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ABSTRACT  

Objective: The current study exemplifies the synthesis of silver nanoparticles using Muntingia calabura L. (Mc-AgNP’s) fruit extract utilizing a green 
approach and testing the efficacy of synthesized NP’s. 

Methods: The green synthesize approach was used to synthesis Mc-AgNP’s followed by characterization using Fourier Transform Infrared 
Spectroscopy (FTIR), X-ray Diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX), and Field Emission Scanning Electron Microscopy 
(FESEM). Radical scavenging activity was assessed using DPPH, FRAP, and H202, followed by antibacterial activity. 

Results: The characteristic features of synthesized Muntingia calabura silver nanoparticles (Mc-AgNP’s) were analyzed using FT-IR which particularizes 
different functional groups with a broadband at 3408 cm-1 representing hydroxyl (-OH) stretching a peak at 1593.27 cm-1 corresponds to C = O groups 
in amide whereas a dip at 1383 cm-1 represents C-N amine and C-O stretching of alcohol groups were found. The Crystallinity of synthesized Mc-AgNP’s 
exhibited face-centered cubic (fcc) crystalline structure and the bio-reduction of the silver ions in solution was monitored by Energy dispersive X-ray 
spectroscopy (EDX). The FESEM analysis indicates that Mc-AgNP’s were dispersed in the solution using micrographs and the size ranged from 10 to 60 
nm. The synthesized Mc-AgNP’s efficiently scavenged free radicals in a dose-dependent manner with 69% for DPPH, 59.9% for FRAP, and 64% for H202 
respectively. Further, the synthesized Mc-AgNP’s demonstrated a potent antimicrobial agent against tested bacterial and fungal strains with a maximum 
zone of inhibition observed in S. aureus, K. pneumonia, and P. vulgaris with 14.6, 13.8, and 12.4 mm. Similarly, antifungal activity with Trichoderma 
harzianum demonstrated the highest zone with 18 mm followed by Aspergillus oryzae with 7 mm. 

Conclusion: These results highlight the interesting potential of synthesized Mc-AgNP’s as an effective source of bioactive compounds with potent 
antioxidant and antibacterial activity. 
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INTRODUCTION 

For several years, nanotechnology had a big influence on industries 
and in the field of science. Investments in research are supported by 
governments and corporations with several billion dollars 
worldwide to develop a good product [1]. Metal nanoparticles are 
distinguished as the most popular in biology and medicine with 
silver (AgNP’s) nanoparticles playing a prominent role where the 
sources were mostly from natural origin [2]. Silver nanoparticles are 
found with a varied size between 1-100 nm [3] in which they are 
composed of a large percentage of silver oxide due to their large 
ratio of surface-to-bulk silver atoms. Numerous shapes of 
nanoparticles can be constructed depending on the application but 
commonly used are spherical silver nanoparticles also diamond, 
octagonal, and thin sheets are popular.  

Nanoparticle synthesis has been elaborated in dependence on their 
shape, and size obtained based on various methods and using 
multiple solvents [4, 5]. The use of toxic substances was minimized 
by replacing them with natural ones in various sectors [6, 7]. “Green 
synthesis” of nanoparticles makes use of environmentally friendly, 
non-toxic, safe reagents like plants with their extracts found to be 
advantageous over other biological synthesis processes, which 
involve the very complex procedures of maintaining microbial 
cultures [8]. The applications of nanotechnology in biological 
molecules undergo highly controlled assembly for metal 
nanoparticle synthesis, which was found to be reliable and eco-
friendly [9].  

