
Original Article 

IDENTIFYING POTENTIAL hENR INHIBITORS AGAINST PROSTATE CANCER EMPLOYING IN 
SILICO DRUG REPURPOSING APPROACH 

 

KAVANA KRISHNA NAYAK1 , SUMIT RAOSAHEB BIRANGAL1, LALIT KUMAR2 , RUCHI VERMA1*  

1Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 
India. 2Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur, India 

*Corresponding author: Ruchi Verma; *Email: ruchiverma.pharma@gmail.com 

Received: 05 Jun 2024, Revised and Accepted: 19 Sep 2024 

ABSTRACT 

Objective: This study employed an in silico drug repurposing strategy to identify potential human enoyl acyl carrier protein reductase (hENR) 
inhibitors. 

Methods: The co-crystallized ligand triclosan was used as a reference standard. Initially, FDA-approved drugs from the Drug Bank database were 
docked against the hENR and compounds with appreciable binding affinities with the protein were shortlisted. The binding energy calculations, 
ADME analysis, and induced-fit docking results of shortlisted compounds led to the identification of two top hits, DB07676 and DB11399, which 
were further subjected to molecular dynamics simulation.  

Results: Of 2,509 ligands docked via High Throughput Virtual Screening (HTVS), the top 250 were assessed with Standard Precision (SP) and the 
top 25 with Extra Precision (XP) mode. Thirteen compounds were selected based on interactions and XP scores, ranging from-15.245 to-10.031. 
Relative binding free energies of ligands DB07676 and DB11399 were-54.18 and-61.38 kcalmol-1, respectively. ADME analysis confirmed that both 
ligands followed Lipinski's Rule, though DB11399 had a high log P, which could be addressed by adding polar groups. Induced Fit scores for 
DB07676 and DB11399 were-10.592 and-11.220, respectively. Molecular Dynamics simulations confirmed superior stability of these complexes 
with RMSD ranging from 1.2 to 3.5 Å for the protein and 1.7 to 5.2 Å for the ligand with DB07676-protein complex and 1.4 to 3.0 Å for the protein 
and 1.1 to 5.8 Å for the ligand with DB11399-protein complex. 

Conclusion: Our final findings suggested that DB07676 and DB11399 could be potential lead compounds as hENR inhibitors. 
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INTRODUCTION 

Despite advancements in cancer research, the incidence of prostate 
cancer in most countries has been showing an upward trend [1]. 
Currently, prostate cancer ranks as the second most prevalent 
cancer among men globally in terms of incidence rate, which can go 
as high as 83.4 per 100,000 people [2, 3]. Conventional cancer 
therapy using classical cytotoxic drugs causes indiscriminate 
destruction of normal cells, making them one of the most toxic drugs 
employed in treatment [4]. Thus, the advent of targeted therapy has 
tremendously revolutionized cancer research. Targeted therapy 
targets cancer-specific enzymes or pathological pathways, thereby 
causing selective destruction of cancerous cells. Thus, there is a need 
to develop new drugs against cancer that specifically target tumour 
cells with no or minimal effects on normal cells [5-7].  

Reprogramming of numerous metabolic pathways has been 
reported in cancer cells to support their uncensored growth and 
proliferation [8]. One such metabolic shift that has garnered colossal 
attention is lipid metabolism. Lipid metabolism is an umbrella term 
for lipid biosynthesis, uptake, storage, mobilisation and catabolism 
[9]. Unlike normal cells, prostate cancer cells prefer to utilize fatty 
acids over glucose as their energy substrates [10]. In most cancer 
settings, a remarkably augmented fatty acid synthesis and the 
expression of an associated enzyme have been observed. Therefore, 
knocking down the lipogenic axis serves as a targeted approach 
against many types of cancers [9]. Type I Fatty Acid Synthase (FAS) 
is a large multidomain enzyme synthesizing long-chain saturated 
fatty acids. Since normal cells obtain fatty acids exogenously from 
the diet, FAS is scantily expressed. However, prostate cancer cells 
primarily rely on this enzyme for fatty acids and thus demonstrate a 
dramatic FAS over-expression. 

