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ABSTRACT 

Cancer is a global health problem of human beings that is growing day by day despite several advancements in the medical field. The main concern 
of cancer treatment is the timely and proper diagnosis of this disease and the targeting of therapeutic moieties to the cancer site. Nanotechnology 
has emerged as a boon for the healthcare system in treating various life-threatening diseases. Mesoporous Silica Nanoparticles (MSNs), have drawn 
interest in the diagnosis and treatment of cancers and various other diseases. MSNs can be easily adjusted to specifically target cancer cells, improve 
drug targeting and minimize the undesirable effects. In the imaging and diagnosis of cancer, MSNs can be altered with imaging agents or used as 
contrast agents in imaging techniques like Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). MSNs can be used to deliver 
different types of therapeutic molecules alone or in combinations to provide a synergistic effect in eradicating cancer. The current review focused 
on highlighting the role of MSNs in combating cancer. In addition, the biodegradation, clearance and toxicity profile of MSNs is explained to evaluate 
their suitability for clinical applications.  
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INTRODUCTION 

After Cardiovascular disease, cancer is responsible for most deaths 
in the world. A cancerous condition includes uncontrolled, abnormal 
cell proliferation that eventually spreads to other tissues and causes 
metastases [1]. Over 23.6 million new cancer patients are projected 
to be found globally by 2030, and the number is expected to rise 
yearly [2]. Cancer is mainly treated by chemotherapy, gene therapy 
and radiotherapy [3]. These methods are designed to target 
malignant cells to effectively destroy them while causing the least 
damage to noncancerous healthy cells [4]. Unfortunately, the only 
tumor that can be treated with radiotherapy and surgery is the 
localized one in a particular region of the body [5]. Chemotherapy is 
used to treat advanced tumors that have spread to the blood 
circulation or lymphatic system. Most chemotherapeutic agents have 
negative effects on healthy cells. They are only effective up to a point 
because cancer cells tend to become multi-drug resistant (MDR) [6, 
7]. The drawbacks of the chemotherapy include nausea, reduction in 
lymphocyte count, MDR, poor aqueous solubility, low therapeutic 
index, nonspecific tumour targeting, invasive methods, side effects, 
and poor patient compliance [8, 9]. To release anticancer 
medications at the target site, and to get rid of side effects from 
conventional treatments, metastasis, and tumor recurrence, it is 
crucial to develop innovative treatment approaches [10].  

MSNs can be designed to target cancer cells with several therapeutic 
agents, including medications, peptides, nucleic acids, and imaging 
agents [11]. They can be utilized in drug delivery applications to 
target medications to certain cells or tissues [12]. MSNs increase the 
water solubility and bioavailability of hydrophilic drugs [13]. MSNs 
can be employed as catalyst support in catalysis applications. 
Because of their high surface area and homogenous pore size 
distribution, MSNs provide excellent catalytic activity and selectivity 
[14]. The features of MSNs can be further tailored by adding 
functional groups to their surface or by employing various synthesis 
techniques to control their size, morphology, and pore structure 
[15]. Numerous encouraging findings have been reported in 
preclinical and clinical research on applying MSNs for cancer 
therapy [16, 17]. This review is drafted with the help of papers from 
the past 20 years (2004-2024) and mostly after 2020 from 
specialised databases such as Science Direct, Pubmed, and 
Cambridge using the keywords Mesoporous silica nanoparticles, 

cancer, applications, therapeutics, diagnostics. Other selections 
include articles from Springer, Taylor and Francis, MDPI, and Wiley, 
information from Internet sources, and online published articles 
from ACS, Bentham etc. 

