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ABSTRACT 

Objective: Brinzolamide (BRZ) is an active carbonic anhydrase inhibitor adopted for glaucoma management. The limited aqueous solubility of the 
drug restricts its potential for ocular administration. Therefore, the aim of this investigation was to design a nanocarrier system called Etho-Leciplex 
(Etho-LPs) for the delivery of BRZ.  

Methods: Etho-LPs were fabricated by a simple one-step technique and then optimized by D-optimal design employing Phospholipon®90G (PC): 
surfactant ratio and surfactant type (Cetyl Trimethyl Ammonium Bomide (CTAB) and Searylamine; SA) as independent variables, whereas the 
dependent variables were Entrapment Efficiency (EE%), Particle Size (PS), Polydispersity Index (PDI), and Zeta Potential (ZP). Design Expert® 
statistically suggested the optimum Etho-LP, which consisted of PC: Surface Active Agent (SAA) molar ratio (X1) of 1:1.27 and mixture of CTAB and 
SA (X2) in 1:1 molar ratio. 

Results: The optimum Etho-LPs particles had spherical morphology, and EE% of 91.12±0.2 %, PS of 76.21±1.21 nm, PDI of 0.421±0.001 and ZP of 
35.88 ±0.10 mV. The in vitro release study results demonstrated that BRZ is rapidly liberated from the optimum Etho-LPs compared to BRZ-
suspension. Further, the optimum Etho-LP showed good mucoadhesive properties besides potential safety on rabbits’ eyes tissues. The optimum 
Etho-LP was found to enhance the ocular bioavailability of the drug in rabbits’ eyes relative to the BRZ suspension. In addition, histopathological 
assessment indicated the safety of BRZ-loaded Etho-LPs.  

Conclusion: Overall, the obtained outcomes indicated the effectiveness of employing Etho-LPs for the treatment of glaucoma.  
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INTRODUCTION 

Glaucoma is characterized as an optic neuropathy that demonstrates a 
gradual progression, evident through the excavation of the optic nerve 
head and a decrease in visual sensitivity. This condition typically 
originates in the mid-peripheral visual field [1]. Elevated Intraocular 
Pressure (IOP) is a significant risk factor associated with the progressive 
deterioration of the optic nerve and consequent loss of visual field in 
individuals diagnosed with glaucoma or ocular hypertension [2]. 
Glaucoma may be either open-angle or closed-angle. Open-angle 
glaucoma is the prevailing manifestation of glaucoma, characterized by a 
gradual onset, whereas closed-angle glaucoma happens abruptly [3]. The 
primary focus of glaucoma management is the reduction of IOP, which is 
widely recognized as the principal therapeutic approach [4]. The 
pharmacological management of glaucoma encompasses the 
administration of medications belonging to diverse categories, including 
prostaglandin analogs [5], beta-blockers [6], carbonic anhydrase 
inhibitors [7], adrenergic agonists [8], miotics, and hyperosmotic agents 
[9]. According to Yadav et al., several medication categories are known to 
either enhance aqueous humor outflow or decrease its production inside 
the ocular system [10]. 

Brinzolamide (BRZ) is a topically active carbonic anhydrase inhibitor 
obtained from a family of heterocyclic sulfonamides utilized to decrease 
and manage high IOP [11, 12]. Its poor aqueous solubility (0.713 mg/ml 
in aqueous humor) limited its clinical use [13]. The commercial 
formulation of BRZ named Azopt® is an aqueous suspension comprised 
of 1% (w/v) BRZ. Unfortunately, this preparation is coupled with 
shortcomings, such as blurred vision, pain, dry eye, eye discharge, 
blepharitis, and taste perversion. It has short contact time, poor 
infiltration, pre-corneal loss and poor bioavailability [14]. Hence, trials to 
overcome these limitations should be introduced. 

Ocular drug delivery through using lipid nanocarriers has been the 
target of several research works [15]. Lipid nanocarriers include 
mixed micelles [16], cubosomes [17], proniosomes [18], and leciplex 

[19]. Biocompatibility and mucoadhesive properties of nanocarriers 
augment their contact with the ocular mucosa, which might extend 
the corneal contact time of the entrapped drug, augmenting its 
ocular bioavailability, and decreasing both local and systemic 
shortcomings [20, 21]. In addition, nanoparticles possess the 
potential to cross the blood-retinal barriers, resulting in augmented 
ocular permeability and increased bioavailability [22-24]. In general, 
nanocarriers could be intended to treat the most vital ocular 
illnesses, such as ocular inflammation or infection, glaucoma, or 
diseases impacting the shape from of the posterior eye [25].  

Leciplex is a positively charged lipid nanocarrier intended for the 
improvement of conveyance of different bioactives [26, 27]. It is 
comprised of a lipid (phospholipid), cationic surface-active agent 
and Transcutol® as a biocompatible solvent [28]. It has a privilege 
over the conventional lipid nanocarriers related to its simplicity of 
production in a single step [29]. It has been utilized for skin 
conveyance of idebenone and azelaic acid [30], oral administration 
of quercetin [31] and ocular delivery of carvedilol [19]. Previous 
investigations assessed the use of ethanol (as a solvent in addition to 
a penetration enhancer) in the leciplexformulation instead of 
Transcutol® and the preparation of a developed nanocarrier called 
Etho-Leciplex (Etho-LPs) for cutaneous delivery of minoxidil [32]. 