Interestingly, despite high levels of circulating fatty acids, tumour 
cells become FAS-dependent to maintain their growth rates. Recent 
studies confirmed FAS to be an oncogene, and its inhibition results 

in selective cytotoxicity towards cancer cells [11]. FAS contains 
seven catalytic domains such as enoyl-acyl carrier protein-reductase, 
β-ketoacyl reductase, dehydratase, thioesterase, β-ketoacyl synthase, 
acyl carrier protein and malonyl acetyltransferase domains. Inhibition 
of FAS through human enoyl-Acyl Carrier Protein-Reductase (hENR) 
has been linked with the induction of selective apoptosis and reversal 
of drug resistance in tumour cells, both in vivo and in vitro [12, 13]. 
This vulnerable dependency of cancer cells on FAS can be exploited to 
develop therapeutic approaches that cause selective cytotoxicity and 
reverse chemotherapy resistance in prostate cancer cells without 
affecting normal cells. hENR is composed of four chains, namely chains 
A, B, C and D. These chains form a dimer of dimer wherein chains A 
and B dimerise to give one biological homodimer (AB dimer) and 
chains C and D forms CD dimer. Triclosan (TCL) binds at the hENR 
dimer interface instead of the active site, which inturn causes 
structural changes along the NADPH binding site. Thus, it behaves as 
an allosteric Protein-Protein Interface (PPI) inhibitor. Hence, the 
allosteric site is the relevant physiological binding site. The hENR 
domain, consisting of 1529–1867 residues, is divided into two 
subdomainsi. e, NADPH binding domain and substrate binding 
domain. The NADPH binding domain includes amino acid residues 
between 1651–1794, whereas the substrate binding domain contains 
residues between 1530–1650 and 1795–1858 [14]. The NADPH 
binding domain adopts a classical Rossmann fold, featuring a five-
strand parallel β-sheet (β8–β12) surrounded by several helices. The 
reported hENR-TCL structure has two TCL binding sites, one at the AB 
dimer interface and another at the CD dimer interface. TCL binds 
against the extended β-sheet of the dimer's Rossmann fold [13]. 

The existing literature and clinical data underscore the absence of 
FDA-approved drugs for hENR domain. Several FAS inhibitors 
undergoing clinical trials exhibit pharmacological limitations like 
weight loss, neutropenia etc. Therefore, this study aims to identify 
potential hENR inhibitors using in silico tools. We used a drug 
repurposing approach as a design strategy to achieve this. Drug 
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repurposing involves the identification of new indications for 
approved or investigational drugs [15]. This approach is found to be 
an attractive strategy. This approach overcomes challenges like high 
attrition rates, significant expenses, and the laborious procedures 
typically associated traditional drug discovery and development 
[16]. Herea library of FDA-approved small molecules from the 
DrugBank database were screened, using a receptor-based virtual 
screening approach. The prepared ligands were docked against the 
crystal structure of hENR (PDB 4W9N) obtained from the protein 
data bank. Molecules based on docking scores and interactions were 
further subjected to MMGBSA, ADME, and induced fit docking. The 
top identified ligands were subjected to molecular dynamics 
simulations for studying the interactions with amino acid residues 
and stability of the hENR-ligand complex. TCL, a known hENR 
inhibitor, was employed as the reference standard and subjected to 
all the in silico investigations performed on ligands [13, 17, 18]. The 
results of the ligands were then compared with those of the 
standard. All the computational analyses were performed using 
Schrodinger 12.7. This study identifies two promising scaffolds that 
could potentially be developed into novel and potent hENR 
inhibitors against prostate cancer. 

MATERIALS AND METHODS 

Computational simulations software used 

All the in silico investigations were performed on the Schrödinger 
Suite (version 12.7) Maestro graphical user interface 
(www.schrodinger.com) on an HP computer with a Linux Ubuntu 
18.04.1 lts as operating system, Intel Haswell graphics card, 4GB 
RAM and Intel Core i3 processor.  

Protein selection for docking 

The link between prostate cancer development and FAS over-
expression is well established [10, 12]. Since FAS knockdown 

through the hENR domain causes selective cytotoxicity, hENR acts as 
a promising target to destroy cancer cells by depriving them of vital 
fatty acids to keep up their growth rates [19]. This study used the 
crystal structure of hENR complexed with triclosan, PDB 4W9N 
(1.84 Å resolution) from Protein Data Bank (RSCB PDB). 

