver nanoparticles Green synthesis 34 Seed extract of N. Sativa Increased inhibition of Dipeptidyl peptidase-
IV, α-glucosidase, and α-amylase 

[86] 

Silver nanoparticles Green synthesis >100 Cucumis melo L. Leaf Inhibition of α-amylase and α-glucosidase [87] 

Mesoporous silica 
nanoparticles 

Chemical synthesis 120 Insulin, camp Glucose triggered the release of insulin and 
camp 

[88] 

 

CONCLUSION 

The fascinating potential of nanotechnology to transform the 
treatment of diabetes has been examined in this paper. Conventional 
treatments frequently include drawbacks such as limited absorption, 
dosing difficulties, and the possibility of hypoglycemia. Targeted 
distribution, controlled release, and improved drug solubility are 
among the special qualities that nanoparticles provide, overcoming 
these drawbacks and opening the door to more efficient and 
individualized treatment modalities. 

The review demonstrated the noteworthy contributions of polymeric, 
lipid-based, and inorganic nanoparticles, offering encouraging 
directions for better therapeutic interventions. Liposomes, SLNs, and 
NLCs are useful tools in the lipid-based approach, and methods like 
double emulsion-solvent evaporation and single emulsification show 
promise for the controlled synthesis of PNPs. Interestingly, in addition 
to helping transport drugs, inorganic nanoparticles may also have anti-
inflammatory and antioxidant qualities that may reduce the 
complications associated with diabetes. 

Even though there has been a lot of development, further study is 
necessary to improve nanoparticles systems, handle any safety issues, 
and convert preclinical results into clinical uses. Scalability, long-term 
safety profiles, and regulatory obstacles must all be addressed if this 
technology is to reach its full potential. However, the current 
developments show promise for the use of nanotechnology to provide 
effective and individualized diabetes management in the future. This 
could lead to better treatment outcomes, fewer complications from 
diabetes, and eventually, a higher standard of living for the millions of 
people who suffer from this chronic illness. 
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