Role of mesoporous silica nanoparticles in cancer 

Nanotechnology emerged as a boon for treating cancer [18–20]. 
Quantum dots, carbon nanotubes, polymeric micelles, carbon dots 
[21] dendrimers, stimuli-based nanomaterials [22], polymeric 
nanoparticles, lipid nanoparticles, metal nanoparticles, magnetic 
nanoparticles, solid lipid nanoparticles [23] and MSNs [24–27] are 
some widely studied nanotechnology-based drug-delivery systems 
for cancer [13, 28–30]. The four key ingredients required for the 
formulation of MSNs are a catalyst, a silica precursor like silane, 
solvents, and a surfactant. MSNs can be generated with different 
characteristics, including diameter, pore size, surface area, and 
shape, even though the synthesis only required four basic 
components as mentioned above [31, 32]. MSNs have been 
researched to treat a variety of diseases, including cancer [33], 
Diabetes [34], inflammation [35], and bone/tendon tissue 
engineering [36]. The dual application of MSNs in the diagnosis and 
treatment of cancer is described in this review paper.  

Mesoporous silica nanoparticles (MSNs) in the diagnosis of 
cancer  

Nowadays, cancer is diagnosed using several medical procedures 
like examination of blood, and or urine, imaging methods like 
Magnetic Resonance Imaging (MRI), and Positron Emission 
Tomography (PET), followed by a biopsy. Conventional anatomical 
imaging methods typically identify tumours when they are a few 
millimetres using MRI or a few centimetres using PET. However, at 
this state tumour contains millions of cancer cells [37]. Therefore, 
the cancer imaging technique should be focused on identifying 
and/or scanning even a small number of tumour cells as possible in 
the initial stages, ideally before the angiogenic transition. Specialists 
who diagnose cancer and identify its stage to treat human cancer 
can only use various imaging techniques such as X-ray, Computed 
Tomography (CT) scan, MRI, optical microscopy, PET, Single Photon 
Emission Computed Tomography (SPECT), and Ultra Sound (US). 
However, only CT scans, MRI, PET and SPECT techniques can 
provide Three-Dimensional (3-D) images for cancer detection 
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throughout the human body [38]. All these methods rely on spotting 
cancer when it begins to show itself physically, at a thickness of 
about 1 cm3, by which time the tumour mass will already have about 
1 billion cancer cells in it [39]. 

For more effective treatment of cancer, early lesion diagnosis is 
crucial. Early lesions typically have modest biological signals. Due to 
inadequate sensitivity or lack of specificity, small tumours may go 
undiagnosed. Therefore, it is crucial to focus on the delivery of 
imaging agents to the lesion site to improve the signal and increase 
specificity. MSNs can be coupled to imaging agents appropriate for 
fluorescence, MRI, and PET imaging [40]. Various nanomaterials, 
including silica nanoparticles [41], Quantum Dots (QDs) [42], and 
gold nanoparticles [43], have been used for cancer diagnosis and 
early detection over the past several years [44]. Small molecules like 
gadolinium chelates and, calcium and other metal ions [45] are 
commonly employed as contrast agents for MRI and ultrasound. 
However, these agents cannot produce high-contrast pictures for 
early cancer diagnosis because of their limited specificity and 
intrinsic imaging noise [42]. Silica nanoparticles are also utilized as a 
contrast agent for ultrasound and MRI. MSNs have selective 

targeting to the tumour sites, and they also provide high drug 
loading capacity, robustness in designing various functionalizations, 
and easy biodegradation. Many imaging techniques have been used 
for the diagnosis, treatment, and monitoring of cancer. Each 
technique provides a different level of insight into the disease and its 
location. There is no ideal imaging approach because each method 
has its pros and cons [37]. MRI gives the best soft tissue contrast, but 
this method lacks sensitivity. PET also provides the greatest soft 
tissue contrast, but it has a limited spatial resolution. CT scan is fast, 
but it has low soft tissue contrast. IR is rapid and very sensitive but 
has a shallow depth of penetration. 

Mesoporous materials are useful for diagnostic applications because of 
their improved image contrast and chemical stability. Additionally, the 
ability of MSNs to conjugate functional molecules within the pores 
creates new opportunities for numerous measurements and detection. 
Drugs and dyes can be used to track the position and activity of 
therapeutic medicines due to the low toxicity of silica-based porous 
materials and their capacity to contain a range of luminous markers 
[40]. A detailed description of the diagnostic application of MSNs in 
cancer has been given in table 1. 