Muntingia calabura L., the sole species in the genus Muntingia, is a 
flowering plant native to southern Mexico and found globally in 
most continents. The fruit is edible, sweet, and juicy and contains a 

large number of tiny (0.5-mm) yellow seeds. It is a pioneer species 
that thrives in poor soil, able to tolerate acidic, alkaline, and drought 
conditions. It is grown for its edible fruit and cultivated in other 
parts of the tropics, including south-east Asia. The synthesis of 
AgNP’s using aqueous fruit extract containing primary and 
secondary metabolites consisting of bioactive compounds like 
alkaloids, terpenoids, flavonoids, phenolic compounds, tannin, and 
saponins which will reduce AgNO3 into AgNP’s and also acts as 
capping agent. Though studies on the synthesis of AgNP’s using 
aqueous leaf extract of Muntingia calabura [10] are reported, the 
present study focuses on the synthesis of AgNP’s from fruits and 
tests the efficacy to overcome the common pathological conditions, 
identify the radical scavenging capacity of the AgNP’s which are 
mainly responsible to induce pathogenicity [11].  

MATERIALS AND METHODS  

Collection of sample and synthesis of Mc-AgNP’s 

The fully ripened fruits of Muntingia calabura were collected from 
Erode District, Tamil Nadu, India during the month of December 
2016. The fruits were pooled and were kept in cold (–4 °C) storage 
for further analysis. For the extraction of secondary metabolites, 100 
g of fruits were taken and homogenized with 400 ml of methanol. 
Then, the extracts were centrifuged thrice (3000 g, 15 min) then, the 
clear supernatants were collected separately from the solvent [12] 
and the pellet was dried in a lyophilizer. AgNP’s were synthesised 
following the earlier protocols [13]. 

Chemicals and solvents  

All chemicals and solvents were procured from SD Fine Chemicals, 
Mumbai and Fischer Inorganic and Aromatic Limited, Chennai, India 
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Characterization of synthesized Mc-AgNP’s 

The synthesized nanoparticles were subjected to characterization 
using UV-Vis JASCO V-700 spectroscopy recorded at wavelengths 
ranging from 200 to 1000 nm, Fourier Transform-Infrared 
Spectroscopy (FTIR 8400) analysis of the dried powder of AgNP’s by 
scanning it in the range of 450–4000 at a resolution of 4 cm-1. The 
morphology of the Silver nanoparticles was examined using Field 
Emission Scanning Electron Microscopy (FESEM), and the images 
were operated at 15 kV on a 0° tilt position, crystallinity of AgNP’s 
was observed using Bruker AXS D8 Advance X-ray Diffractometer 
(XRD) and Energy-Dispersive X-Ray Spectroscopy Analyser (EDXA: 
Oxford Link ISIS-300). 

In vitro radical scavenging and antimicrobial activity of Mc-
AgNP’s 

In vitro antioxidant property of the AgNP’s was carried out following the 
methods with slight modification. DPPH (1,1-diphenyl-2-picrylhydrazyl) 
radical scavenging assay [14], FRAP (ferric reducing antioxidant power) 
assay [15], and H2O2 (hydrogen peroxide) scavenging activity was 
carried out following the method described earlier [16]. 

The synthesized Mc-AgNP’s were analyzed for antibacterial and 
antifungal activity tested against five bacterial strains (Escherichia coli, 
Klebsiella pneumonia, Staphylococcus epidermidis, Staphylococcus 
aureus, and Proteus vulgaris) and two fungal strains (Aspergillus oryzae 
and Trichoderma harzianum). The activity was performed by 
determining the inhibitory effect of AgNP’s by agar well disc diffusion 
method and the antimicrobial activity was determined by measuring 
the zone of inhibition observed on the plates and the standard 
antimicrobial agent such as Choremphanicol was used as control [17]. 