Protein preparation for docking 

Utilizing the Protein Preparation Wizard panel of the Maestro 
interface, the retrieved protein was produced at a pH of 7 using – 
import and process, review and modify, and refine functions of 
Maestro sequentially. In the import and process tab, bond orders 
were assigned using the Chemical Component Dictionary (CCD) 
database, hydrogens were added, and zero-order bonds were 
created for metals and disulfide bonds. In the refine tab, sample 
water orientation was chosen using PROPKA at a pH of 7 for the H-
bond assignment. The gaps in the side chains and loops were filled 
utilizing the Prime module, and waters beyond 5 Å were deleted. 
The protein structure was then energy minimized using the force 
field of OPLS4. A grid was generated using a receptor Grid 
Generation tool of Maestro. The binding pocket of the protein into 
which the ligands bind was identified using the Site Map tool. hENR 
is composed of four chains, namely chains A, B, C and D. This enzyme 
is a dimer of dimer, wherein chains A and B form AB homodimer and 
chains C and D form CD homodimer. These two homodimers (AB 
homodimer and CD homodimer) come together to form hENR. This 
enzyme houses two binding sites, one at the AB dimer interface and 
another at the CD dimer interface (fig. 1a and fig. 1b). Ligands 
binding at the AB interface binding site interacts with amino acid 
residues of chains A and B. Similarly, ligands binding to the CD 
interface binding site engage with amino acid residues of chains C 
and D [13]. Since dimers AB and CD are identical, for the sake of 
simplicity, we worked with only chains A and B (fig. 2). Chains C and 
D of hENR were excluded because working with all chains would be 
unnecessary and cumbersome.

  

 

Fig. 1: 3D diagrammatic representation of four chains and two TCL-binding sites of hENR) TCL (in white) at the AB dimer interface, b) TCL 
(in blue) at the CD dimer interface 

 

 

Fig. 2: 3D diagrammatic representation of the hENR chain A and B 

http://www.schrodinger.com/
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Ligand preparation for docking 

Following protein preparation, ligand preparation was performed 
using the Epik tool of the Maestro LigPrep panel at a pH of 7, keeping 
the parameters as default. Ionization was set to Generate possible 
states at pH 7.0+/-2.0. Subsequently, all the ligands were desalted, 
and their tautomers were generated. Computations were carried out 
by retaining specified chiralities. The prepared 3D structures of 
ligands were then energy minimized [20, 21]. 

Ligand docking 

The prepared ligands were docked to the protein using the Grid-
based Ligand Docking with Energetics (GLIDE) tool [20, 21]. This 
tool provides valuable insights into the binding affinities between 
the ligand and the receptor, allowing for an in-depth exploration of 
their interaction. Based on the procured data, the tool further allots 
a docking score for each ligand and ranks them in the descending 
order of their scores. Moreover, this tool provides different options 
based on speed versus accuracy, namely High-Throughput Virtual 
Screening (HTVS), Standard Precision (SP) and Extra Precision (XP). 
HTVS mode docks faster with lower accuracy, whereas XP mode is 
the most accurate and consumes more time. Thus, HTVS, SP and XP 
serve as hierarchical filters in screening molecules and identifying 
those with appreciable binding capabilities. At first, all the prepared 
ligands were screened through HTVS and the best-identified ligands 
were further subjected to screening by SP and XP modes 
sequentially [22-24]. 

Binding energy calculation 

The time span for which the interaction between ligand and protein 
persists depends on the binding energy of the interaction, which is 
estimated by the Prime module using the MM-GBSA (Molecular 
Mechanics, the Generalized Born model and Solvent Accessibility) 
approach [25]. This method is based on the model of Variable-
dielectric generalized Bron (VSGB) salvation, which employs water 
as a solvent under the OPLS3e force field [22, 23]. Based on their 
dock score from XP docking, the top thirteen ligands were identified 
and subjected to MM/GBSA analysis. 