 

Table 1: MSNs in cancer diagnosis 

Formulation Imaging model  Model Application Clinical findings  Reference 

Gadolinium-MSN (Gd-MSN) MRI - 
 

Diagnosis 
 

High proton relaxivity, imaging-capable 
nanoparticles that can enter the cells easily. 

[46] 

Gd-Fluorescein Isothiocyanate 
Msns (Gd-Dye@MSN) 

MRI Mouse 
brain 

Stem cell tracking These are perfect T1-agent carriers for MRI stem 
cell tracking due to their benefits of 
biocompatibility, longevity, high internalizing 
efficiency, and pore architecture. 

[47] 

Mesoporous silica-coated hollow 
manganese oxide HMnO@mSiO2)  

MRI Mouse T1 MRI contrast agent  Provided T1-weighted images under strong 
magnetic fields. 

[48] 

Dox@Gome (Gold/Mesoporous 
Silica Hybrid Nanoparticle) 

PET imaging Mouse Diagnosis of lung tumour It is a good tool for the detection of clinically 
relevant spontaneous lung tumours.  

[49] 

MagneticMag-Dye@MSNs MRI Mice Intracellular Labeling and 
animal MRI studies 

MSNs simultaneously serve as bimodal imaging 
probes and drug carriers.  

[50] 

Copper sulfide-mesoporous silica-
polyethylene glycol (CuS@mSiO2-
PEG) nanocomposites 

Near-Infrared (NIR) 
Irradiation 

- Combination of 
chemotherapy and 
photothermal therapy. 

It demonstrated satisfactory photothermal 
effectiveness and pH-responsive drug-release 
behaviour. 

[51] 

Gold (Au) capped MSNs TEM Imaging - Enzymes and substrate’s 
intracellular codelivery 

Tumour growth monitoring the record of treatment 
responses and determining therapeutic efficacy.  

[52] 

Camptothecin-loaded 
Fluorescent MSNs  

TEM Imaging Mice Can promote the 
accumulation of anticancer 
medicines in tumours, 
enhancing their 
effectiveness. 

They deliver medications to tumours effectively, 
preferentially accumulate in tumours, and inhibit 
the growth of tumours. 

[53] 

Magnetic mesoporous silica 
nanoparticles-based, 
polyelectrolyte (poly-
ethylenimine, PEI) and fusogenic 
peptide-functionalized siRNA 
delivery system 
(MSN_siRNA@PEI-KALA peptides) 

TEM, Confocal laser 
scanning 
microscopy 

Mice siRNA delivery for cancer 
therapy 

MSNs are highly protective of siRNA and have a 
low level of cytotoxicity. An in vivo study 
confirmed the decrease in tumour growth. 

[53] 

Perfluorohexane-encapsulated 
MSNs with indocyanine green–
polydopamine layer and 
poly(ethylene glycol)–folic acid 
coating, (MSNs PFH@PDA-ICG-
PEG-FA) 

US/NIRF dual-
modal imaging 

Mice Cancer phototherapy Showed tremendous potential to be used as a 
flexible multifunctional nanocarrier for cancer 
imaging and treatment. 

[54] 

Doxorubicin Chitosan-Folate 
conjugate (DOX-MSN-SS-CH-FA) 
MSNs 

TEM Mice A targeted drug delivery 
system for breast cancer 
that responds to both pH 
and redox stimuli 

MSNs showed excellent tumor-suppressing action 
against Ehrlich Ascites Carcinoma (EAC) in mice. 
MSNs cured the tumour locally and prevented it 
from spreading.  

[55] 

Doxorubicin@Gd doped-MSNs, 
conjugating with indocyanine 
green loaded thermosensitive 
liposomes (DOX@GdMSNs-ICG-
TSLs)  

Near-Infrared 
Fluorescence (NIRF), 
Photo acoustic (PA), 
magnetic resonance 
(MR) triple-modal 
imaging. 

Mice Multimodel imaging-
guided chemotherapy and 
phototherapy for cancer 
eradication. 

The good anticancer effectiveness of the MSNs and 
satisfactory NIRF, PA, and MRI imaging effects. 