RESULTS AND DISCUSSION 

Characterization of synthesized Mc-AgNP’s 

The Characteristic absorption peaks of silver nanoparticles can be 
seen at around 360–440 nm as revealed in the fig. 1, which was 
identified as the “surface Plasmon resonance band”. Similarly, the 
silver nanoparticles produced from the Muntingia calabura leaf 
extract exhibited absorption peaks at 440 nm [10]. This indicates the 
preliminary confirmation of the presence of silver nanoparticles. 
The dried nanoparticle samples were analyzed in FTIR to identify 
the possible bio-molecules responsible for the reduction of the 
Ag+ions by Muntingia calabura fruit extract. The FTIR spectrum is 
presented in fig. 2. The peak at 3408 cm-1, shows the presence of 
hydroxyl (-OH) stretching groups caused by inter-molecular 
hydrogen bonding compounds such as phenols, alcohols, and 
carboxylic acids. The peak at 1593.27 cm-1 is a spectrum of C = O 
groups in amide. The dip at 1383 cm-1 peak of the cluster C-N amine 
and C-O stretching of alcohol groups were found. It is clearly 
understood that FTIR provides information on the vibrational and 
rotational modes of motion of a molecule. The Infrared spectrum of 
an organic compound provides a unique fingerprint, which is readily 
distinguished from the absorption patterns of all other compounds. 
In this regard, the peak at 1026.17 cm-1 indicates the C-N bond 
stretching. Saware et al. stated that the distinct peak in the range of 
1640 and 1540 cm−1, which represents amide I and amide II of 
proteins, arises due to carbonyl stretch and – N–H stretch vibrations 
in the amide linkages [16]. The Carbonyl group of amino acid 
residues and peptides of proteins has the stronger ability to bind 
metal, so proteins could be the most possible organic molecule for 
stabilizing the AgNP’s in the medium [17]. 

 

 

Fig. 1: UV-visible spectrum of Mc-AgNP’s 

 

 

Fig. 2: FTIR spectra of Mc-AgNP’s 
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Fig. 3: FESEM images of Mc-AgNP’s 

 

 

Fig. 4: EDX spectrum of Mc-AgNP’s 

 

 

Fig. 5: XRD pattern of Mc-AgNP’s 

 

The size and shape of the Mc-AgNPs were assessed using the FESEM 
technique. Fig. 3 exhibits that the particles were spherical, some 
were irregular and few particles were present individually. Earlier 
studies have reported similar results, stating that the particles were 
spherical and few were aggregated [20]. The energy dispersive X-ray 

analysis (EDX) reveals a strong signal in the silver region and 
confirms the formation of silver nanoparticles. The EDX data from 
fig. 4 reveals the presence of elements like Ag, cl and Na was 
confirmed in synthesized silver nanoparticles with Muntingia 
calabura fruit extract. The quantitative analysis of atomic ratio 
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represented Ag (66.1%) was found higher than Cl (31.15%) and Na 
(2.74%) as in fig. 4. Metallic silver nanocrystals generally show 
typical optical absorption peak approximately at 3 keV due to 
surface plasmon resonance [18]. This analysis revealed that the 
nano-structures were formed solely of silver (fig. 4). 

The X-ray diffraction pattern of the biosynthesized silver 
nanoparticles produced by the Muntingia calabura fruit extract is 
shown in fig. 5. The XRD pattern showed two intense peaks (32.30° 
and 67.40°) in the whole spectrum of 2 θ values ranging from 20 to 
80 and indicated that the structure of silver nanoparticles is face-
centered cubic (FCC). These are corresponding to (111) and (220) 
planes for silver, respectively. A sharp and strong diffraction peak 
centered at 32° appeared, which can be indexed to the (1 1 1) 
reflection of the metallic silver (JCPDS File No. 04-0783). The results 
of the present study are in agreement with the previous reports 
stating the presence of silver in different plant extracts [7]. 

In vitro radicals scavenging and antimicrobial activity of Mc-
AgNP’s 

It is evident and clear that the human system is triggered by free 
radicals causing oxidative damage by ROS, RNS produced by 
activated macrophages and neutrophils leading to several diseases 
like diabetes, arthritis, autism, cancer, cataracts, aging, Parkinson’s 
disease, Alzheimer’s dementia and most important is heart disease 
[21]. The dose-response radical-scavenging activity of synthesized 
AgNP’s using Muntingia calabura fruits was observed and 
represented in table 2. Many plant and microorganism-based 

products and their secondary metabolites are proven scientifically 
to be potent radical scavengers [11] and most of the experimental 
studies on radical scavenging ability are observed using DPPH a 
common nitrogen-centered free radical. DPPH readily accepts 
electrons from antioxidant compounds with the change in color 
from violet to yellow and the intensity of the color change is 
measured spectrophotometrically [22, 23]. The results of the DPPH 
assay revealed significant radical scavenging properties with an 
inhibition of 69% and IC50 of 1.4933 mg\ml, which is significant and 
correlates with the results of previous studies with fruit extract of 
Muntingia calabura [12].  