ADME analysis 

The ADME analysis was carried out using Maestro's QikProp tool to 
estimate a ligand's druggability [13, 26]. The QikProp tool measures 
parameters such as molecular weight (MW), octanol/water partition 
coefficient (QPlogPo/w), number of hydrogen bond donors 
(donorHB) and hydrogen bond acceptors (accept HB) of the ligands 
[27-29]. 

Induced fit docking 

Thirteen ligands were shortlisted based on their XP docking score, 
binding energy calculation and ADME analysis for Induced Fit 
Docking (IFD). IFD protocol generates multiple ligand binding poses 
and the corresponding structural changes at the binding site, which 
allows the ligand to bind better. This is performed using Glide and 
Prime modules. The standard protocol generates 20 poses per ligand 
was utilized, and Van der Waals scaling was performed at a default 
factor of 0.50 [30, 25]. An IFD score was generated based on the 
docking score, glide energy, glide emodel values, and types of 
interactions [26]. 

Molecular dynamics  

Desmond module of Schrodinger was used for MD studies. Dock 
complexes of the top two ligands and TCL (reference compound) 
were exposed to MD simulation studies. Molecular dynamics 
involved the following steps: firstly, the protein-ligand complex 
was chosen, an orthorhombic simulation box of 10Ǻ was 
generated, and system neutralization was done by adding 
Na+ions using System Builder [31]. Further, the system was 
energy minimized and maintained at a temperature of 300 K and 
a pressure of 1.01325 bars, wherein the method of Nose-Hoover 
and method of Martina-Tobias-Klein were employed as 
thermostat and barostat, respectively [23, 24]. Collectively, 1000 
frames were recorded in a period of 100-nseс simulation. MD 

results were analyzed with the help of simulation interасtiоn 
diagrams [32, 33]. 

RESULTS AND DISCUSSION 

Molecular docking 

Docking was performed using various modes of the GLIDE panel. 
The prepared 2,509 ligands were subjected to docking in HTVS 
mode. HTVS mode is employed to screen many compounds as it 
consumes less time as compared to SP and XP modes. In HTVS 
docking, conformational sampling is more constrained than SP 
docking and cannot be employed with score-in-place. Resulting best 
10% of resulting ligands from HTVS are identified based on their 
docking score and are further subjected to SP docking, which 
summed up to 250 compounds. Docking in SP mode retains a fine 
balance between speed and accuracy. The top 10% of resulting 
ligands from SP mode are subjected to XP docking, which summed 
up to 25 ligands. XP docking employs descriptors and explicit water 
technology. This mode filters out false-positive results and thus 
ensures a reliable correlation between the docking score and the 
binding pose of ligands [23]. Lastly, the top thirteen compounds 
were selected based on their XP docking score and protein-ligand 
interactions. The docking score of all these ligands ranged from-
15.245 to-10.031kcalmol-1. TCL in the AB dimer interface engages 
with hydrophobic side chain residues of both chains A and B through 
van der Waals interactions. Key amino acid residues of chain A 
include LEU1753, LEU1780, ILE1784, and PHE1791, and those of 
chain B include LEU1753, LEU1780, and PHE1791 [14]. All the 
ligand-protein interactions, such as H-bond, hydrophobic 
interactions, π-cation, charged positive and negative interactions 
formed by the top thirteen ligands, are summarized in table 1. 

Among thirteen ligands and TCL, DB08909, DB03115, DB07676, 
DB11519, DB07101, and DB09289 formed an H-bond with 
LEU1780. The only ligand that formed aromatic π-cation stacking 
with PHE1791 was DB09289. Aromatic π-π stacking was observed 
with DB11855, DB07783, DB03115, DB07676, DB11519, DB11399, 
DB07101, DB08984, DB12390 and DB09289 with PHE1791. The 
cocrystal engaged with PHE1791 through aromatic π-π stacking 
through rings A and B. 

MM-GBSA 

Selected top thirteen ligands were subjected to Prime MM-GBSA 
analysis in the chosen docked poses to estimate stability of protein-
ligand complexes as a measure of binding energy. The relative 
binding free energy (dG) of all the protein-ligand complexes was 
determined to be less than-14kcalmol-1 (table 2). dG of the co-
crystallized ligand was determined to be-31.1 kcalmol-1. Thus, the 
results of this analysis show that all the ligands possess stability in 
their docked poses and, therefore, can act as potential hENR 
inhibitors. Of the thirteen ligands, DB08909 exhibited the most 
favourabledG of-67.07kcalmol-1. 