To the authors’ knowledge, there is no scientific investigation 
evaluated the impact of Etho-LPs to enhance the deposition of BRZ 
for managing glaucoma in ocular tissues. Hence, this study aimed to 
evaluate Etho-LPs' ability to improve BRZ ocular retention and 
investigate its safety. To attain this, several variables affecting 
particles responses were inspected employing D-optimal design 
using Design Expert® software to elect the optimum Etho-LPs. The 
prepared Etho-LPs were assessed for their entrapment efficiency, 
particle size, polydispersity index and zeta potential. The optimum 
Etho-LPs were evaluated for its in vitro drug release morphological 
shape besides the effect of storage. Finally, in vivo studies of the 
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optimum Etho-LPs as well as histopathological studies, were 
accomplished in male Albino rabbits. 

MATERIALS AND METHODS 

Materials 

Brinzolamide (BRZ) was acquired from Dalian Meilun Biology 
Technology (Dalian, China). Phospholipon® 90 G (PC; from soybean 
(90%) was a gift from lipoid GmbH, Ludwigshafen, Germany). Cetyl 
Trimethyl Ammonium Bromide (CTAB), Stearyl Amine (SA), mucin from 
porcine stomach type II, were bought from Sigma-Aldrich Co. (St. louis, 
MO, USA). Acetonitrile and ethanol were acquired from Merck 
(Darmstadt, Germany). All other compounds utilized in the experiment 
were of analytical grade and were employed in their original form. 

Preparation of BRZ-loaded Etho-LPs 

Etho-LPs were prepared applying a simple one-step technique. In 
brief, PC and the used surfactant (SAA) were mixed in glass vials 
followed by the addition of 50 mg BRZ. The mixture was dissolved in 

ethanol (0.5 ml). Subsequently, 4.5 ml of bi-distilled water were 
added dropwise to the mixture at the same temperature. The 
process involved continuous mixing using a digital hotplate 
magnetic stirrer (LX653DMS, LabDex, London, UK) operating at 
1200 rpm for 30 min at 70 °C [33]. The Etho-LPs dispersion was 
incubated at 4 °C overnight to allow for the development of fully 
formed particles. 

Optimization of BRZ-loaded Etho-LPs by D-optimal design 

The study employed a D-optimal design methodology to investigate 
the effects of various parameters on the formation of Etho-LPs using 
the Design Expert®software (Stat-Ease, Minneapolis, MN, USA). The 
formation of Etho-LPs involved the examination of two independent 
variables: X1, which represents the molar ratio of PC to SAA, and X2, 
which signifies the type of SAA used. The dependent variables 
chosen for this study were Entrapment Efficiency (EE%; Y1), Particle 
Size (PS; Y2), Polydispersity Index (PDI; Y3), and Zeta Potential (ZP; 
Y4). The design is elucidated in table 1, while the composition of the 
created formulations is compiled in table 2. 

  

Table 1: D-optimal design for optimization of brinzolamide-loaded Etho-LPs 

Factors (independent variables) Levels 
Low  Medium High  

X1: PC: SAA molar ratio  1:1 1:2 1:3 
X2: Type of SAA CTAB SA CTAB+SA* 
Responses (dependent variables) Desirability Constraints 
Y1: EE% Maximize 
Y2: PS (nm) Minimize 
Y3: PPI Minimize 
Y4: ZP (mV) Maximize  

*Ratio of SAA mixture; CTAB: SA = 1:1 molar ratio. Abbreviations: CTAB; Cetyl Trimethyl Ammonium Bromide, SA; Stearyl Amine, EE%; Entrapment 
Efficiency Percent, PS; Particle Size, PDI; Polydispersity Index, PC; Phospholipid, ZP; Zeta Potential; SAA; Surface Active Agent, and Etho-lPs; 
Etholeciplex. 

 

Table 2: Experimental runs, independent variables, and measured response of the d-optimal experimental design of brinzolamide-loaded 
Etho-LPs 

Formulation code PC: SAA ratio Type of SAA* EE (%) PS (nm) PDI ZP (mV) 
F1 1:1 CTAB+SA 90.59±0.05 75.20±2.47 0.450±0.120 31.75±0.02 
F2 1:2 CTAB 88.44±0.11 67.20±1.78 0.318±0.110 38.49±0.04 
F3 1:3 CTAB+SA 56.91±0.20 79.85±5.00 0.523±0.100 41.34±0.13 
F4 1:2.5 SA 77.02±0.78 92.00±6.00 0.481±0.001 37.00±1.00 
F5 1:1 SA 86.86±0.12 127.50±4.50 0.481±0.000 21.00±2.00 
F6 1:1 CTAB+SA 90.80±0.12 74.02±1.95 0.440±0.200 31.03±0.78 
F7 1:1 CTAB 92.87±0.20 111.40±2.60 0.350±0.210 35.50±0.52 
F8 1:3 CTAB 67.65±0.23 25.80±10.50 0.567±0.010 42.23±1.23 
F9 1:3 SA 53.95±0.12 83.00±4.00 0.327±0.002 51.37±1.56 
F10 1:3 CTAB+SA 57.29±0.91 80.42±2.67 0.521±0.030 40.53±1.34 
F11 1:2 SA 79.62±0.32 125.80±10.50 0.413±0.100 38.02±1.20 
F12 1:1 SA 86.01±0.01 124.00±20.00 0.480±0.008 22.00±.090 
F13 1:1.5 CTAB 90.28±0.82 81.20±1.20 0.469±0.010 37.18±0.60 