FRAP is often used to measure the antioxidant capacity of foods, 
beverages, and nutritional supplements containing polyphenols and 
also provides an easy and rapid way to evaluate antioxidant activity 
[12, 24] and the results revealed that synthesized Mc-AgNP’s was 
significantly lower than the ascorbic acid, but the radical scavenging 
ability improved by increasing the concentration and at higher 
concentration (60µg\ml) maximum inhibition of 59.9% was 
observed (table 1). The results specify a marked ferric-reducing 
ability of the synthesized Mc-AgNP’s might be due to the presence of 
active components of the extract that reacted with free radicals to 
become a stable product and inhibit the free radical chain reactions 
[11, 25]. Mc-AgNP’s were capable of scavenging hydrogen peroxide 
radicals in a dose-dependent manner and the maximum scavenging 
activity was observed at 60µg/ml concentration with 64% 
inhibition, which was on par with the standard ascorbic acid with 
74.7% inhibition (table 1). 

  

Table 1: Radical scavenging potential of MC-AgNP’s 

Activity Concentration/% inhibition 
20 µg\ml 40 µg\ml 60 µg\ml 

DPPH 44±0.42 56±0.34 69±0.28 
FRAP 42.6±0.36 49±0.28 59.9±0.16 
H202 18.2±0.24 48±0.36 64±0.26 

Note: All value represents three individual observations, and data are expressed in mean±SEM calculated by one-way ANOVA 

 

Table 2: Antimicrobial activity of synthesized MC-AgNP’s 

Microorganism Zone of inhibition 
20 µg\ml  40 µg\ml  100 µg\ml Control (10 µg\ml) 

Bacterial strains  
Staphylococcus epidermidis 3.2±0.12 9±0.14 12±1.25 16.8±0.42 
Escherichia coli 4.4±0.18 9±0.27 13.5±0.13 14.6±2.24 
Klebsiella pneumonia 3.8±0.22 10±0.15 13.8±0.17 14.8±1.14 
Staphylococcus aureus 6.2±0.26 11.8±0.23 14.6±0.12 16.8±2.12 
Proteus vulgaris 4.6±0.22 11±0.17 12.4±0.19 18.2±2.2 
Fungal strain   
Trichoderma harzianum 6.2±0.12 10±0.18 18±0.23 21.6±0.84 
Aspergillus oryzae 1.8±0.14 6±0.27 7±0.17 18.6±1.16 

Note: All value represents three replicates, and data are expressed in mean±SEM calculated by one-way ANOVA 

 

Table 2 depicts the antimicrobial potential of AgNP’s from Muntingia 
calabura and the results represent that Staphylococcus aureus, 
Klebsiella pneumonia, and Proteus vulgaris demonstrated maximum 
ZI with 14.6, 13.8, and 12.4 mm respectively at 100 µg\ml 
concentration (table 2). Similarly, the tested other bacterial strains 
also demonstrated dose-dependent activity and the results were on 
par with the tested standard drug. The anti-fungal activity for the 
Mc-AgNP’s demonstrated dose-dependent activity and the maximum 
zone was observed by Trichoderma harzianum representing ZI with 
10 mm and 18 mm for 40 and 100 µg\ml concentrations (table 1) 
but represented minimum zone even at higher concentration against 
Aspergillus oryzae. The results are in line with the previous research 
on nanoparticles illustrating effective antimicrobial activity [20, 25]. 

CONCLUSION 

The present study reveals the protective efficacy of synthesized 
AgNP’s from Muntingia calabura fruit exhibits potent radical 
scavenger and inhibit the growth of microorganisms. Thus, the 

traditional usage with the technology development may pay a better 
way for the development of drugs against various diseases.  
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