ADME 

The top 13 compounds were analysed for their ADME properties 
using the QikProp tool. These properties included molecular weight, 
number of hydrogen bond donors, number of H-bond acceptors, 
predicted octanol/water partition coefficient (Log Po/w), predicted 
IC50 value (QPlog HERG), predicted aqueous solubility (QPLog S), 
predicted blood/brain partition coefficient (Log BB), polar surface 
area (PSA) and Lipinski rule of five (table 3). Lipinski's rule of five 
employs molecular descriptors such as molecular weight, hydrogen 
bond donors, hydrogen bond acceptors and octanol-water partition 
coefficient (log P). The rule states that molecules with molecular 
weight<500 Da, hydrogen bond donors ≤5, hydrogen bond acceptors 
≤10 and logP ≤ 5 are considered "drug-like". An orally active 
compound is considered drug-like only if there is not more than one 
violation of the given criteria [24]. The eleven ligands out of thirteen 
that obeyed the rule of five were DB11855, DB00938, DB12100, 
DB07783, DB03115, DB07676, DB11519, DB07101, DB08984, 
DB12390, DB09289. The high logP value of DB11399 could be 
reduced by incorporating polar groups. The co-crystallized ligand, 
TCL, was also in accordance with the rule.
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Table 1: 2D interaction diagrams of top thirteen ligands from XP 

S. No. Drug 2D interaction diagram Interacting residues 
1 DB11855 

 

 

Hbond: A: LYS 1771, A: ILE 1769 
π-π stacking: A: PHE 1791, B: PHE 1791 
Charged Positive: A: LYS 1771 
 

2 DB00938 
 

 

H bond: A: ILE 1769, A: LYS 1771, A: ASP 
1773 
Charged Positive: A: LYS 1771 
Charged Negative: A: ASP 1773 
 

3 DB08909 
 

 

H bond: B: LEU 1780 

4 DB12100 
 

 

H bond: A: LYS 1771 
π-π stacking: B: PHE 1766 
Charged Positive: A: LYS 1771 

5 DB07783 
 

 

H bond: B: GLU 1768, B: ILE 1769, B: LYS 
1771 
π-π stacking: B: PHE 1791 
Charged Positive: B: LYS 1771 
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S. No. Drug 2D interaction diagram Interacting residues 
6 DB03115 

 

 

H bond: B: LEU 1780 
π-π stacking: A: PHE 1791, B: PHE 1791 
 

7 DB07676 
 

 

H bond: B: LEU 1780 
π-π stacking: A: PHE 1791 
 

8 DB11519 
 

 

H bond: A: LEU 1780, A: ARG 1758 
π-π stacking: B: PHE 1791 
Charged Positive: A: ARG 1758 

9 DB11399 
 

 

π-π stacking: B: PHE 1791 

10 DB07101 
 

 

H bond: B: LEU 1780 
π-π stacking: B: PHE 1791 
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S. No. Drug 2D interaction diagram Interacting residues 
11 DB08984 

 

 

π-π stacking: A: PHE 1791 
 

12 DB12390 
 

 

H bond: A: ARG 1758 
π-π stacking: A: PHE 1791, B: PHE 1791 
Charged Positive: A: ARG 1758 
 

13 DB09289 
 

 

H bond: A: LEU 1780 
π-π stacking: A: PHE 1791 
π-cation interaction:  
A: PHE 1791, B: PHE 1791 
 

14 TCL 
 

 

π-π stacking: A: PHE 1791, B: PHE 1791 
 

 

Table 2: Relative binding free energy and docking score of top thirteen ligands 

S. No. Drugs Docking score (XP)(kcal mol-1) MMGBSA dGbinda (kcalmol-1) 
1 DB11855 -11.465 -65.68 
2 DB00938 -13.645 -65.78 
3 DB08909 -14.102 -67.07 
4 DB12100 -15.245 -45.08 
5 DB07783 -12.195 -40.40 
6 DB03115 -13.422 -52.59 
7 DB07676 -11.23 -54.18 
8 DB11519 -13.462 -37.74 
9 DB11399 -11.220 -61.38 
10 DB07101 -12.118 -51.90 
11 DB08984 -13.245 -37.52 
12 DB12390 -11.575 -44.02 
13 DB09289 -10.031 -14.13 
14 TCL -6.332 -31.1 

aRelative binding free energy 
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Table 3: ADME analysis of the top thirteen ligands using Qikproptool 