*Ratio of SAA mixture; CTAB: SA = 1:1 molar ratio, Abbreviations: CTAB; Cetyltrimethylammonium Bromide, SA; stearyl amine, EE%; Entrapment 
Efficiency Percent, PS; Particle Size, PDI; Polydispersity Index, PC; Phospholipid, ZP; Zeta Potential; SAA; Surface Active Agent, and Etho-lPs; 
Etholeciplex. The data is given in mean±SD. 

 

Characterization of BRZ-loaded Etho-LPs 

Determination of entrapment efficiency % 

One milliliter volume of Etho-LPs was subjected to centrifugation at 
a speed of 12,000 rpm for 1 h at 4 °C using a cooling centrifuges 
(Sigma 3K 30, Germany). The supernatant was transferred to a 
volumetric flask and appropriately diluted with bi-distilled (10 ml). 
Subsequently, the concentration of BRZ was determined at a 
wavelength of maximum absorption (λmax) of 254 nm using a UV-VIS 
spectrophotometer (Shimadzu UV1650, Japan). The EE% was 
calculated using the subsequent equation [31, 33]. 

EE% = (
Total amount of BRZ−Unentrapped BRZ

Total amount of BRZ
) x 100 ….. (Eq. 1) 

Determination of particle size (PS), Polydispersity index (PDI), 
and zeta potential (ZP)  

PS, PDI, and ZP of the formed Etho-LPs were assessed using the 
Zetasizer Nano ZS (Malvern Instruments ltd., Malvern, UK). The 
assessments were conducted following appropriate dilution. The 
evaluation of ZP was conducted through the observation of the 
electrophoretic mobility of the particles inside an electric field [35]. 

Selecting the optimum BRZ-Etho-LPs  

The optimal Etho-LPs was opted by employing Design Expert® 
software version 7 (Stat Ease, Inc., Minneapolis, MN, USA), which 
facilitated a comprehensive analysis of the replies [36]. The optimal 
Etho-LPs were determined by selecting the formulation with the 
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lowest PS and PDI, as well as the highest EE% and ZP. To evaluate 
the efficacy of the model, the formulation was developed, thoroughly 
examined, and then compared to the predicted answers [37]. 

In vitro release study 

The study was conducted using the dialysis bag technique. The BRZ 
suspension and optimal Etho-LPs, equivalent to 10 mg BRZ, were 
introduced into dialysis bags that had been pre-soaked in distilled 
water for 12 h. Subsequently, the filled bags were securely sealed and 
placed into stoppered bottles containing 80 ml of phosphate-buffered 
saline (PBS; pH of 7.4). The bottles were located in a shaking water 
bath (Unimax, IKA, Staufen, Germany) and operated at 100 strokes per 
minute at a temperature of 32±0.5 °C. At certain intervals; 0.25, 0.5, 
0.75, 1, 1.5, 2, 3, 4, 6, 8, 12, and 24 h), 1 ml of the release medium was 
withdrawn and compensated with equal volume of the fresh release 
medium. The samples were assessed utilizing a UV spectrophotometer 
at a wavelength of maximum absorption (λmax) of 254 nm.  

The release data; Q2 and Q24, which represents the percentage of 
medication released after 24 h, was utilized as a means of 
comparison. The statistical significance of the obtained data was 
assessed applying a student t-test conducted using SPSS® software 
version 22.0 (SPSS Inc., Chicago, USA).  

pH assessment 

The pH of the optimum Etho-LPs was evaluated, by a calibrated pH 
meter (Hanna, type 211, Romania). 

Differential scanning calorimetry (DSC) 

The thermal evaluation of BRZ and the lyophilized-optimum Etho-
LPs were performed by DSC (Shimadzu Corp., Japan) standardized 
with indium. Samples (5 mg) were positioned in standard aluminum 
pan and heated in a range of 10-250 °C at a rate of 5 °C/min below 
nitrogen stream. 

Transmission Electron Microscope (TEM) 

The external morphology of the optimum Etho-LPs was investigated 
by means of a TEM (JEM-1230, Tokyo, Japan) operated at 80 kV. 
Diluted Etho-LPs were added on carbon carbon-coated grid and 
stained with a 1% phosphotungstic acid then visualized [38]. 

Mucoadhesion test 

To assess the ability of the examined formulation to adhere to the ocular 
mucous membrane, a mucoadhesion test was performed. In brief, the 
optimal Etho-LPs was mixed with a 1% v/v mucin solution in a ratio of 
1:1 (v/v), then vortexed for 2 min [39]. The ZP of the prepared 
combinations was determined using the ZetaSizer Nano ZS instrument.  

Effect of short-term storage 

The effect of storage of the optimum Etho-LPs under refrigeration 
(4±0.5 ℃) for 3 mo was examined. The preserved samples were 
visually examined to identify any aggregates [40] and also their 
EE%, PS, PDI, and ZP were compared with those of the fresh 
samples. Statistical significance was determined through the 
application of a paired Student's t-test using SPSS® software version 
22.0 (SPSS Inc., Chicago, USA). A non-significant difference is 
considered at p-value greater than 0.05. 