[56] 

Anastrozole-Chitosan-Folic acid 
loaded MSNs (MSN-ATZ-CH-FA) 

TEM, Fourier 
transform Infrared 
(FTIR) 

Mice pH-responsive MSNs that 
target breast cancer 

Breast cancer caused by EAC was more effectively 
treated with MSN-ATZ-CH-FA. 
 

[57] 

polyethyleneimine-polyethylene 
glycol epirubicin HCl MSNs 
(MSN-PEI-PEG-EPI) 

TEM, FTIR Mice Cancer treatment. MSN-PEI-PEG-EPI had a larger tumour 
accumulation than free epirubicin hydrochloride 
(EPI). 

[58] 

MSNs of Arsenic Trioxide (ATO) 
grafted with Polyacrylic Acid 
(PAA)  

TEM  Mice pH-triggered MSNs for poor 
pharmacokinetics or dose-
limited toxicity in the 
treatment of solid tumours.  

Significantly improved anticancer efficacy in vitro 
and in vivo studies 

[59] 

Paclitaxel (PTX)-loaded MSNs SEM Mouse Pore size controllable drug 
delivery system for 
chemotherapy 

MSNs containing PTX-increased all MCF-7 cells' 
rates of early and late apoptosis compared to free 
PTX 

[60] 
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Table 2: Application of MSNs in cancer 

Drug Application  Route of 
administration 

Key findings Reference 

Doxorubicin (DOX)MSNs  Mesothelioma therapy Intraperitoneal 
administration 

Improved therapeutic efficacy and increased intracellular 
absorption of DOX by DOX-loaded MSNs. 

[69] 

Docetaxel (Dtxl) PEGylated silica 
nano rattles 

Liver cancer Intravenous 
administration 

Enhanced anticancer medicines' bioavailability, boost their 
effectiveness and lessen their side effects. 
 

[70] 

Mannose-Multi functionalized 
MSNs 

Two-photon 
photodynamic therapy of 
solid tumour  

Subcutaneous 
administration. 

MSNs are effective in two-photon excitation (TPE) Photodynamic 
therapy in breast and colon cancer cell lines. 

[71] 

Oxaliplatin 
MSNs 

Pancreatic cancer Direct tumour 
injection, I. V. 
administration 

Significant reduction or eradication of tumours. [72] 

Mesoporous Silica Microrod 
(MSR)-Polyethyleneimine (PEI) 
vaccine 

Cancer Vaccination Subcutaneous 
administration in 
intrascapular 
region. 

Improved dendritic activation and T cell response of host cells. 
The vaccine eliminated lung metastases that had already formed, 
inhibited cancer growth, and worked in conjunction with anti-
CTLA4 therapy.  

[73] 

Enzyme (Catalase) encapsulated 
photosensitizer-loaded hollow 
silica nanoparticles 

Photodynamic Therapy 
(PDT) in cancer  

Intravenous 
administration 

Effective PDT by the generation of reactive oxygen species (ROS) 
by mitochondria targeting and catalase. 

[74] 

Lipid-coated biodegradable 
hollow MSNs  
 
 

Chemo-immunotherapy 
using All-Trans-Retinoic 
Acid (ATRA), doxorubicin 
and Inter Leukin-2 (IL-2) 

Intravenous 
administration 

IFN-γ and IL-12 secretion is encouraged, tumour-infiltrating T 
lymphocytes and natural killer cells become active, and IL-10, 
TGF-β, and immunosuppressive myeloid-derived suppressor 
cells become less active. 

[75] 

Mesoporous nano vehicle loaded 
with photosensitizer and 
Dabrafenib, Trametinib 

Microneedle-assisted 
photodynamic therapy of 
Deep-seated melanoma 

Subcutaneous 
administration 

Skin cancer cells are killed synergistically by reactive oxygen 
species and caspase-activated apoptosis. 

[76] 

large-pore silica-coated 
upconversion nanoparticles  

Cancer photodynamic 
immunotherapy 

Subcutaneous 
administration 

Stimulation of effector memory T cells, CD4+, and CD8+ cells. [77] 

Pegylated lipid bilayer supported 
MSNs of Axitinib Celastrol 

Multitargeted cancer 
therapy 

Intravenous 
administration 

Enhancement of the antitumor efficacy by suppression of 
mitochondrial activity and angiogenesis. 