Compounds MWa Donor HBb AccptHBc QPlogPo/wd QPlogHERGe QPlogSf QPlogBBg PSAh Rule of fivei 
DB11855 597.756 3 12 3.552 -7.759 -4.508 -1.394 133.115 1 
DB00938 415.572 4 7.35 3.939 -7.673 -4.302 -1.782 81.662 0 
DB08909 530.66 0 6 8.103 -8.821 -9.579 -2.341 106.336 2 
DB12100 460.52 4 8.15 3.332 -7.826 -4.704 -2.124 101.349 0 
DB07783 445.52 4 8.75 3.158 -7.473 -5.856 -2.722 128.354 0 
DB03115 561.093 3 7.1 3.443 -5.777 -5.76 -1.123 103.177 1 
DB07676 335.388 3 8.6 1.75 -5.905 -3.545 -1.67 121.174 0 
DB11519 458.474 4 7.85 4.118 -3.905 -5.428 -2.165 115.657 0 
DB11399 674.721 1.25 7.25 8.103 -7.597 -10.267 -0.943 92.27 2 
DB07101 482.197 3 7.1 3.016 -5.9 -5.098 -1.173 101.153 0 
DB08984 369.34 1 4.9 4.505 -6.249 -5.833 -0.792 76.145 0 
DB12390 444.465 1 5.7 5.864 -4.395 -6.814 -0.958 71.961 1 
DB09289 436.952 2 8 1.118 -4.062 -4.069 -1.071 101.541 0 
TCL 289.545 1 1.25 4.756 -4.887 -4.516 0.459 28.291 0 

aMolecular weight (range 130.0 –725.0), bEstimated number of hydrogen bonds that would be donated by the solute to water molecules in an 
aqueous solution (range 0.0–6.0), cEstimated number of hydrogen bonds that would be accepted by the solute from water molecules in an aqueous 
solution (range 2.0–20.0), dPredicted octanol/water partition coefficient (range –2.0 to 6.5), ePredicted IC50 value for blockage of HERG 
K+channels(concern below –5), fPredicted aqueous solubility (range –6.5 – 0.50), gPredicted brain/blood partition coefficient (range −3.0 to 1.2), 
hPSA Van der Waals surface area of polar nitrogen and oxygen atoms (range 7.0–200.0), iNumber of violations of Lipinski’s rule of five. The rules are: 
MW<500, QPlogPo/w<5, donor HB ≤ 5, acceptHB ≤ 10 (range ≥ 4) 

 

Induced fit docking 

In standard virtual docking, ligands are docked against the receptor's 
binding site; the receptor is often assumed to be rigid. Whereas most 
receptor-binding sites undergo conformational changes in their shape 
and binding mode during the binding process. These changes enable 
the receptor and ligand to better interact with each other. This is 
known as induced fit [29]. Thus, induced fit docking is done to take 
into consideration the flexibility of the receptor binding site and 

provide accurate and reliable insights into the binding affinity of the 
ligands. IFD protocol filters out false negatives, employing additional 
confirmations rather than docking against a single conformation of a 
receptor. Among the best thirteen ligands, DB12100 exhibited the 
most favourable dock score of-15.245. 3D receptor-ligand interactions 
of the best two ligands are shown in (fig. 3). 

A comparison of new and missing interactions during IFD to XP is 
shown in (table 4).