In vivo study 

Ethical approval statement 

The study protocol was reviewed and approved by the Research 
Ethical Committee, Faculty of Pharmacy, Cairo University (PI3348). 
The study was conducted on male Albino rabbits as they have large 
eyes as well as being more vulnerable to any irritating materials 
compared to human’s eyes [41]. The utilization and management of 
animals in all research endeavors adhered to the Guide for the Care 
and Use of laboratory Animals of the National Institutes of Health 
(NIH publication No.85–23, 1996) and ARRIVE guidelines 2.0. The 
animals were housed in cages at ambient temperature. They were 
subjected to a light-dark cycle of 12 h each. They were supplied by a 
standard meal and unrestricted access to water. 

Study design and dosing 

The investigated samples were the optimum BRZ-loaded Etho-LPs 
besides the drug suspension (10 mg/ml). A total of 16 male Albino 

rabbits (2.0-2.5 Kg) were enrolled in the in vivo studies; 
pharmacokinetic and histopathological studies. The animals were 
allocated into two equal groups (n=8). A non-blind, parallel, single-
dose design was adopted where a drop of each investigated sample 
(50 l) was applied into the conjunctival sac of the rabbit’s eye. 

Tear film sampling 

Tear samples were gathered by carefully (to avoid any irritation to 
eyelids) placing 3 sterile filter paper discs (6 mm in diameter) beneath 
the lower eyelid of the rabbit’s eye for a period of 30 s. The sampling 
points were at 0.5, 1, 2, 4, 6, 9 and 24 h. Following, the collected discs 
at each time point were stored in Eppendorf tubes at 20 ℃ filled with 
1 ml of acetonitrile-water (70:30 %v/v) pending analysis. 

Assay method 

The frozen samples were thawed at room temperature. The analysis 
of BRZ in plasma samples was done utilizing a modified liquid 
chromatography-mass spectrometry (LC/MS/MS) method 
characterized by enhanced sensitivity, accuracy, and selectivity [42]. 
A volume of 0.5 ml of the samples was transferred into the 
autosampler vials of the LC/MS/MS system. The experimental setup 
utilized a Shimadzu Prominence series lC system (Shimadzu 
Scientific Instruments, Columbia, MD). The lC system consisted of a 
degasser (DGU-20A3) and a solvent delivery unit (LC-20AB), in 
addition to an autosampler (SIL-20 AC). Samples of 20 µL were 
injected into a Sunfire C18 column (50*4.6 mm) with a stationary 
phase composed of a 5-micron adsorbent provided by (Phenomenex 
Inc. Torrance, CA). The guard column utilized in this study was a 
Phenomenex C18 column (5*4 mm). The column contained particles 
with a size of 5 microns. The mobile phase used in this study was an 
isocratic mixture of 70% acetonitrile, 30% water, and 0.1% formic 
acid. It was supplied at a flow rate of 0.5 ml/min into the 
electrospray ionization chamber of the mass spectrometer. 
Quantitative analysis was conducted using MS/MS detection in the 
negative ion mode. The instrument utilized for this purpose was an 
MDS Sciex (Foster City, CA) API-3200 mass spectrometer, which was 
equipped with a turbo ion spray interface operating at a 
temperature of 450℃. The ion spray voltage was adjusted to a value 
of 4500 V. The standard parameters, namely curtain gas, nebulizer 
gas, collision gas, and auxiliary gas, were established at 10 psi, 20 
psi, 6 psi, and 40 psi, correspondingly. The values of the compound 
parameters, namely the delustering potential, collision energy, entry 
potential, and collision exit potential, were measured to be 71, 17, 
10.5, and 26 V, respectively. The ions were detected using multiple 
reactions monitoring mode, specifically monitoring the transition of 
the precursor ion with m/z 384 to the production with m/z 384. The 
quadrupoles Q1 and Q3 were adjusted to achieve a resolution of one 
unit. The data analysis was conducted using Analyst Software 
Version 1.6 (AB Sciex Pte. ltd., Woodlands, Singapore). 

Pharmacokinetic parameters and statistical analysis 

The pharmacokinetic parameters of BRZ in the tear film were 
determined using Kinetica® software (Thermo Fisher Scientific Inc. 
Waltham, MA). The maximum concentration of BRZ in tear film 
(Cmax) and the time taken to attain this maximum concentration 
(Tmax), as well as the area under the concentration-time curve until 
the last measurable point (AUC0-24), were computed. The 
pharmacokinetic parameters were statistically analyzed applying a 
One-Way Analysis of Variance (ANOVA). 

Histopathological study 

To assess the safety of the developed formulation, a 
histopathological test was conducted. In brief, three rabbits (2.0-2.5 
Kg) were used, where each received 3 daily doses of the selected 
Etho-LPs for a period of 7 d in the right eye, while the left eye was 
kept as a control. After one week, the rabbits were humanly 
decapitated after administering ketamine (600 mg, intravenously) 
[43]. Following, the whole eyeballs were removed and cleaned with 
saline prior to fixation in formalin saline solution for one day (10% 
v/v). The bodies of the rabbits were frozen and incinerated. 
Specimens were dehydrated using ethyl alcohol then fixed in 
paraffin blocks at 56 °C for 24 h. Microtome (Leica SM2400, 
Cambridge, UK) was used to prepare thin slices (4 m), which were 
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deparaffinized and pigmented with hematoxylin and eosin. Finally, 
the samples were inspected by means of a light microscope (Leica, 
Cambridge, UK) [44]. 