[78] 

Poly (L-histidine) and 
polyethylene glycol-coated MSNs 
of sorafenib 

Antitumor effect  Intravenous 
administration 

Antiproliferation and tumour growth inhibition without any 
significant toxicity and negligible hemolysis.  

[79] 

Hollow MSNs containing 
photosensitizers 

Photodynamic and 
starvation therapy against 
tumour metastasis 

Intravenous 
administration 

Enhancement of PDT and starvation therapy to prevent the 
spread of tumors.  

[80] 

Bioinspired diselenide bridged 
MSNs loaded with cytotoxic 
ribonuclease A (RNase A) 

Dual responsive protein 
delivery on cancer 

Intravenous 
administration 

Homologous targeting and immune invasion 
characteristics. 

[81] 

CX-5461loaded MSNs Cancer therapy  Intravenous 
administration 

Inhibition of cancer cells without causing toxic effects on main 
organs. 

[82] 

Mesoporous silica/organosilica 
nanosystem encapsulating 
doxorubicin and si-RNA 

Multidrug Resistant (MDR) 
cancer  

Intratumoral 
administration 

The first big siRNA molecules released from the organosilica 
shell improved the anticancer effect of later released small DOX 
molecules from the silica core by reversing the MDR of cancer 
cells and downregulating P-gp expression in the cell membrane. 

[83] 

Glutathione-depletion dendritic 
mesoporous organosilica 
nanoparticles containing 
ovalbumin and toll-like receptor-9  

Cancer immunotherapy Subcutaneous 
administration 

Decreasing the development of tumours and promoting the 
production of Cytotoxic T Lymphocytes (CTLs). 

[84] 

Mesoporous silica-coated gold 
nanorods 

Photodynamic and 
photothermal tumour 
therapy (PTT) 

Subcutaneous 
administration 

Antitumor activity with fewer side effects and extension of 
tumour-bearing mice survival time. 

[85] 

Hollow and nonhollow 
mesoporous silica nanospheres  

Cancer vaccine adjuvant - Hollow nanospheres enhanced anti-cancer immunity, CD4+ and 
CD8+T cell populations in mouse splenocytes.  

[86] 

Asymmetric Head-Tail (HT) 
MSNs 

Vaccine development and 
Immunotherapy 

- Asymmetrical HTMSN showed a greater level of intake and in 
vitro maturation of dendritic cells and macrophages. 

[87] 

Multi-shelled dendritic mesoporous 
organosilica hollow spheres 

Cancer immunotherapy  - Immuno-adjuvant effect of MSNs [88] 

Hollow MSNscontaining 
HGP10025-33, and TPR2180-188,  

Antitumor immune 
response 

Subcutaneous 
administration 

Tumour suppression without compromising safety. [89] 

Mesoporous Silica Micro Rods-
Supported Lipid Bilayers (MSRs-
SLBs) 

T-cell receptor stimulation Intravenous 
administration 

Improved ex vivo growth of human and murine T cells using 
polyclonal and antigen-specific methods compared to 
commercial beads. 

[90] 

 

Mesoporous silica nanoparticles (MSNs) in cancer therapy 

MSNs can be categorized into many families based on their pore size, 
particle diameter, surface area, and manufacturing technique. These 
families have been explored extensively for drug delivery, including 
the Santa Barbara Amorphous (SBA), Movable Crystalline Material 
(MCM), and Michigan State University Materials (MSU) families [61].  