  

Table 4: New and missing interactions of top compounds from IFD versus XP and their IFD scores 

S. No. Ligands H-bonda π-π stacking Salt bridge  IFD Scoreb 
(kcal mol-1) New Missing New Missing New Missing 

1 DB11855 A: LEU1780 
A: ASP1773 

A: LYS1771 - - A: ASP1773 
A: GLU1751 

- -11.465 

2 DB00938 - - - - A: GLU1751 - -13.645 
3 DB08909 A: LEU 1780 - - - - - -14.102 
4 DB12100 B: GLU1751 

B: ILE1769 
B: LYS1771 

A: LYS1771 - - B: GLU1751 
 

B: PHE1766 -15.245 

5 DB07783 B: GLY1754 B: GLU1768 
B: ILE1769 
B: LYS1771 

A: PHE1791 B: PHE1791 - - -12.195 

6 DB03115 B: LEU1767 
B: SER1747 

B: LEU1780 - B: PHE1791 - - -13.422 

7 DB07676 A: GLY1781 
A: LEU1780  
A: LEU1753 

B: LEU1780 B: PHE 1791 A: PHE1791 - - -10.592 

8 DB11519 B: ARG1758  
B: LEU1780 

A: LEU1780 
A: ARG1758 

- B: PHE1791 - - -13.390 

9 DB11399 A: LEU1780 
B: LEU1780 

- A: PHE1766 
A: PHE1791 

-  - -11.220 

10 DB07101 - B: LEU1780 A: PHE1791 B: PHE1791 - - -12.118 
11 DB08984 B: SER1747 

B: LEU1767 
- - A: PHE1791 - - -12.956 

12 DB12390 - A: ARG1758 - A: PHE1791 B: ARG1758 - -11.379 
13 DB09289 A: PHE1766 

A: GLY1781 
- - - - - -10.031 

ahydrogen bond, bInduced Fit Docking Score 

 

Molecular dynamics 

Amongst all ligands under investigation, DB07676 and DB11399 
were further taken up for MD studies based on XP docking score, 
binding interactions with protein, ADME parameters and IFD score. 

These ligands, in their best binding pose from IFD, were used. RMSD 
fluctuations of ligand-protein complexes, namely, DB07676-
hENRdocked complex (complex 1), DB11399–hENR docked complex 
(complex 2), and TCL– protein complex (complex 3), were measured 
individually. In Complex 1, the RMSD values of protein and ligand 



K. K. Nayak et al. 
Int J App Pharm, Vol 16, Issue 6, 2024, 316-328 

323 

were within the range of 1.2 to 3.5 Å and 1.7 to 5.2 Å, respectively. 
Major drifts were observed during 5-36 ns and 82-100 ns. However, 
during this period, the RMSD values were within the acceptable 
range of 1-3 Å (fig. 4a). In complex 2, the protein and ligand RMSD 
values were determined to be within the range of 1.4 to 3.0 Å and 1.1 
to 5.8 Å, respectively. The complex was found to be stable 

throughout the study, but slight drifts were observed during 8-25 ns 
and 54-88 ns (fig. 4b). For the co-crystallized ligand-hENR complex, 
the RMSD values of protein and ligand were within the range of 1.25 
to 3.875Å and 0.5-6.5 Å, respectively. Major drift was observed 
during 17-83 ns, after which the complex stabilized towards the end 
of the study (fig. 4c).

 

 

Fig. 3: 3D ligand interactions from IFD of a) DB12100, b) DB08909 with hENR 

 

 

 

 

Fig. 4: RMSD plot of a) DB07676-hENR complex, b) DB11399-hENR complex, c) TCL-hENR complex 
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Protein-ligand interactions were observed throughout the MD 
simulations, and an analysis report for the potential interactions was 
produced. In the selected trajectory, protein-ligand interactions 
occurring for more than 30.0 percent of the simulation time were 
recorded. In complex 1, the ligand DB07676 formed water-bridged 
interactions with GLU1768 of chain B through the ligand’s nitrogen-atom 
of indole moiety. Hydrophobic interactions and hydrogen bonds were 
also present but with weaker occupancy. Hydrophobic interactions were 
seen with LEU1780, ILE1784 PHE1791 of chain A, and LEU1753, 
VAL1757, PHE1766, and PHE1791 of chain B. The ligand formed 
hydrogen bonds with GLN1754, LEU1780, and GLY1781 of chain A and 
LEU1780 of chain B (fig. 5a). In complex 2, the ligand DB11399 showed 