RESULTS AND DISCUSSION 

D-optimal design optimization 

In order to determine the ranges of the independent variables, 
preliminary experiments were carried out (data not shown here). 
The independent variables examined for the formation of Etho-LPs 

included X1, which represents the molar ratio of PC to SAA, and X2, 
which represents the type of SAA used. The dependent variables 
considered for this study were EE% (Y1), PS (Y2), PDI (Y3), and ZP 
(Y4). The design indicated a strong concurrence between the 
predicted and adjusted R2values, with the exception of the non-
significant PDI. Furthermore, the predicted and adjusted R2values 
exhibited a minimal discrepancy of 0.2, indicating a strong alignment 
between the model's performance and the observed data [45]. The 
preference for a precision is for values larger than 4, as shown in 
table 3 [46]. 

 

Table 3: Output data of the D-optimal analysis of Etho-LPs formulations and predicted and observed values for the selected Etho-LPs* 

Responses EE% (Y1) PS (nm) (Y2) PDI (Y3) ZP (mV) (Y4)  

Adequate precision  15.87 19.60 4.178 16.35 
Adjusted R2 0.955 0.923 0.270 0.912 
Predicted R2 0.846 0.902 -0.710 0.869 
Significant factors (X1 and X2) (X1 and X2) - (X2) 
Predicted value of selected formulation  92.17 99.59 0.363 36.09 
Observed value of selected formulation  91.12±0.2 98.21±1.21 0.365±0.001 35.98 ±0.10 
Bias% 1.15 1.40 0.54 0.30 

*Composition of selected formulation (F14); PC: SAA molar ratio of 1:1.27 (X1), 54.23: 40.02 mg/mg of CTABand SA mixture as the SAA type (X2). 
Abbreviations: EE%; Entrapment Efficiency Percentage, PS; Particle Size, PDI; Polydispersity Index, ZP; Zeta Potential, and Etho-Lps; Etho-leciplex. 
The data given in mean±SD. 

 

Effect of formulation variables on EE% 

The significance of the independent variables X1 and X2 on the EE% 
of BRZ in the Etho-LP formulations shown in table 2 and fig. 1A. 

For EE% values it ranged from 53.95±0.12 to 92.87±0.78 %, the high 
EE% of Etho-LPs was related to the hydrophobic nature of BRZ which 
leaded to successful incorporation within PC layers [27, 47]. ANOVA 
testing revealed that PC: SAA molar ratio (X1) had significant effect 
(p<0.0001) on EE% of Etho-LPs. An observed fall in EE% values was 
observed with the increase in the proportion of cationic SAA 
suggesting a potential correlation between the solubilization of PC by 
SAA and the subsequent leakage of BRZ from Etho-LPs [26, 47]. 
Moreover, the increased viscosity imparted by increasing the 
proportion of PC might minimize the external diffusion and leakage of 
BRZ which in turn enhanced the %EE. The results were in agreement 
with Albash et al. who prepared moxifloxacin-loaded leciplex and 
found that the increase in (PC: CTAB) ratio from 1:1 to 5:1 led to an 
increase in EE% from 78.47 to 96.85%, respectively [26]. 

Regarding the SAA type (X2), it was found that EE% values increased 
significantly (p=0.049) when utilizing CTAB compared to SA. The 
observed results can be attributed to the lipophilic nature of CTAB 
compared to SA, as indicated by their respective log P values. CTAB 
and SA have log P values of 8 and 7.7, respectively. This is in 
agreement with Carbone et al. [48].  

Effect of Formulation Variables on PS 

The z-average diameter signifying the mean hydrodynamic diameter 
of the nanoparticles [49] is clarified in table 2 and graphically 
illustrated in fig. 1B. The PS of Etho-LPs ranged from 25.80±10.50 to 
127.50±4.50 nm. The obtained PS values were suitable for ocular 
drug delivery as previously mentioned elsewhere [50]. 

ANOVA analysis of the results showed that both PC: SAA molar ratio 
(X1) and SAA type (X2) significantly affected the PS of Etho-LPs with 
p values of 0.0006, and 0.0003, respectively. 

As illustrated in fig. 1B it was found that the PS decreased by 
increasing the SAA amount. This might be related to decreasing the 
interfacial tension by elevating SAA amount, resulting in the formation 
of smaller Etho-LPs. Comparable findings were observed in a previous 
study where stable oil-in-water nanoemulsions were prepared 
utilizing a non-ionic surfactant (Tween 40). It was discovered that the 
droplet size declined from 31.83 nm to 18.02 nm as the concentration 
of the surfactant was raised from 0.5 wt. % to 2.0 wt. % [51]. 