MSNs can resolve the insolubility issue of various poorly soluble 
drugs. Although having outstanding anticancer activity in vitro, 
Paclitaxel (PTX) and Camptothecin (CPT) have little anticancer 
effects in vivo due to their poor aqueous solubility. The pore size and 
the shape of MSNs are adjustable therefore, they significantly boost 
the solubility of the medications when used as a carrier. 
Additionally, the MSN carrier raises the drugs' cytotoxic effects by 

86% for CPT against human pancreatic cancer Capan-1 cells and 
HepG2 human liver cancer cells by 4.3-fold for PTX[62,63]. To treat 
mice harbouring the C26 tumor, Babaei et al. [64] formulated 
PEGylated MSNs (PEG@MSNR-CPT). The MSNs were loaded with 
CPT and assessed their effectiveness in comparison to CPT. MSNs 
can be multi-functionalized to regulate the release of medications. 
[65] To create redox and pH-responsive nanoparticles that may 
actively target breast cancer cells, Bhavsar et al. [66] formulated 
Doxorubicin (DOX)-loaded MSNs nanoparticles. The formulation 
was functionalized with cystamine dihydrochloride and then capped 
with chitosan-folate. After being exposed to acidic redox conditions 
(cancer environment; pH 5.5; 10 mmol reduced glutathione (GSH)), 
the drug was liberated from the particles. Intravenous 
administration of the formulation was determined to be safe [67]. 
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MSNs have a high degree of stability, which helps to safeguard and 
stabilize loaded drugs. To create single-and multimodal anticancer 
treatments, numerous co-therapeutic treatments, including 
photosensitizers, photothermal reagents, and chemotherapeutic 
drugs, can also functionalize MSNs [4, 68]. Table 2 provides an 
overview of MSNs' therapeutic use in cancer. 

Toxicity of MSNs 

All inorganic materials like gold, silver, iron oxide, silica, and zinc 
oxide nanoparticles on chronic exposure can cause inflammation, 
fibrosis, impaired renal clearance, and oxidative stress [91]. The 
toxicity of these NPs depends on dose, frequency, route of 
administration, composition, and physicochemical properties [92]. 
The toxicity of nanoparticles is an important parameter to govern 
their safety for clinical applications. Acute and subacute toxicity 
studies are usually conducted to evaluate different parameters like 
haematological, neurological, and cardiac effects safety. Clinical 
manifestations of NPs on cardiovascular, respiratory, gastrointestinal 
effects, dermatological effects, necroscopy, and histopathological 
investigations and mortality have been used to assess their safety [93]. 
MSNs are mostly studied for their acute toxicities [94]. MSNs may 
interact with blood components after administration; hence it is 
critical to study their hemotoxicity for possible intravenous uses [95]. 
Indeed, amorphous silica compounds have been demonstrated to 
induce hemolysis in mammalian Red Blood Cells (RBCs), posing 
serious biosafety concern. 

Biodegradability and clearance of MSNs 

Degradation of inorganic materials is difficult. Therefore, it can be 
assumed that MSNs are not degraded easily and accumulate in the 
Reticuloendothelial System (RES) organs like the liver and spleen. 
This can lead to accumulation for a few weeks to some months. The 
slow degradation of MSNs in the body may cause severe tissue 
toxicity [30, 96, 97]. The degradation rate of MSNs is affected by 
their physical properties e. g., size, shape, surface area, aggregation 
state, surface coatings or surface modification. The degradation of 
MSNs is affected by the pH and temperature of the site, protein 
content and their concentration. The degradation of MSNs in the 
physiological fluids should be studied while evaluating their 
cytotoxicity [98, 99]. 

The clearance of MSNs is an important parameter regarding their 
clinical safety. It has been found that MSNs can be metabolized and 
excreted through urine by the kidney and thus don’t accumulate in 
the body. Various studies have reported that the MSN scaffold is 
degraded into orthosilicic acid a tolerable water-soluble compound 
and excreted by the kidney [100, 101]. 

CONCLUSION 

MSNs have great potential for nanocarrier-based cancer therapy. In 
this review, we discussed mesoporous materials and their use as 
MSNs. The potential of MSNs to detect and treat cancer is reviewed 
in this paper. To deliver therapeutic drugs with high specificity and 
to selectively aggregate at the tumour site, MSNs can be 
functionalized with targeting moieties, such as antibodies or 
peptides. However, there is a need for more advancement that may 
offer an interesting possibility for the enhancement of the 
characteristics of MSNs. The eradication of incurable diseases like 
cancer is only possible after understanding this disease and 
targeting the molecules to combat the cancer cells without affecting 
healthy cells. It is expected that MSNs will remain an important area 
of cancer research in future. 
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