π-π stacking interaction with PHE 1766 residue of chain B. The ligand 
also interacted with LEU 1753 of chain B through water-bridged 
interactions. Hydrogen bonds and other hydrophobic interactions were 
also present but with weaker occupancy. Hydrogen bonds were seen 
with GLY1754 and GLY1781 of chain A and GLN1754 AND LEU1780 of 
chain B. Hydrophobic interactions were seen with LUE1753, VAL1757, 
PHE1766, ILE17891, and PHE1791 of chain A; and LEU1748, LEU1753, 
LEU1780, ILE1784 and PHE 1791 of chain B (fig. 5b). Co-crystallized 
ligand-hENR complex formed π-π stacking interaction with PHE1791 of 
chain B through its ring A. Hydrogen bonds with weaker occupancy were 
observed with LEU1780 of chain A, and GLU1768, LEU1780 of chain B 
(fig. 5c).

 

 

Fig. 5: Protein-ligand interaction diagram of a) DB07676-hENR, b) DB11399 hENR, c) TCL (co-crystallized ligand)-hENR complex 
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P-RMSF (Protein Root mean Square Fluctuations) was performed to 
visualize fluctuations of segments along the protein during the 
simulation study. The amino acid residue of the protein undergoing 
more fluctuations is represented by higher peaks. 

For complex 1, the residue in the binding site that showed the 
highest fluctuation was B: LEU1780 with an RMSF value of 3.49Å, A: 
ASP1773 with an RMSF value of 2.60Å and B: ASP1773 with RMSF 
value of 1.86Å. RMSF values of the remaining protein were in the 

range of 0.52Å to 8.17Å (fig. 6a). For complex 2, the most fluctuating 
binding site residues were B: LEU1774 with an RMSF value of 3.24Å, 
B: ASP1773 with an RMSF value of 2.32Å and A: LEU1780 with an 
RMSF value of 2.06Å. RMSF values of the remaining protein ranged 
between 0.54Å to 8.76Å (fig. 6b). For complex 3, the most volatile 
residues in the binding site were A: LEU1780 with an RMSF value of 
3.76Å, B: LEU1774 with an RMSF value of 3.61Å and A: ASP1773 
with an RMSF value of 3.58Å. The RMSF values of the remaining 
protein ranged between 0.58Å to 12.99 Å (fig. 6c).

 

 

Fig. 6: Protein RMSF plot of a) DB07676, b) DB11399 c) TCL during MD simulations 

 

Ligand Root Mean Square Fluctuation (L-RMSF) provides insights 
into the interaction of ligand fragments with proteins, throwing light 
on their binding dynamics and entropic contributions involved 
during the process of binding. For complex 1, the RMSF value of 
major volatility was observed with C2 alkene at position 26 with an 
RMSF value of 2.47 Å. Other fluctuations were observed with the O3 
group at the 4th position and the O2 group at the 3rd position with 
an RMSF value of 2.41Å and 2.32Å, respectively (fig. 7a). For 

complex 2, major volatility was seen with C2 alkene at position 47 
with an RMSF value of 2.63Å. Other fluctuations observed with the 
ligand were C2 at positions 49 and 46 with an RMSF value of 2.48Å 
and 2.30Å, respectively (fig. 7b). For complex 3, the RMSF value of 
major volatility was observed in the chlorine atom at 16th position 
47 with an RMSF value of 3.61Å. Other fluctuations observed with 
the ligand were chlorine atoms at the 15th and 14th position with an 
RMSF value of 3.53Å and 3.20Å, respectively (fig. 7c).
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Fig. 7: Ligand RMSF plot of a) DB07676, b) DB11399, c) TCL (cocrystallised ligand) during MD simulations 

 

CONCLUSION 

In this research study, receptor-based virtual screening was 
performed on the target enzyme (4W9N) to identify potential hENR 
inhibitors. FDA-approved drugs from the Drug Bank database were 
prepared and docked against the binding site of hENR. Top 
molecules were identified, assessed and ranked based on their 
docking score, binding energy, fitness score, ADME parameters and 
results of MD study. Our final findings suggested that DB07676 and 
DB11399 can behave as potential leads against prostate cancer as 
hENR inhibitors. However, in vitro and in vivo studies need to 
substantiate these findings further for their selective cytotoxicity to 
facilitate the repurposing of these molecules in prostate cancer. 
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