The use of SAA type (X2) had a substantial impact on the PS of the 
Etho-LPs formed using CTAB, in comparison to those prepared using 

SA, where smaller PS values were obtained when using CTAB. The 
observed outcomes can be ascribed to the enhanced stabilizing 
effect of CTAB, as evidenced by the higher surface charge of CTAB 
Etho-LPs in comparison to SA Etho-LPs, which in turn reduced 
tendency of aggregation and fusion of particles. These findings align 
with the conclusions drawn by Varghese et al., as they observed a 
correlation between the stabilizing properties of the cationic agent 
(Didodecyl Dimethyl Ammonium Bromide (DDAB)/1,2-Dioleoyl-3-
trimethylammonium propane) and the PS of lecithin formulations. 
Where a rise in surface charge resulted in enhanced stabilizing 
capabilities, leading to a subsequent drop in PS [52]. 

Effect of Formulation Variables on PDI 

The PDI is a quantitative metric used to assess the width of 
unimodal size distributions. PDI values below 0.7 are considered 
acceptable; however, values beyond 0.7 have the potential to 
influence the stability of the formulation [47]. The PDI values are 
displayed in table 2 and depicted in fig. 2A.  

The PDI values ranged from 0.318±0.11 to 0.523±0.10. The tested 
parameters, namely the PC: SAA molar ratio (X1) and SAA type (X2), 
exhibited a non-significant effect on the PDI, as evidenced by the p-
values of 0.4152 and 0.4777, respectively. Based on the findings, it 
can be observed that the obtained PDI values were less than 0.7. 
These findings suggest that the Etho-LPs displayed a high level of 
homogeneity and narrow range of size distribution [47].  

Effect of formulation variables on ZP 

ZP values were between 21.00±2.00 and 51.37±1.56 mV. Results are 
compiled in table 2 and plotted in fig. 2B. All Etho-LPs formulations had 
acceptable high positive ZP values indicating good stability, due to the 
presence of electrostatic repulsions between the dispersed particles 
[16]. The positive charge for Etho-LPs was due to the use of cationic SAA 
(CTAB and SA) [53, 54]. This positive charge serves to facilitate 
electrostatic interactions between the positively-charged Etho-LPs and 
negatively-charged sialic acid found in corneal mucins [19, 55]. 

ANOVA analysis of the obtained ZP values illustrated that the PC: 
SAA molar ratio (X1) possessed a significant effect on ZP with p value 
of<0.0001 where increasing the proportion of cationic SAA resulted 
in an increase of ZP accordingly. The results obtained were 
consistent with the findings of Hassan et al., who observed that all 
DDAB/CTAB leciplex formulations containing carvedilol exhibited a 
positive surface charge ranging from 31.6 to 53.9 mV, indicating 
excellent stability. For SAA type (X2), the factor had no significant 
effect on ZP (p value = 0.065). 
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Fig. 1: A) line plots for the effect of PC: SAA molar ratio and the type of SAA on EE%. B) Line plots for the effect of PC: SAA ratio and the type 
of SAA on PS, The data given in mean±SD 

Abbreviations: PC: Phospholipid, SAA: Surface Active Agent, EE%: Entrapment Efficiency Percent, and PS: Particle Size 

 

 

Fig. 2: A) line plots for the effect of PC: SAA molar ratio and the type of SAA on PDI. B) line plots for the effect of PC: SAA ratio and the type 
of SAA on ZP, The data given in mean±SD 

Abbreviations: PC: Phospholipid, SAA, Surface Active Agent, PDI: Polydispersity Index, and ZP; Zeta Potential 

 

Selecting the optimum BRZ-Etho-LPs  

The different investigated factors were analyzed for the selection of 
optimum levels required for the preparation of a high-quality 
formulation. Etho-LPs were optimized through the desirability 
constraints in table 1. The optimum values of the variables were 
achieved through optimization based on a desirability function 
employing Design-Expert 7® software. The numerical analysis 
suggested an Etho-LPs formulation with an overall desirability value 
of 0.739. The suggested formulation (F14) was fabricated using PC: 
SAA molar ratio (X1) of 1:1.27 molar ratio and CTAB and SA mixture 
as the SAA type (X2;54.23: 40.02 w/w). The suggested formulation 
was prepared and evaluated as previously mentioned for its EE%, 
PS, PDI and ZP. The observed results for the aforementioned tests 
were 91.12±0.2 %, 76.21±1.21 nm, 0.421±0.001 and 35.88 ±0.10 
mV, respectively. The predicted values for the previously mentioned 
tests were 92.08%, 75.03 nm, 0.422 and 35.98 mV, respectively. The 
high resemblance between the observed and predicted outcomes of 
the optimum Etho-LPs could presume the validity of the design to 
expect the responses (table 3). Furthermore, the average bias % 
values for all the obtained responses were less than 10% indicating 
the high model’s predictability capacity [56]. 

In vitro release study 

The release of BRZ from the optimum Etho-LPs compared to BRZ 
suspension is shown in fig. 3. The results indicate a significant 
difference (p= 0.000) in the cumulative amount released of BRZ after 
2 h (Q2) from the Etho-LPs (35.12±0.74%) compared to that of 

released from BRZ suspension (7.08±0.05%). This initial flush from 
the Etho-LPs might be attributed to the dissolution of the surface 
drug in addition to the dissolution of PC in presence of SAA, which 
might lead to the formation of channels assisting the penetration of 
the release medium and hence drug dissolution [57, 58]. The initial 
flush was followed by a sustained release phase, representing the 
release of an entrapped drug inside the core of the nanoparticles 
[58], where the % BRZ released from the optimal Etho-LPs after 24 h 
(Q24) was significantly higher (72.05±0.73%) compared to the % 
drug released from the suspension (21.66±0.86%), with a p-value of 
0.002. Higher Q24 values obtained from the optimized formulation 
might be endorsed to the enhanced solubility of the drug by the 
action of the used SAA [53]. 

This biphasic pattern is beneficial as the initial flush delivers an 
adequate amount of BRZ to the ocular tissues to exert its action, 
whereas the subsequent sustained phase preserves enough drug 
concentrations for extended periods of time. This sustained drug 
release decreases frequency of administration and hence enhance 
patients’ compliance. The obtained results aligns with the findings 
stated by Abdellatif et al. [27]. 

pH measurement 

Eye irritation and multiple daily administrations may hinder the 
clinical effectiveness of instilled eye drops; hence pH evaluation 
must be performed to ensure the feasibility of ocular application 
[59]. The acceptable pH values of eye drops can be between 3.5 and 
8.5 [39, 60], with the typical value at 7.2±0. 2. The pH value of the 
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optimum Etho-LPs was 7.40±0.20, which is considered appropriate 
and suitable for ocular application. These findings are consistent 
with the research conducted by Abd-Elsalam et al., during the 

development of mucoadhesive olaminosomes, where they observed 
that the pH values of the chosen formulations fell within the 
acceptable range of 3.7 to 5 [39]. 

 

 

Fig. 3: In vitro release figure of BRZ suspension and the optimum Etho-LPs 
Abbreviations: BRZ; Brinzolamide, and Etho-LPs; Etho leciplex, the data given in mean±SD 

 

Differential scanning calorimetry (DSC) 

The DSC thermograms are demonstrated in fig. 4. BRZ showed an 
endothermic peak equivalent to its melting point at 131 °C, which 
signifies the crystalline nature of the drug and is in line with the 
literature [61].The thermogram of the optimum Etho-LPs did not 

display the melting peak of BRZ. This might be due to that the 
effective entrapment of BRZ inside the Etho-LPs [62]. Additionally, 
the absence of BRZ characteristic peak in Etho-LPs could be 
attributed to the molecular dispersion of BRZ in Etho-LPs with the 
formation of solid solution, which resulted in the dilution of BRZ in a 
mixture and diminishing its characteristic peak [63]. 

 

 

Fig. 4: DSC thermograms of BRZ, and the optimum Etho-LPS 
Abbreviations: DSC, Differential Scanning Calorimetry; BRZ, Brinzolamide, and Etho-LPs; Etho leciplex 

 

 

Fig. 5: Transmission electron micrograph of the optimum Etho-LPs (scale bar: 200 nm) 
Abbreviations: Etho-LPs; Etho leciplex 
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Transmission Electron Microscope (TEM) 

Morphological observations visualized that optimum Etho-LPs were 
spherical in shape (fig. 5). The PS values obtained from Zetasizer 
were in good harmony with TEM findings. In addition, no 
aggregations were observed, which might indicate the good 
dispersibility of the optimum Etho-LPs and this could be explained 
by the reasonable ZP on the Etho-LPs surfaces preventing the 
agglomeration of the prepared optimum Etho-LPs [16]. 

Mucoadhesiontest 

The investigation of the interaction behavior between the optimum 
formulation and mucin is essential due to the significant role of 
mucin as a vital component of the eye. Conjunctival goblet cells are 
responsible for the production of mucin, which serves the purpose 
of moistening and safeguarding the ocular surface [63]. In order to 
assess the mucoadhesive characteristics of the optimized BRZ-
loaded Etho-LPs under investigation, the formulation was combined 
with a solution of mucin. The findings of the study demonstrated a 
statistically significant alteration in ZP value of the optimized BRZ-
loaded Etho-LPs formulation, which decreased from 35.98 ±0.10 to 
27.60±0.40 mV. The observed decrease in ZP value can be ascribed 
to the ionic interaction between the amino groups, which carry a 
positive charge, of the used cationic surface-active agents (CTAB and 
SA), and the negatively charged sialic acid residues in mucin. This 
mucoadhesion can prolong the residence of the applied drug, hence 
enhancing its bioavailability by enhancing the availability of the 
drug at the specific site of application [39]. 

Effect of short-term storage 

At the end of the storage period of 3 mo at 4±2 °C, the stored 
optimum Etho-LPs didn’t display any aggregates in comparison to 
fresh ones. The values of EE%, PS, PDI, and ZP for stored optimum 
Etho-LPs were 91.99±0.1%, 78.00±5.00 nm, 0.423±0.001, and 
35.77±1.33 mV, respectively. No statistical differences were 

detected between the fresh and stored samples (p>0.05). These 
results were in agreement with Date A et al., who observed that the 
quercetin-recipes did not show any significant change in the PS and 
PDI when stored at refrigerated conditions [31]. 

In vivo studies 

The efficacy of the optimum BRZ-loaded Etho-LPs was tested in 
comparison to BRZ suspension both administered at one single dose of 
10 mg/ml by calculating the pharmacokinetic parameters of the drug 
in the tear film. Table 4 and fig. 6 illustrate the tear film concentration-
time curve besides the pharmacokinetic parameters for both samples. 
Both the table and fig. present the superiority of the optimum BRZ-
loaded Etho-LPs over drug suspension. The Cmax values for the 
investigated formulation and drug suspension were 6755.00±2322.43 
and 1937.50±78.04 ng/ml (p value<0.05), respectively, reached after 1 
and 0.75 h, in that order. Regarding the AUC0-24 values, it was 
manifested that the optimum Etho-LPs possessed significantly higher 
values compared to drug suspension (p-value = 0.029). The obtained 
values for the aforementioned formulations were 40130.00±13689.50 
versus 12940.43±8506.44 ng. h/ml, respectively. From the 
aforementioned findings, it can be determined that the optimum Etho-
LPs enhanced the drug bioavailability in ocular tissues. This might be 
attributed to the small nano size of the prepared Etho-LPs, which in 
turn enhanced the penetration via ocular tissues [64, 65]. Moreover, 
this improvement can be ascribed to the utilization of cationic 
surfactants that promote the attachment of Etho-LPs to the negatively 
charged sialic acid groups present in the mucus membrane of the 
corneal surface. As a consequence, there was an increase in corneal 
retention, leading to a reduction in drug elimination through tear flow 
and an enhancement in transcorneal flux [27]. On the other hand, a 
previous study illustrated that the presence of PC in the composition 
of nanocarriers might forma drug reservoir for consequent ocular 
penetration due to its possible capability of protecting the drug-loaded 
nanocarriers from tear lysozyme and esterase action and, hence better 
drug bioavailability [66]. 

 

Table 4: The pharmacokinetic parameters of BRZ after the administration of optimum Etho-LPs* and drug suspension into rabbits’ eyes 

Pharmacokinetic parameter Optimum Etho-LPs Drug suspension 
Cmax (ng/ml)  6755.00±2322.43 1937.50±78.04 
Tmax** (h) 1 0.75 
AUC0-24(ng. h/ml) 40130.00±13689.50 12940.43±8506.44 

*Composition of optimum Etho-LPs; PC: SAA molar ratio of 1:1.27 (X1), 54.23: 40.02 mg/mg of CTABand SA mixture as the SAA type (X2). **Tmax 
values calculated as median. Abbreviations: BRZ; Brinzolamide, and Etho-Lps; Etho-Leciplex. The data given in mean±SD. 

 

 

Fig. 6: Mean BRZ tear concentration-time curve for BRZ suspension and the optimum Etho-LPs in rabbits’ eyes, the data given in mean±SD 
Abbreviations: BRZ; Brinzolamide, and Etho-LPs; Etho leciplex 

 

Histopathological study 

Microscopic examination of the treated eyes of male Albino rabbits 
showed no histopathological changes in the inspected sections of the 
cornea, iris, retina or sclera compared to the control (fig. 7). The 

results demonstrated the safety of the optimum Etho-LPs even after 
intensive use. Moreover, the obtained results indicated the safety 
and biocompatibility of the used components on the ocular tissues. 
Similar studies in literature stated the safety of PC [67], CTAB [68] 
and SA [69] when applied on ocular tissues. 
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Fig. 7: Photomicrographs showing histopathological sections (hematoxylin and eosin stained) of untreated group I and treated optimum 
Etho-LPs group II rabbits’ eyes. A and B illustrate the histological structure of the cornea (16X), (C, D) illustrates the histological structure 

of the retina, choroid, and sclera (16X), and (E-F) illustrates histological structure of the retina, choroid, and sclera (40X) 
Abbreviations: BRZ; Brinzolamide, and Etho-LPs; Etho leciplex 

 

CONCLUSION 

Brinzolamide (BRZ) loaded Etho-Leciplex (Etho-LPs) were 
fabricated by a simple one-step technique using different molar 
ratios of phospholipid (PC) and cationic surfactants mixture of 
cetyltrimethylammonium bromide (CTAB), and stearyl amine (SA) 
applying D-optimal design. The suggested optimum Etho-LPs, after 
statistical analysis, consisted of 1:1.27 as PC: SAA molar ratio (X1) 
and both CTAB combined with SA as the SAA type (X2). The optimum 
Etho-LPs were spherical-shaped with excellent entrapment 
efficiency of 91.12±0.2 %, particle size value of 76.21±1.21 nm, 
besides the particles possessed narrow particle size distribution 
with polydispersity index value of 0.421±0.001, and zeta potential of 
35.88 ±0.10 mV. Moreover, the in vitro release studies showed the 
enhancement of drug release after 24 h compared to BRZ 
suspension. The use of the cationic surfactants imparted positive 
charges on the formulated Etho-LPs which in turn enhanced their 
mucoadhesive properties required for extending the contact time on 
the ocular tissues. Based on the outcomes of in vivo pharmacokinetic 
study, the optimum Etho-LPs formulation presented a significant 
enhancement in bioavailability of BRZ compared to the BRZ 
suspension. Furthermore, histopathological assessment of Etho-LPs 
treated group showed no histopathological abnormalities in the 
examined sections of the cornea, iris, retina or sclera compared to 
the untreated group. These outcomes indicated that Etho-LPs are 
promising ocular nanocarriers for hydrophobic drugs. 
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